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I. INTRODUCTION

Attempts to apply quantum theory to the Universe
have been for some time divided into two main schools
focused on either the canonical or the path integral ap-
proach. While these two approaches are driven by dif-
ferent conceptions of how a quantum theory of the Uni-
verse is to be constructed and interpreted, progress in
these directions has been circumscribed by the particular
strengths and weaknesses of the two formalisms. These
strengths and weaknesses allow each formalism to ad-
dress, in rather different ways, key issues in quantum
cosmology associated with the time reparametrization
invariance. This reflects a lack of clocks and observers
“outside” the Universe, the essential problem of quan-
tum cosmology.

In the first approach, the Dirac procedure of the canon-
ical formalism gives us a prescription to construct physi-
cal states, define physical observables, and propose (per-
haps through the reality conditions of the theory) a phys-
ical inner product. The strength of the canonical ap-
proach arises in the way time reparametrization invari-
ance, as well as other invariances of the theory, can be
treated directly, yielding a gauge invariant quantization.
The existence, for quantum gravity as well as for (2 + 1)
gravity and one or two Killing field models, of exact re-
sults concerning physical states and operators speaks of
this strength.

The great weakness of the canonical approach is that
physical observables are very difficult to construct ex-
plicitly because, both classically and quantum mechan-
ically, observables must commute with the Hamiltonian
constraint and necessarily are independent of parameter
time. This difficulty is real; it reflects the fact that phys-
ical operators which describe time evolution ought to be
constructed as correlations between the degrees of free-
dom, one of which one would like to take as a clock [1].
For example, suppose we pick a condition which picks
out a slicing of spacetime into spacelike leaves (assuming
this is possible) according to some degrees of freedom of
the theory. We may define some observables which mea-
sure spatially diffeomorphism invariant information on
these leaves. For example, let A(g,p) be a measurement
of geometry (where ¢ and p are coordinates on phase
space) and let T'(g,p) be another diffeomorphism invari-
ant quantity which we will take as measuring time. Then
for every possible value 7 of this time observable there is

0556-2821/95/51(10)/5475(8)/$06.00 51

a physical observable which measures the value of A(q, p)
on the T'(q,p) = 7 leaf. As the condition which picks out
the leaves is expressed in terms of the degrees of freedom,
this procedure is completely gauge invariant; within any
gauge one can specify these leaves and evaluate the vari-
ables A(q,p) and T'(q,p).

While simple to specify, to express such correlations
explicitly in terms of functions on phase space or opera-
tors on the physical states one must finish the hard task
of solving the dynamics of the theory. For, to find the
value of A(g,p) on the T(g,p) = 7 leaf, one must write
A in terms of the physical degrees of freedom. Thus,
the construction of time reparametrization invariant ob-
servables in the canonical theory is a dynamical problem,
which one cannot expect to solve without approximation
procedures for theories outside of integrable systems.

In the second approach, the path integral formalism,
we find that the problem of taking expectation values
of physical observables can be easily realized as soon as
one has a measure and a set of histories which represent
physically meaningful, gauge invariant amplitudes. The
expectation value of the observable A(T = 7) is simply
given by summing (with the appropriate measure) paths
weighted by the classical action and the value of the clas-
sical observable A(q,p) on the leaf T'(¢,p) = 7,

[ 1410, p) A(T = 7)] e*
[ [du(g, p)] ert

Varying 7, we describe the evolution of the system
in terms of time reparametrization invariant quantities.
Though the path integral formalism steps by the diffi-
culties of the canonical approach, the path integral has
complimentary difficulties. Setting interpretational is-
sues aside, we lack a prescription which allows us to un-
ambiguously find the set of histories, appropriate con-
tours, and a measure u(g,p) which implement gauge in-
variances and reality conditions.

We would like to suggest that this situation points to a
mixed approach in which physical, diffeomorphism invari-
ant quantum states of the canonical theory define a path
integral and measure, after which dynamics of physical
observables are computed with path integral techniques.
This program, if it can be concretely realized, offers a
possibility of an unambiguous formalism for quantum
cosmology.

To investigate this possibility, it would be very useful

(VAT =n)ly) = (1)
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to have a working model of a quantum cosmology which
has dynamics complicated enough so that problems of
constructing physical observables, an inner product, and
a path integral measure are nontrivial. However, the re-
sults ought to be simple enough that the path integrals
for physically meaningful quantities could be computed
by relatively simple numerical or approximation tech-
niques. This is the first of two papers which aim to lay
the groundwork to construct such a model of quantum
cosmology based on the Bianchi type IX spatially homo-
geneous spacetimes. In this paper we show that a gauge
invariant measure can be constructed in this model, fol-
lowing the Faddeev-Popov procedure [2] and using the
new variables [3]. In a companion paper we consider
a physical canonical quantization procedure for Bianchi
type IX and show how, and under what conditions, quan-
tities defined through this canonical formalism can be ex-
pressed in terms of path integral expressions of the kind
derived here.

The Bianchi type IX model describes a family of cos-
mologies in which space is homogeneous, but the geom-
etry has two dynamical degrees of freedom — measures
of anisotropy. It has been studied extensively, especially
since the late 1960s when Misner found that the dynamics
can be expressed in terms of the motion of a particle in a
time-dependent potential [4]. Though it is a simple sys-
tem with only two degrees of freedom, this model displays
a surprisingly rich behavior even at the classical level. For
instance, it has been shown that the Lyaponov exponent
is greater than 1 for certain choices of time, meaning that
the model is chaotic [5]. (However, the Lyapunov expo-
nent, a measure of the exponential separation of nearby
trajectories in time, is not time reparametrization invari-
ant [6].) In the face of this it is unlikely that the theory
can be exactly solved, making it an ideal candidate to
test the program.

At the quantum level, although there does not exist,
to our knowledge, a complete quantization of the Bianchi
type IX model in either a path integral or canonical for-
malism, a number of results have been found previously.
An exact physical state has been found by Kodama [7]
using the new Hamiltonian variables of Ashtekar, which
can even be transformed into the metric representation
[8]. Graham has constructed a supersymmetric solution
to this Bianchi model [9]. Numerical work, following the
methods of Euclidean quantum cosmology [10], shows
qualitative agreement with the exact solutions — at early
times the wave function is spread over the anisotropy
space while at later times the wave function peaks at the
isotropic model (the closed Friedmann-Robertson-Walker
model).

We present the derivation in “geometrized units” in

which G =c=1.

II. BIANCHI TYPE IX
IN THE NEW VARIABLES

The new variables provide a complex chart on the
phase space of general relativity with configuration vari-
ables, connections Al, and conjugate momenta, densities
E$. Our notational convention denotes spatial indices as

lowercase latin letters, e.g., a, b, ¢, ..., and denotes internal

indices as uppercase latin letters, e.g., I, J, ... . Densities
of weight 1, such as the conjugate momenta E¢, claim a
tilde. The phase space is endowed with a structure given
by

{AL(2), E5(y)} = i 8. 65 8%(z,y). ()

The more familiar metric is obtained from the frame
fields E¢ by defining triads on a three-manifold X, El =
ﬁEiI, and by letting h;; = ElEr;. As this chart is a
complex one, to regain general relativity we must choose

a section of the phase space in which reality conditions,
such as

(hij)™ = hi; (3)
and

(h;j) = hij, (4)
hold.

In the 3+1 decomposition, with o chosen as the time
parameter, the classical action is

of - .
1A, E, N] =/ do/ Bz (—iE,{Ag-N,,C*). (5)
o; z

The asterisk represents an index which runs from 0 to 6;
it has one value for each constraint:

S = EIJKF;bEaJEbK = 0, (6)
Gy := D.E} =0, (7)
V,:= FLE? =0, (8)

which are known as the scalar or Hamiltonian, Gauss,
and vector or diffeomorphism constraints, respectively.
The covariant derivative is associated with the connec-
tion Dof! = O0of! + e!'KA,;fx and the curvature
F({b = B[GAgl + elTE A, Apg. We investigate class A
Bianchi type IX models.! Homogeneity provides us with
a foliation of spacetime into homogeneous spacelike sur-
faces and gives each leaf a left invariant vector and one-
form basis (v,w) in which to expand the new variables
[11]. On each leaf we can write

A7 = ag(o)w; (2) (9)
and
Ef = ef (o)vg(a). (10)

These expansion coefficients may be viewed as 3 X 3 ma-
trices. Homogeneity reduces field theory to mechanics,
from 9 x 9 degrees of freedom per spacetime event to
9 x 9 for each spatial section. The action simplifies to

!The classification of Bianchi models involves splitting the
structure constants of the Lie group of isometries into two
irreducible pieces. Denoting these by SZ! and Vi, the struc-
ture constants may be written as Cly = esxr 8™ + 5[IJVK].
Class A models are those for which V; = 0.
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of

I[A,E, N] =/ do (—iQelaf — N,C*).  (11)

oi

Here, @ = [y w Aw Aw = 1672 is the volume element on
SU(2). (The Lagrange multipliers have been rescaled.)
Henceforth, we will work in the unusual units G = ¢ =
Q = 1, meaning we measure fields in terms of this volume
element and use a conversion factor of c*/G(Q)'/3 for
energy. In terms of the expansion coefficients defined in
Egs. (9) and (10), the constraints Egs. (6), (7), and (8)
become

S = e3¢ (—e&rap + eppaday) eget, (12)

Gr = sﬁaief‘{, (13)
and

Vs = el pakek. (14)

We choose to fix the six gauge and diffeomorphism con-
straints by a “diagonal gauge” [11] to yield the form of
Misner in which the cosmology may be seen as a particle
moving in (2+1)-dimensional spacetime. This choice par-
allels Misner’s B, 8 diagonalization in the geometrody-
namic framework (we will later translate our result into
Misner’s notation for comparison).

We define
€1:=e}, e2:=¢€3, €3:=€3 (15)
and choose
xi=el =0 forI#J. (16)

Upon imposing these conditions the three Gauss con-
straints vanish, while the three remaining vector con-
straints require that the off-diagonal components of a’
vanish as well. As above, we define

as := a3. 1n

— gl — g2
ay :=a;, a2 = a,,

At the end of the kinematical gauge fixing, we are left
with six canonical degrees of freedom per leaf.

At this kinematical level in which the Gauss and vec-
tor constraints have been solved, but the Hamiltonian
constraint has not, the model is not difficult to quantize.
The six canonical degrees of freedom can be taken to be
diagonal components of the frame fields and (imaginary
parts of) diagonal components of the connections. States,
in the diagonal metric representation, may be expressed
as functions of the €’s. The reality conditions, Eq. (3)
and Eq. (4), are realized by the inner product

W18 = [ dee T Oule(o), (18)
where
F(e) := 5:% + ? + % (19)

Unfortunately this quantization cannot be used to com-
pute physical quantities; reparametrization invariance re-
mains. The Hamiltonian constraint must be solved to
reduce to the physical phase space of four degrees of free-
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dom.

To pull out dynamics, we fix reparametrization invari-
ance by choosing a gauge condition. We have two forms
of this gauge condition.? The first fixes o to be propor-
tional to the volume of each spatial surface,

x°(0) :=In(vVh) —o = 0. (21)

This choice of 0 is monotonic on half the history of any
given classical Bianchi type IX cosmology [6]. (Bianchi
type IX expands from an initial singularity and then col-
lapses in a final singularity [12].) The second choice which
we will discuss is monotonic on the whole of the evolu-
tion. In this choice the parameter time is proportional to
the momentum conjugate to In(v/h), the trace of the ex-
trinsic curvature of the leaves. We will exhibit the path
integral in this gauge in Sec. IV.

To proceed to completely specify the canonical quan-
tization in this gauge we should find a complete set of
physical coordinates and momenta on the subspaces la-
beled by 0. We do not know how to do this. Fortu-
nately, the Faddeev-Poppov ansatz allows us to compute
the path integral.

III. CONSTRUCTION OF THE PATH INTEGRAL

Ideally, we would provide a chart for physical phase
space, use this chart as the groundwork of an operator
algebra, endow the space of states with an inner prod-
uct, and produce dynamics through a Hamiltonian com-
posed of these operators. We denote the canonical coor-
dinates as g*(0) and p,(0) (where ¢ = 1,2) and denote
the set of eigenstates by -|g*(c)) and -|p,(c)). As classi-
cally g*(o) and p, (o) are canonically conjugate, we would
have (¢*(0)|pr(0)) = exp[ig*(o)p.(o)]. If the Hamilto-
nian which realizes evolution from a fixed volume slice to
a fixed volume slice is h(p, 4, o), then we would have

(@5 (op)|di(0:)) = K (¢, 043 4",0%)

(a5(05)|3(0:)) = K (¢*,0%;¢", 04)

=/[dpdq1exp{i/wa
~h(p.g,)ldo | | (22)

where the integral is over all possible physical trajecto-
ries passing through initial point ¢, at volume o;, and
final point g%, at volume os. Brackets indicate one such
factor on each time slice of the skeletonization of the path
integral and indicate a factor of 1/v/2 for each differen-
tial. This notation will be used for the remainder of this

2There is yet another choice of time which produces a mea-
sure which has no momentum dependence. Unfortunately,
this time choice is complex, even with the reality conditions
satisfied. This gauge, in diagonal form, is written

XO(o’) =0 +1 [a;e; + %F(e)} . (20)
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paper.

This construction is only useful through its link to a
path integral over the whole (unphysical) phase space.
Denoting coordinates and momenta of the whole phase
space by ¢ and p [2],

K (45,0345, 0%) =/ [dpdquHﬂx*)l{Cnx*}l}

x exp{i / [pq' — h(p,q)

—N*Ci(p, q)] dd}, (23)

where the C are the constraints of the theory and the
Xx*(p, q) are the gauge choices. The key element of the
link, the determinant, involves Poisson brackets between
constraints and gauge fixing conditions. The time coor-
dinate o is an arbitrary parametrization of phase space

K(es 0p;i0:) =/[d3ed3a 1{Cur X"} 81 (e, 0)18(5)] exp{i/d

SETH MAJOR AND LEE SMOLIN 51

trajectories. Initial and final conditions of the path in-
tegral are chosen to agree with those in Eq. (22). (The
standard procedure for gauge theories described in (2]
generalizes to the case in which time reparametrization
invariance is one of the gauge invariances, as long as the
choice is consistent [13].)

In this Bianchi type IX model, the kinematical gauge
symmetries are fixed by the choice of a diagonal gauge
and the time reparametrization invariance is fixed by as-
sociating time with volume. Writing physical coordinates
(7 and p above) as the anisotropies (3, a transition ele-
ment from o; to oy is generated by integrating the initial
state with the kernel:

(Bl (os)) = / [4B) K (B, 4B, 03) (Blb(os)) . (24)

The kernel, the object we shall be concerned with from
now on, may be written in the new variables as

" o (—ieT('z)} : (25)

Expressions for this propagator will always be up to the normalization constant K(e;,0;;€;,0;). In Eq. (25) we per-
formed the trivial integration over off-diagonal pieces of a} and e, eliminating vector and diffeomorphism constraints
and their associated § functions. However, the measure contains contributions from both kinematical gauge fixing and
time parametrization (still explicitly indicated). The remaining constraint, the Hamiltonian constraint, is written as

S = (—a1 + aza3) €263 + (—az + aza1) eze1 + (—a3 + a1a2) €162 (26)
Exponentiating this constraint as

5(8) = / - 8,dNe eS| (27)
in which 4, is the step size of the skeletonization of the path integral, we can rewrite the kernel of Eq. (25),

K(es,055€i,01) = / [d%d®adN [{Cu,x"}| 61x°(e,0)]] exp {i/af do (—icTa — NS)} : (28)

The action is in the form of the (gauge-fixed) action of Eq. (11). This propagator has yet to be fully defined, for it is
a path integral over six complex dimensions.

The effects of our gauge choices can be computed explicitly. With the Poisson brackets with the scalar constraint
and the time choice of

{Co,x°} = 2ae1 = F(e)
[F(€) is defined in Eq. (19)], the whole determinant is

(29)

0 0 0 0 —€2 0 €3
0 0 ¢¢ 0 0 —e O
0 —€1 0 €2 0 0 0
HCx, x*} = g g 0 g @ 0 I
—€3 €1
0 e 0 —e; 0 0 O
{Co,x°} O 0 0 0O 0 O
3.3 3.3 3.3
€2€3 ( 2 2 €1€3 ¢ 2 2 €1€2 ¢ 2 2
=|—- - — - + — (€3 — €
o (63 62) + s (61 e3) €3 ( 2 1)

— (2arer) [e%eg (e% —€3) + €3€] (6:2, —€2) + e3€] (6% — eg)] .
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This measure has dependence on both coordinates and
momenta. Fortunately, when the path integral is defined
through the reality conditions the measure |{C,, x*}| fac-
tors into a product of momenta and a function of coor-
dinates. Imposition of the scalar constraint is enforced
by integrating over N, which has a range from —oo to
+o00. The parametrization, Eq. (21), restricts the range
of the € integration to the positive real axis (0,+o00).
Meanwhile, restricting the € integral to the real axis also
satisfies the reality conditions of Eq. (3) requiring the
three-metric to be real.

To implement the other reality conditions, Eq. (4), we
may choose a contour for the ay integral which reflects
these conditions. Recall that the Al’s are complex vari-
ables which depend on the original canonical variables of
relativity via AL = TI(E) +iKI(E, ) with SU(2) con-
nection I'Z and extrinsic curvature K. The momenta II
is canonically conjugate to E. We have a similar relation

J

Kieposiewo) = [ (e [ @] [~ [le{C*,X*H5[Xo(€,0)]]exp(i/

—o0 —

where the coefficient of the quadratic term is
N 0 €1€2 €1€3
Q = E €1€o 0 €2€3 (34)

€1€3 €32€3 0

and the coefficient of the linear term is

€1 €2€3
b= 6‘2 —iN €1€3 . (35)
€3 €1€2

The integration over x may be done; it is Gaussian. How-
ever, as we are integrating three-momenta in a space with
only two independent momenta, the matrix @ fails to
provide convergence for all momenta x. We can diago-
nalize Q by reexpressing our result in terms of physical
degrees of freedom — the anisotropies. To accomplish
this and to compare with previous studies of the Bianchi
cosmology, we translate Eq. (33) back into Misner’s chart

J

oo

K(Bs,0¢;Bi,03) =/

— 00
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for the diagonalized expansion coefficients:
ar = yr(€) + k5. (30)
The reality condition Eq. (4) is satisfied if
(@r+ar)er (5 +€) =261 e2¢€3 (31)

in which I,J,K = 1,2,3,6 are summed such that I #
J # K. This suggests that the xr’s may be taken as
independent variables in the path integral. The contours
in Eq. (28) may then be taken along the imaginary a
axes or, equivalently, performed for real k. At each o we
have

/dsedsn = /d3ed3a. (32)

After integrating by parts and discarding a complex
boundary term (—e”x|,, + €T k|,,) the propagator of Eq.
(28) becomes

oy
doxTQk + an) , (33)

o

on the phase space of Bianchi type IX using

hij = eZa (ezﬂ)ij = E?(S,‘j s (36)
where (3 is the traceless matrix diag(8; + v/36_,0+
_\/gﬂ—a _2ﬂ+) and

nlzexp(—a—ﬂ+—\/§ﬂ_) (%+%+;—\/——§),

ng=exp(—a—ﬁ++\/§,3_) (%4—%— %) )
(37)

o p
ko = exp (—a+26,) (B2 - BH).

The Jacobian of this transformation from the (e, k) chart
into the (8,p) chart is 1. The integral of Eq. (33) may

then be written, rescaling V and adjusting the zero of «,
as

[dzﬁi dad?®py dpe N |pe p(Bz) e%*|5(a — 30‘)]

oF . .
X exp [z ( dopact +pyBy +p_B- — NH(B+,p+, %Pu))] . (38)

o
The action is the expected Hamiltonian form with

’H(,B:t,P:i:,a,Pa) = _pi +p2+ +p2— + ezau(/@i) )

(39)

where the potential,® V/(8+) := U(B+) + 1 is the familiar triangular potential of Bianchi type IX [4]:

U@) = e -

ge—w* cosh(2v/38_) + §e4ﬁ+ [cosh(4\/§,3_) - l] .

®Note that in the literature one often finds written V(B+) := U(B+) + 1. This is convenient because V(8+) is bounded from
below; however, what is important to remember is that the actual potential 2/(3+) is bounded from below by —1.
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A contour plot of this potential appears in Fig. 1. The action is that of Misner’s Bianchi type IX formulation of a
particle moving in a time-dependent potential. The evolution of the cosmology is seen as dynamics of a free particle
reflecting off roughly triangular, exponentially steep “walls” shown in Fig. 1. The measure factor u(3+) contains
(along with the factor |py|) remains of the gauge fixing procedure. It may be written as

u(B+) = | sinh(4v/38_) — sinh(684 + 2v/38_) + sinh(68; — v38_)|. (40)

Graphed in Fig. 2, this measure has sixfold symmetry. The points the of the “star” are the minima, lending little
(=~ 10~*%) support to wave functions with maxima in the corners or near the center of the triangular walls of the
Bianchi type IX potential.

Letting the § function consume the « integration we find

oo

K(B¢,0¢;08:,0:) = /

— o0

As indicated earlier, the propagator may be integrated to
a configuration-space propagator. The p4 integrals con-
verge in the usual sense; the coefficient of the quadratic
piece, after analytic continuation, is real and negative.
Convergence is ensured in the p, integral by the same
continuation. Before analytic continuation, one-half of
the history must be selected. To secure convergence in
the propagator of Eq. (41) we must rotate to o — on,
where oy = oexp (z%) when N > 0 and ¢ —» oy =
o exp ( —z%) when N < 0, effectively excluding “back-
wards evolving” histories. Alternately, it is possible to re-
strict the NV integration at the onset by using a  function
in the exponentiation, Eq. (27), as may be done in the
path integral for the relativistic particle [14]. When the
parameter o is continued the measure factor |exp(18c)|
becomes 1 for all values of o.

The integration of p, involves two integrals of the form

o0
Iy :/ dps po e~ aPetbpo (42)
0

As the integral for p, is I 4+ I_, any terms linear in b
cancel on account of the absolute value in the measure
of Eq. (41). The value of one of these integrals is a sum

AT N ~
VA NN O -
06 L LML NN N T
VAN NS s T
R N . .
04f 1 vV NN TN T
8 T RN ~ ~.
R T U WA PR AN ~.
R N
02F v v NI TS Tl T
o - ~ -~ S~
R R P e
N . . )
& 0 i P - PP
! PN el
. A e
02 I A A LA
. A At
04l i
;i s e T
A e
Y e
Lo e P

206 04 02 0 02 04 06
B+

FIG. 1. The classical potential for Bianchi type IX with
contours spaced by powers of e with the first line at U(8+) =
—0.9. Three “channels,” one along the positive S_ axis and
the other two sloping diagonally in the negative 3_ axis, indi-
cate the minima of the potential. The contours form a rough
triangle with steep walls.

of . .
[d®B+d’p+dp.dN |ps|p(Bx) |€'%7|] exp (l/ do3ps +p+B+ +p-B- — NH(ﬂ:tvP:t»U)) .

(41)

f

of three terms, two of which are linear in b and one of
which is only dependent on a. Thus the only term which
survives is the a-dependent one. The other two momenta
integrations are standard quadratics. Upon integration,
we find

K(By, 040 0:) =/

—o0

oo

|60 5 0]

X exp (i/dUNE(ﬂj:,UNvN)) )

(43)
with the Lagrangian

L(Bs,om, N) = g (82" +6-7) = Ne*u(ps).
(44)

This is the Lagrangian form of the path integral. The
“lapse” plays a dual role of enforcing the constraint and
generating time evolution. We may integrate over the
“lapse” function. To do this we must write explicitly
what we mean by the formal path integral expressions
we have written previously. The Lagrangian form is

0.6 \——/ /

04

0.2

—0.2
04
06 N \

06 04 -02 0 02 04 06
B+

FIG. 2. The measure p(B+) for the path integral of
Bianchi type IX with the parametrization of Eq. (21). In the
center and in the six channels the measure is small, lending
little support to histories there. The contours are separated
by powers of e with the first contour at u(8+) = e™° and
ending at u(B+) = €°.
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oo

1 n/2 n—1 ) de]
K y Py 03) = i 7 i "
Brooripuo) = I (5 ) g/dﬂi, wes) [ 55

. 2 2

The “lapse” may be integrated out, yielding a modified Bessel function

n/2n—1

) oo ey 1/2 32 1/2
K(Bf,08;Bi,0:) = (27”-6 ) H / d*Bs, u(Bx,) (%37(3%) Ky |2 (%66]6°u(ﬂij)) 1 (45)
o i=1 P2 i o

where we have rotated the parameter o back to real values. We have written the average of 84, and 3; as Bﬁ:,—- The
expression Eq. (45), as far as we believe, can be gone in the evaluation of the path integral of the Bianchi type IX
cosmology, without turning to numerical calculations. It is reassuring that the N-dependent rotations necessary to
make the py o integrals converge serve again to make the IV integral well defined.

IV. TRACE K PARAMETRIZATION OF TIME

Alternatively, we can perform the path integral quantization choosing the trace of the extrinsic curvature as the
time parameter. This choice has the advantage of being monotonic on the whole cosmological history. However, it

comes with other difficulties. In the diagonal new variables of Sec. II the gauge condition is written as

Xo = o — i (F(€) — azer).

(46)

The measure with this choice of time, once translated into the (8,p) chart, mixes momenta. Hence the analogous

expression to Eq. (38) is

o0

K (8,050, 0:) =/

— oo

i

[d?B+ dod?p. dpa AN p(Bs,pt, 0, pa) (0 — pa)]

of . .
X expi (/ dapad + p+ﬂ+ +P—B— - NH(ﬁ:i:api:a a’pa)> ) (47)

in which

M(,Bi,P:I:, a,ch) =

1
2e20+20+ cosh 2/308_ — 24P+ (cosh 4V38_ + 5)

+2ie” {% (e‘w+ + 2e7 2P+ cosh 2\/§ﬁ_) + p?+ (—e45+ + 2e7 2P+ cosh 2\/§ﬂ_)

——p—-\/% (6—2ﬂ+ sinh 2\/?;[3—)} ‘

This choice of time is not “diagonal” in the measure.
As this choice mixes momenta and coordinates the mo-
mentum integration is more difficult than before. We will
compare this form of the propagator with the propagator
obtained from a physical quantization in the companion
paper.

V. CONCLUSION

We used the Faddeev-Popov prescription to construct a
path integral for the Bianchi type IX quantum cosmology.
Our strategy began with a classical dynamical system on
a (9+9)-dimensional complex phase space defined by the
constraints Eqgs. (6), (8), and (7). The Faddeev-Popov
ansatz defined the measure of the path integral. We chose
contours of integration which ensure that phase space

(48)

[
histories satisfy the reality conditions, corresponding to
the condition that the metric of spacetime is real and of
Minkowskian signature.

We find, as a result, the anisotropy space path integral
Eq. (43) or Eq. (45) for the Bianchi type IX cosmology
in the gauge in which time is 0 by the volume of space.
It is interesting to note that the effect of the measure is
independent of time and, hence, the volume of the Uni-
verse. To further understand the effects of the measure
in the path integral, it is necessary to finish the evalu-
ation of the path integral. As we have seen that there
is an analytic continuation which makes the integral in
Eq. (45) real and convergent, this should be possible
with defining the integral through standard Monte Carlo
techniques, or by semiclassical techniques.

In particular, given this kernel one can proceed di-
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rectly to the evaluation of the expectation values of gauge
invariant, and hence physically meaningful, quantities.
For example, any quantity of the form F(84, (o)) which
measures correlations of anisotropies, defined on leaves
with particular volumes, is gauge invariant and meaning-
ful [1]. Quantities like this have been evaluated success-
fully in a variety of cosmological models including (2+1)
gravity [15], Gowdy models [16], and the Bianchi type I
model [17]. These models were all exactly solvable, so
that expectation values of some physical quantities could
be computed exactly. We believe that with path inte-
grals of the form of Eq. (43), in which gauge invariance
is guaranteed by the construction, it is possible to ex-
tend the calculations of physically meaningful quantities
in quantum cosmology.

While the Faddeev-Popov technique guarantees that
the resulting path integral represents a physical ampli-
tude, quantum cosmology is more demanding. We must
consider the fact that universes described by the Bianchi
cosmological model live for a finite time. Any quanti-
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zation of cosmological models can give sensible answers
to physical questions about evolution in time only if the
answers are formulated in a manner that is both diffeo-
morphism invariant and takes into account that any given
classical or quantum universe may no longer exist after
a certain span of time. We take up such issues in the
companion paper.
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