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Large-scale structure as a critical phenomenon
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We present an analytical theory for the spatial distribution of energetically soft domain walls
produced in cosmological phase transitions. It is shown that this distribution is well described
by statistical percolation theory where the probability parameter p is smaller than the critical
probability p . We discuss, in detail, the nonequilibrium phase transition that triggers the formation
of domain walls. We then brieHy describe two applications of these ideas, the 6rst to the formation
of the Abell clusters and voids and the second to the energy density Huctuations generated during
a generic predecoupling phase transition.

PACS number(s): 98.80.Cq, 05.70.Jk

I. INTKODUCTIDN

It has long been known [1,2] that there is substantial
clustering of galaxies on length scales of the order of 1
Mpc. More recently, it has become clear [3] that there
are large voids, walls of galaxies, and gravitational attrac-
tors on scales of the order of 50 Mpc. All this large-scale
structure occurs at relatively recent times, with redshifts
z ( 10. It is not impossible that this structure occurs
solely as a consequence of the gravitational accretion of
matter to density perturbations arising from processes in
the very early Universe, such as infiation [4]. However,
it has not been established that; the distinct clustering of
galaxies that is observed arises in this manner. In fact,
preliminary findings seem to imply that it is very diKcult
to account simultaneously for the observed clustering at
both small and large scales in this way. Other, very dif-
ferent, mechanisms have been postulated to account for
large-scale structure. These include gravitational accre-
tion of rnatter to topological structures such as domain
walls [5], cosmic strings [6], and textures [7]. Many of
these attempts lead to serious con8ict with observation,
while others remain viable. In an attempt to overcome
some of the difBculties with these mechanisms, a number
of authors [8] discussed the possibility of a "late-time"
phase transition in a scalar field. This phase transition
would produce domain walls at very small z, which would
act as the seeds for the formation of the large-scale struc-
ture without large, unobserved distortions in the cosmic
microwave background. However, it was shown in [9]
that these theories apparently lead to large relativistic
walls which are in conBict with observation. In addition,
the original theories of late-time transitions are known
to have other serious problems [10]. Be this as it may,
the general idea of a cosmological phase transition pro-
ducing seeds for matter accretion in the form of global
topological defects remains viable and exciting.

In this paper, we will present the Brst steps toward an
analytical description of the spatial distribution of do-

main walls in generic cosmological phase transitions of a
scalar field. Assuming that the scalar field has two de-
generate vacuum states (+) and (—), and that, at any
spatial point, the probability of being in the (+) vacuum
is p and in the (—) vacuum is 1 —p, where 0 & p & 1, we
will use the results of percolation theory [13] to predict
the distribution of (+) and (—) vacua and, hence, the
structure of the domain walls. It is well known that such
theories possess a classical phase transition; for p ( p
the (+) vacua form finite clusters only, whereas for p ) p,
there is percolating cluster of (+) vacua. It follows that
there are two fundamentally different structures of do-
rnain walls in cosmological phase transitions, depending
on the value of p. If p ) p, (and less than 1 —p, ), then
both (+) and (—) vacua have percolating clusters. These
pass through each other in a complex interlocking way
and clearly lead to large domain walls extending across
all space. In [ll], the authors implicitly chose p =
which satisfies p, ( p & 1 —p in three dimensions. It is
these large domain walls that lead to conAict with obser-
vation. There is, however, a second possibility. If p (p„
the (+) vacua are relatively small, finite islands in a vast
sea of percolating (—) vacuum. It follows that all do-
main walls are small and compact. This scenario is just
as compelling as the first, and evades the negative results
of Ref. [11]. In this paper we will examine this second
scenario in detail. In any theory in which p g 2, it is
necessary to discuss biased phase transitions. Such tran-
sitions are notoriously difBcult to achieve in theories in
which the scalar field is in thermal equilibrium. In this
paper we present the theory of out of equilibrium phase
transitions and show that this can lead to a biased vac-
uum probability where p need not be 2. It is the thesis
of this paper that out of equilibrium phase transitions,
analyzed using percolation theory, lead to a rich domain
wall structure, far more intricate and physically interest-
ing than those considered previously. We suggest that
the mechanism discussed in this paper, perhaps in con-
junction with other density perturbations, such as those
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arising in inHation, may be necessary to account accu-
rately for the observed large-scale structure.

This paper is organized as follows. In Appendix A,
we give a brief discussion of percolation theory, present-
ing, with some explanation, all the formulas required in
the text. In Appendix 8, we reproduce the exact val-
ues of cluster numbers for small clusters in both two and
three dimensions. These numbers are essential for check-
ing the range of validity of several crucial formula. In
Sec. II we present, in some detail, the theory of perco-
lation in two dimensions, giving all critical exponents,
normalizing relevant distribution functions, and analyti-
cally and pictorially displaying crucial concepts that are
much harder to visualize and intuitively understand in
three dimensions. In Sec. III, we extend these results to
three dimensions, presenting all critical exponents and
normalizing relevant distribution functions necessary in
the physical discussion in the next section. We empha-
size that the results presented in Secs. II and III are not
merely a review of existing literature, but an extension
of such results to the regime of physical interest in this
paper, a nontrivial task. Finally, we present the theory of
out of equilibrium phase transitions in Sec. IV. In order
to be more concrete, we then brieHy present two physical
scenarios to which our formalism can be applied, the first
being the formation of Abell clusters and voids and the
second being a computation of the contribution to the
energy density Quctuations generated during a generic
predecoupling transition. We give these examples merely
as an illustration of how our methods work, the details
being presented elsewhere.

z = (p- p, )s (2.3)

n, = qes f(z),
where f(z) is a universal function given by [14]

(2.4)

f(z) = 5.9003exp[—1.775(z'+ 1) + 0.2375z' ] (2.5)

and z' = z/p, . Note that f (0) = 1. This formula is valid
for the range —2.19 & z' & 1.01. The values of 0 and 7
are easily computed from (2.1) and (All). We find that

0 =0.39, 7 =2.05. (2.6)

The constant qp can be approximated, with reasonable
accuracy, as follows. For p = p„Eq. (A4) becomes

) sn, (p, ) = p, , (2.7)

where we have used the fact that P (p, ) = 0. Since
f(0) = 1, it follows &om (2.4) that

n. (pc) = qos (2.8)

Inserting this expression into (2.7), and recalling that the
Riemann zeta function ( is defined by

g(x) = ) s (2.9)

Then, in the limit that p —+ p, s ~ oo, and z finite,
which defines the scaling regime, it can be shown that
[12]

II. PERCOLATION THEORY IN TWO
DIMENSIONS

we find that

qo ——p, /g(~ —1) .

For d = 2, the universal critical exponents n, P, p, 8,
and v are found to be [12]

n = —0.69, P = 0.13, p = 2.43,

b = 20, v = 1.35 .
(2.1)

The critical point p is not universal, having a difFerent
value for each different lattice structure. For example,
for a triangular lattice p = 2, whereas for a diamond
lattice p = 0.428. In this section, to be concrete, we will
discuss the square lattice only. For the square lattice,

p = 0.593 . (2.2)

We would like to compute the cluster numbers n, (p) for
any s and all values of p. For small values of s this can
be done by counting the number of animals. Although
this process is easy for very small s, it rapidly becomes
intractable. The results for a square lattice have been
computed by this method for 1 & s & 17 and any p
in Ref. [13]. Since these results are used heavily in this
paper, we reproduce them in Appendix B. The cluster
numbers n, (p) can also be computed in the scaling re-
gion. Define

Using the fact that ((1.05) = 18.518, it follows, for the
square lattice, that

qp ——0.032 . (2.11)

Note that qp, in general, depends on p and, hence, is
not a universal quantity. Inserting (2.5) and (2.11) into
(2.4) yields an expression for the cluster numbers in the
scaling regime given by

n, = 0.1888s exp[ —1.775(z' + 1) + 0.2375z' ],
(2.12)

n, = 0.1888s exp —1.775
~ ~

s + 1
fp —p &

pc )
- 3

+2.375
/ i

s
p. )

(2.13)

where, to repeat, —2.19 & z' & 1.01. Unfortunately, the
scaling regime is not the most interesting region from
the point of view of the physics discussed in this paper.
It is of considerably more interest to know the cluster
numbers for arbitrary p and s ) 17; that is, to extend
our knowledge of n, to values of s just above the animal
regime. With this in mind, we rewrite (2.12) as
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and ask how accurate this formula is away from the scal-
ing regime. We conjecture that it remains a reasonable
approximation to n, as long as —2.19 & [(p —p, )/p, ]s
1.01. To test this, we compute n, using (2.13) for var-
ious values of p and 1 & 8 & 17 and compare the re-
sults to the exact animal calculation. The results are
plotted in Fig. 1. We see that, for 0.26 & p & 0.70,
Eq. (2.13) gives a good approximation to n, . Below 0.26
and above 0.70 the approximation rapidly deteriorates.
Note that the largest negative value of [(p —p )/p, ]s
—1.69, is obtained for p = 0.26 and. 8 = 17. Similarly,
the largest positive value, 0.544, is obtained for p = 0.70
and s = 17. We conclude that (2.13) gives a good ap-
proximation for n, as long as p and 8 are restricted so
that —1.69 & [(p —p, )/p, ]s & 0.544. Thus our conjec-
ture is almost correct, but one must consider a somewhat
smaller regime for [(p —p, )/p, ]s . These results allow us
to extend the calculation for n, for 8 far beyond the an-
imal regime. For example, consider p = 0.50. From the
above discussion we know that n, given by (2.13) is a
good approximation from 8 equal to unity up to 8
satisfying [(p —p, )/p, ]s „=—1.69; that is, s „=444.

We would like to compute the average cluster radius
R, (p) for any s and all values of p. For small values of
s, this can be done directly from the definition (A15) by
computing g, q and B,. Unfortunately, we can And no
catalogue of such results in the literature. As we will see
shortly, it is useful to compute at least one cluster ra-
dius by this method. Consider 8 = 4. The Ave types of
s = 4 animals, and their animal numbers g4q, are shown
in Fig. 2. Note that Fig. 2(a) is the most spread out
or "fractalized" of the configurations whereas Fig. 2(e)
is the most compact or "droplike. " Figures 2(b)—2(d)
interpolate between the two. One can easily compute
the radius of gyration B4 for each of these figures using
(A14). We find that R4 ——1.1180, 0.9354, 0.8660, 0.8291,
and 0.7071 for Figs. 2(a), 2(b), 2(c), 2(d), and 2(e), re-

spectively. Note that B4 decreases as the configurations
go from more fractalized to more droplike. Inserting the
values of g4q and R4 into (A15) yields the result

g 410 x

X — i' X

g49 =8
X X

X;i X JE X

X;, X

X;; X X i: X

g =4

er X

X
g' =4X;i X

X Jh J 1 X

X JL X
X J ~ X

(c)
g 48 —'1

X X

JE X

(e)

FIG. 2. (a)—(e) represent the five types of s = 4 animals on
a square lattice for d = 2. The boundary of each animal and
the number of each configuration are also shomn.

(7.8740 —5.9994p + 1.2499p i
9.5 —6p+ p2

(2.14)

R, = cos R(z), (2.15)

Note that, for p = 0, B4 ——0.9103, so that the average
four-cluster is more fractalized. However, for p = 1, B4 ——

0.8332, so that the average four-cluster is more droplike.
The cluster radius R, (p) can also be computed in the
scaling region. In the limit that p —+ p, 8 —+ oo, and z
finite, which defines the scaling regime, it can be shown
that [12]

7 I I I I I I I I I I I I I I I I I
where R(z) is a universal function given by

R(z) = lzl " " (2.16)

p = 0.70—

This formula is valid for z = 0 and "large" values of
lzl g 0. It follows &om (A20), (A21), and Refs. [15,16]
that, for z = 0,

0
0 2 4 6 8 l0

p= 026

p = 0.65

p = 0.59

p = O.5O

I I I I I I I

12 14 16 38

y(p = p, ) = 0.5192

and, for large lzl g 0,

(2.17)

(2.18)

FIG. 1. This graph contains plots of the cluster number
evaluated using the extension of the scaling formula divided
by the exact value of the cluster number, against the cluster
size 8. The percolation probability takes values in the range
0.26 & p & 0.70. The results are for a d =—3 square lattice. R, = cplp —p, l~ ~ s~ . (2.19)

Note that R(0) = l. Using (2.3), (2.15) can be written
as
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Let us consider the case when p = p, . Then (2.19) be-
comes

0.519
Pas = co (2.20)

By construction, this equation is only valid for large val-
ues of s. Note, however, that z vanishes for any value 8
(in contrast, for p g p, z is no longer large for small s).
One might expect, therefore, that (2.20) remains valid
for small 8. This turns out to be almost, but not quite,
true. The correct result is

Using (2.27) we find that s~ = 1 in this case. Again, s = 4
is not much larger than sq = 1, so we do not expect (2.25)
to be a good approximation to B4. Again, the agreement
is remarkably good under the circumstances and should
improve for s ) 4. We conclude that (2.23), (2.24), and
(2.25) give a good approximation to R, for s & 4.

Equations (2.23), (2.24), and (2.25) can be inverted to
find 8 as a function of p and B,. The results are given
(assuming s is large enough to ignore do in the p = p,
case) by

B.= co8""+do, (2.21)
8 = AB,

where for (1) p = p„any s or p g p„s &( sq,

(2.28)

where do is a constant that is negligibly small for large 8.
The constants co and do can be determined from a Monte
Carlo calculation of B, as a function of s~ at p = p, given
in Fig. 6 of Ref. [16]. We find that

D = 1.926,

A = 3.325,
(2.29)

co ——0.536, ~o ———0.214 (2.22) (2) p )p„s (( sq,

Putting everything together, we conclude that for p = p,
and any value of s (that is, z = 0), (2.3o)

B, = 0.536s —0.214 .

For p ) p, and large s (so that ]z~ is large),

R. = 0.536~p p. I
""—s'~'-

(2.23)

(2.24)

X = 3.480~p —p.~"",
and (3) p & p„s )) sg,

D=2,
(2.31)

and, for p & p, and large s (large ~z~),

R. = 0.536~p —p.~'"'s'~' . (2.25)

VVhat does one mean by large s? To answer, let us evalu-
ate, in two dimensions, the percolation correlation length
given in (A26) and (A27). The result is

( = 0.536(0.254) ~]p —0.593' (2.26)

As discussed in Appendix A, ( = R,
&

where sq is given
by

( O 593

g /p
—O.593

f ~
(2.27)

For p = p, (z = 0), g m oo and sq m oo. In this case
all s & sg. For p g p„g and sq are finite. By large
8 above we mean s && 8q. It is important to note that,
for p g p, but s « sq, g is very large with respect to
B, and this situation approaches the p = p case. That
is, for p g p, but s &( sq, R, is approximately given by
(2.23). It is of interest to compare (2.23), (2.24), and
(2.25) against the exact result for R4 given in (2.14). For
p = p„(2.14) gives R4 ——0.869 whereas (2.23) predicts
R4 ——0.886, in good agreement. For p = 1, (2.14) gives
R4 ——0.833 whereas (2.24) yields R4 ——1.100. Computing
sq for p = 1 using (2.27) we find that sq = 2.56. Since
s = 4 is not much larger than sq ——2.56, we do not expect
(2.24) to be a good approximation to R4. In fact, the
agreement is remarkably good under these circumstances
and should improve readily for 8 ) 4. Similarly, for p = 0
(2.14) gives R4 ——0.910 whereas (2.25) yields R4 ——1.104.

A = 2.548]p p,]—
As discussed in Appendix A, D is the fractal dimension
of the s cluster. Note that the fractal dimension changes
with p. In particular, the 8 cluster is more fractalized
for p & p, less so for p = p„and droplike for p & p,
confirming and generalizing the previous discussion for
the s = 4 case.

Until now our discussion has been rather abstract. It
is very helpful, both for understanding the above con-
cepts and for developing physical insight into percolating
systems to consider some computer generated examples.
Specifically, we study several computer plots of occupied
and empty sites on a two-dimensional square lattice given
in Ref. [17]. We reproduce these plots, in soinewhat mod-
ified form, since they give visual intuition into the struc-
ture of percolation clusters. In Fig. 3 we give the com-
puter plot for the p = 0.3 case. The black dots are the
occupied sites, whereas the empty sites are left white.
The lattice has a total of g = 49 x 57 = 2793 sites. It
follows &om the discussion in Appendix A that the num-
ber of occupied sites should be pq = 838. Counting the
black dots in Fig. 3, we find a total of 880 occupied sites,
in good agreement. Since p = 0.3 is less than p = 0.593,
all occupied sites should lie in finite, nonpercolating clus-
ters. A glance at Fig. 3 verifies that this is so. Fix s. It
follows &om the discussion in Appendix A that the num-
ber of s clusters should be N, = n, (p = 0.3)g. The
cluster numbers n, (p) for 1 & s & 17 and p = 0.3 are
given in Append. ix 8 and, hence, N, can be computed in
this regime. One can also count the number of 8 clus-
ters of a fixed type in Fig. 3. Denote this "experimental"
result by¹.The theoretical and experimental results
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FIG. 3. Percolation theory on a d = 2 square lattice with
49x 57 = 2793 sites. The black dots are occupied sites whereas
the empty sites are white. The occupied sites have percolation
probability p = 0.3. The percolation length ( is displayed.
Nearest neighbor occupied sites have been joined by a line,
thus graphically displaying the finite s clusters.

TABLE I. Comparison of the percolation theory prediction
for the number of s clusters, N„against the "experimental"
number of s clusters, N, found on the p = 0.3, 2793 site,
d = 2 square lattice shown in Fig. 3.

are compared in Table I. One Ands remarkable agree-
ment. The only unexpected result is a single 18 cluster
found. in Fig. 2 which would be rather improbable from
the point of view of percolation theory. This can be un-
derstood as follows. Using Table I, one can show that

i sN, = 815. But the total nuinber of occupied sites
should be 838. Hence one expects a small number of
random statistical Huctuations to occur to make up the
difFerence. The 18 cluster is such a fluctuation.

Using (2.27), one can compute sq far p = 0.3. The
result is 8~ ——6. The associated correlation length is
found &om (2.26) to be ( = 1.18. For s « 6, the radius of
an s cluster is well approximated by (2.23). One does not
expect this to work well for 8 = 4 but let us try anyway.
It follows from (2.23) that R4 ——0.8866. The exact value
af B4 can be computed fram (2.14) for p = 0.3. We
find that R4 ——0.8911. Therefore (2.23) gives a good
approximation for A, even for 8 = 4. It follows from
(2.23) that, for s « 6,

s = 3.325(R, + 0.214)
= 3.325K + - . .

This is similar to (2.28) and (2.29) but s « 6 are not
large enough to drop the do ——0.214 term. It follows from
this expression that the fractal dimension of 8 clusters
with 8 &( 6 is D = 1.9267. To get an intuitive feeling
for what this means consider, once again, the Ave types
of 8 = 4 animals and their animal numbers g4& shown
in Fig. 2. It follows from the discussion preceding (A7)
that the total number of each 8 = 4 animal type should
be N4q ——g4qp q rI. For exainple, for the animal (a) in
Fig. 2, N4 qo

——2p t q. For p = 0.3 this becomes &4,jo ——

1.27. Looking on Fig. 3 for s = 4 clusters of type (a),
we find two of them, in reasonable agreement with the
percolation theory prediction. The numbers N4q for all
8 = 4 animal types, and the "experimental" numbers
found in Fig. 3, are presented. for p = 0.3 in Table II.
They are in reasonable agreement with one another. Now
the theory predicts about one highly fractalized type (a)
animal, about 17 moderately &actalized type (b), (c),
and (d) animals, and about one droplike type (e) animal.
If all the animals were of type (e) then one would have
D = 3. However, the animals are spread over various
animal types and correspond to more &actalization and,
hence, a lower fractal dimension of D = 1.9267.

It is clear from Fig. 3 that the majority of the lat-
tice sites are empty. Percolation theory predicts that the
number of empty sites is qg = 1955 with q = 1 —p = 0.7,
whereas the actual number of empty sites in Fig. 2 is
1913, in reasonable agreement. Since q & p we expect
there to be a percolating cluster of empty sites. The prob-
ability per lattice site that an empty site is part of the
percolating cluster is given by P defined in Appendix
A. It follows from (A4) that

sn. (q)

(2.33)

where q = 0.7. It is easiest, and most accurate, to
compute (2.33) directly, using the values of n, (q) ob-
tained from Appendix B. These are only available for
1 & s & 17 but the contributions to (2.33) of s ) 17
are less than 1'Po of the total for q = 0.7. The result is
that P = 0.983. Therefore percolation theory predicts
that of the qg = 1955 empty sites P qg = 1922 are in
the percolating cluster. Of the 1913 actual empty sites
in Fig. 3, 1872 are found to be in the percolating cluster,

N,
210
59
34
20
13
9
6

3

N;
220
69
33
23
17
5
4
6
4

s
10
11
12
13
14
15
16
17
18

N,
2

(0.89)
(0.68)
(0.51)
(0.39)
(0.29)

(& 0.29)

N'
2
1
1
0
2
1
0
0
0

p= 0.3
N4,
N4,

(a)
1.27

2

(b) (c)
7.3 5.2
8 3

(d)
5.2
8

(e)
1.3
2

TABLE II. Comparison of the percolation theory predic-
tion for the number of difFerent animal types of s = 4 clusters
versus the "experimental" number of such clusters found on
the p = 0.3, 2793 site, d = 2 square lattice shown in Fig. 3.
The diferent s = 4 animal types (a)—(e) are defined in Fig. 2.
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FIG. 4. Percolation theory on d = 2 square lattice with
49x 57 = 2793 sites. The black dots are occupied sites whereas
the empty sites are white. The occupied sites have percolation
probability p = 0.5. The percolation length ( is displayed.
Nearest neighbor occupied sites have been joined by a line,
thus graphically displaying the 6nite s clusters. The three
internal large, primordial percolating clusters have each been
encircled by a line for emphasis.

again in reasonable agreement with the theory. There-
fore, for q = 0.7, about 98% of all empty sites belong to
the percolating cluster. Summarizing, the generic perco-
lation structure of Fig. 3 is of finite occupied site s clus-
ters, whose numerical distribution is well described by
n„at p = 0.3, embedded in a percolating sea of empty
sites, well described by P at q = 0.7.

In Fig. 4, we give the computer plot for the p = 0.5
case. Again, the black dots are the occupied sites whereas
the empty sites are left white. This lattice also has
g = 49 x 57 = 2793 sites. The number of occupied
sites should be pg = 1397. Counting the black dots in
Fig. 4, we find a total of 1529 occupied sites, too large
but still within 10% of the predicted value. Since p = 0.5
is less than p = 0.593, all occupied sites should be fi-
nite, nonpercolating clusters. A glance at Fig. 4 veri-
fies that this is so. Fix s. It follows from the discus-
sion in Appendix A that the number of s clusters should
be N, = n, (p = 0.5)q. The cluster numbers n, (p) for
1 & s & 17 and p = 0.5 are given in Appendix B and
hence N, can be computed in this regime. One can also
count the number of s clusters of a fixed type in Fig. 4.
Denote this "experimental" result by¹.It is important
to note that there are two distinct types of clusters in
Fig. 4. The first type consists of relatively small clusters,
the largest being s = 47. The second type clusters are
much larger, the smallest having s = 76 (but this touches
the boundary and may be a subset of a bigger cluster out-
side this lattice) and the largest being an internal cluster
with s = 252. The three large internal clusters have been
circled for emphasis in Fig. 4. The theoretical and exper-
imental results for 1 & s & 17 are compared in Table III.
Again, we find remarkable agreement. The theoretical
values of n, are unknown for s ) 17 but N, & 1 in this

TABLE III. Comparison of the percolation theory predic-
tion for the number of s clusters, N„against the "experimen-
tal" number of s clusters, N, , found on the p = 0.5, 2793 site,
d = 2 square lattice shown in Fig. 4.

N,
87
22
14
9
7
5
4
3
3

N,
89
35
?
5
5
3
5
3
3

10
11
12
13
14
15
16
17
18

N,
2
2

2
2
1
1
1

(0.98)
(& 0.98)

N,
1
3
2
0
1
0
1
1
1

range. One might expect, therefore, that there would be
no s clusters for s ) 17. However, using Table III, one
can show that P, z sN, = 466. But the total number of
occupied sites should be 1397. Hence one expects a num-
ber of random statistical fluctuations to occur to make up
the di8'erences. Summing up the remaining small clusters
gives g zs sN, = 319. This raises the total number of
occupied sites to 786, still far short of 1397. What is
going on? To answer this, let us compute sq at p = 0.5
using (2.27). The result is st = 118. The associated
correlation length is found from (2.26) to be ( = 5.31.
Note that 2g = 10.62, the diameter of an st cluster, is
on the order of 20% of the size of one side of the lattice
length. That is, the correlation length is beginning to be
of an appreciable size relative to the lattice. The situa-
tion is actually even more acute, since highly &actalized
clusters of order sq = 118 can span almost the entire lat-
tice. As discussed at the end of Appendix A, such large
clusters with s of O(st) are not described by the cluster
numbers n, . Instead, they are "primordial" percolating
clusters which coalesce, when ( becomes equal to the lat-
tice length L, into the incipient percolating cluster. The
occupied sites in these large, finite, primordial clusters
make up the difference between 786 and 1397. In fact,
one would expect approximately (1397—786)/118 = 5.17
such clusters and, in Fig. 4, one finds 6, in good agree-
ment.

Now note that q = 0.5. Since q & p, the empty sites do
not percolate as they did in the q = 0.7 case. Instead, the
empty sites behave as did the p = 0.5 occupied sites and
need not be further analyzed. Summarizing, the generic
percolation structure of Fig. 4 is of two types of finite,
occupied site s clusters. The first are small clusters with
s (( sq that are well described by n, at p = 0.5. The
second are a few large finite clusters with s sq, which
represent primordial percolation on a finite lattice. The
empty clusters have the same behavior since q = p = 0.5.

To conclude this section, let us recall that the physics
we wish to explore in this paper, certain aspects of large-
scale cosmological structure, occurs in three spatial di-
mensions, not in d = 2. So why did we analyze the d = 2
case in such detail'? The reason is that the relevant as-
pects of percolation theory, finite clusters, and primordial
percolating clusters, behave quantitatively the same way
in three dimensions as for d = 2. The pictorial intuition
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developed in this section, finite clusters in a vast sea of
percolating vacuum and, as p approaches p, the growth
of a few primordial percolating clusters, helps immeasur-
ably to understand the formation of Abell clusters and
large voids, great attractors, and so on in d = 3 percola-
tion theory, to which we now turn.

III. PERCOLATION THEORY IN THR.EE
DIMENSIONS

((1.17) = 5.88, it follows, for the simple cubic lattice,
that

qo = 0.0529 (3.8)

n, = 0.0501s exp[ —0.6299z'(z'+ 1.6679)], (3 9)

Note that qo in general depends on p, and hence is not
a universal quantity. Inserting (3.5) and (3.8) into (3.4)
yields an expression for the cluster numbers in the scaling
regime given by

n = —0.43, P = 0.35, p = 1.73,

b = 5.88, v = 0.81 .
(3.1)

For d = 3, the universal critical exponents n, P, p, 8,
and v are found to be [12]

where, to repeat, —8.04 & z' & 5.79. Unfortunately, the
scaling regime is not the most interesting region from the
point of view of the physics discussed in this paper. It is
of more interest to know the cluster numbers for arbitrary
p and 8 & 11; that is, to extend our knowledge of n, to
values of s just above the animal regime. With this in
mind, we rewrite (3.9) as

The critical point p is not universal, having a diferent
value for each di8'erent lattice structure. For example,
for a body centered cubic lattice p = 0.245, whereas for
a face centered cubic lattice p = 0.198. In this section,
to be concrete, we discuss the simple cubic lattice only.
For the simple cubic lattice,

n , = 0.0501s exp —0.6299
~

t'p —p. ~

pc )

xs
I

"'
I

s + 1.6679
pc j (3.10)

p, = 0.311 . (3.2)

We would like to compute the cluster numbers n, (p)
for any 8 and all values of p. For small values of 8 this can
be done by counting the number of animals. Although
this process is easy for very small 8, it rapidly becomes
intractable. The results for the simple cubic lattice have
been computed by this method for 1 & 8 & 11 and any
p in Ref. [13]. Since these results are used heavily in
this paper, we reproduce them in Appendix B. The clus-
ter numbers n, (p) can also be computed in the scaling
regime. Define

z = (p —p, )s (3.3)

n. = qos f(z),
where f (z) is a universal function given by [14]

f (z) = exp[ —0.6299z'(z' + 1.6679)],

(3 4)

(3.5)

where z' = z/p, . Note that f(0) = 1. This formula is
valid for the range —8.04 & z' & 5.79. The values of o
and r are easily computed from (3.1) and (All). We find
that

o =0.48, 7 =2.17. (3.6)

The constant qo can be approximated, with reasonable
accuracy, using the formula derived in Sec. II:

~o = p./C(~ —1) (3.7)

Then, in the limit that p ~ p, 8 —+ oo, and z finite,
which defines the scaling regime, it can be shown that
[13]

and ask how accurate this formula is away from the scal-
ing regime. We conjecture that it remains a reasonable
approximation to n, as long as —8.04 & [(p —p, )/p, ]s
5.79. To test this, we compute n, using (3.10) for var-
ious values of p and 1 & 8 & 11 and compare the re-
sults to the exact animal calculation. We find that for
0.15 & p & 0.45, Eq. (3.10) gives a good approxima-
tion to n, . Below 0.15 and above 0.45 the approximation
rapidly deteriorates. Note that the largest negative value
of [(p —p )/p, ]s, —1.63, is obtained for p = 0.15 and
8 = 11. Similarly, the largest positive value, 1.41, is ob-
tained for p = 0.45 and s = ll. We conclude that (3.10)
gives a good approximation for n, as long as p and 8 are
restricted so that —1.63 & [(p —p, )/p, ]s & 1.41. Thus
our conjecture is almost correct, but one must consider
a somewhat smaller regime for [(p —p )/p, ]s . These
results allow us to extend the calculation of n, for 8
far beyond the animal regime. For example, consider
p = 0.25. From the above discussion we know that n,
given by (3.10) is a good approximation from s equal to
unity up to s „satisfying [(p —p, )/p, ]s „=—1.63;
that is, 8 „=83.

We would like to compute the average cluster radius
B,(p) for any s and all values of p. For small values of
s, this can be done directly from the definition (A15)
by computing g, z and B,. Unfortunately, we can find
no catalogue of such results in the literature. Unlike the
d = 2 case discussed in Sec. II, the d = 3 animals are
too complicated, even for small 8, for an example to be
very illuminating. The cluster radius R, (p) can also be
computed in the scaling region. In the limit p ~ p,
8 ~ oo, and z finite, which defines the scaling regime, it
can be shown that [12]

where g is the Reimann zeta function. Using the fact that B, = cos R(z), (3.11)
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where A(z) is a universal function given by

&(z) = lzl " " (3.12)

0.31i
lp

—0.3ii (3.23)

p(p = p, ) = 0.3935 (3.13)

and, for large lzl g 0,

v (p )p. ) = —,',
p(p & p, ) = 0.55 .

(3.i4)

Note that R(0) = 1. Using (3.3), (3.11) can be written
as

lp p lP~v' ~ sv' (3.i5)

Let us consider the case when p = p, . Then (3.15) be-
comes

p.393
s =cp8 (3.i6)

By construction, this equation is only valid for large val-
ues of 8. Note, however, that z vanishes for any value of 8
(in contrast, for p g p„z is no longer large for small s).
One might expect, therefore, that (3.16) remains valid
for small 8. This turns out to be almost, but not quite,
true. The correct result is

B8 = cp8 +dp ) (3.17)

where dp is a constant that is negligibly small for large 8.
The constants cp and. dp can be determined. from a Monte
Carlo calculation of B, as a function of s~ at p = p, given
in Fig. 6 of Ref. [16]. We find that

cp = 0.702, dp = —0.351 . (3.is)

Putting everything together, we conclude that, for p = p
and any value of s (that is, z = 0),

This formula is valid for z = 0 and "large" values of
lzl g 0. It follows from (A20), (A21), and Refs. [15,16]
that, for z = 0,

For p = p, (z = 0), ( ~ oo and sq ~ oo. In this case all
s & sg. For p g p„j,' and sq are finite. By large s we
mean s )) sq. It is important to note that, for p P p,
but s « sq, ( is very large with respect to R, and this
situation approaches the p = p, case. That is, for p g p,
but s « sg, R, is approximately given by (3.19). It is
of interest to compare (3.19), (3.20), and (3.21) against
any Monte Carlo results that may exist for B, in three
dimensions. First consider the p = p, result in (3.19).
We have chosen cs and do so that (3.19) reproduces the
p = p, Monte Carlo result for R, in Ref. [16]. This
can be checked against yet another Monte Carlo result
for B„for various values of p including p„ in Fig. 1(b)
of Ref. [16]. We reproduce these results, and compare
them to (3.19), (3.20), and (3.21), in Fig. 5. Note that
(3.19) closely follows the p = p, Monte Carlo results in
this graph. This is an independent test of the validity
of (3.19) for all values of s. What about the case where

p & p, '? Expression (3.20) should be valid for any s ))
Bq. Let us check this using the p = 0.75 case given in
Fig. 5. for p = 0.75, it follows &om (3.22) and (3.23)
that ( = 0.613 and sq = 0.49. Hence we expect (3.20)
to be a good approximation to B, at p = 0.75 for all
s )) 1. Comparing (3.20) to the p = 0.75 Monte Carlo
results in this graph indicates that for s & 10 this is so,
within a factor of 1.35. What about the p ( p case?
Expression (3.21) should be valid for any s )) sq. Let
us check this using the p = 0.1 case given in Fig. 5. For
p = 0.1, it follows from (3.22) and (3.23) that ( = 0.658
and sq = 2.24. Hence we expect (3.21) to be a good
approximation to B, at p = 0.1 for all 8 &) 2. Comparing
(3.21) to the p = 0.1 Monte Carlo results in this graph
indicates that for 8 & 10 the agreement is almost exact.
We conclude that (3.19), (3.20), and (3.21) give a good
approximation to B, in their expected regime of validity.

Equations (3.19), (3.20), and (3.21) can be inverted to
find 8 as a function of p and B,. The results are given

B, = 0.702s —0.351 .

For p ) p, and large s (so that lzl is large),

(3.19)
3.5
3.0

I?., = 0.702lp —p, l

' s'i (3.20)
R

2.5

2.0

and for p & p, and large s (large lzl),

R. = 0.702lp —p.l'"'s'" (3.2i)

1.5

10 20 30 40 50 60

( = 0.702(0.090)~lp —0.311l (3.22)

As discussed in Appendix A, g = B, where sg is given
by

What does one mean by large 8? To answer, let us
evaluate, in three dimensions, the percolation correlation
length given in (A26) and (A27). The result is

FIG. 5. Each line is a plot of cluster radius R, against the
cluster number s on a d = 3 simple cubic lattice. The solid
lines are the results of Monte Carlo percolation "experiments"
for three different values of percolation probability p. The
dashed lines are extensions of the scaling formulas for the
cluster radius to small values of s for the same three values
of p.
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s = AB, (3.24)

where for (1) p=p, any s or pgp, s((sq,
D = 2.544,

A = 2.460,
(2) p & p. , s » sZ,

D=3,

A = 2.891lp —p, l

(3.25)

(3.26)

(assuming 8 is large enough to ignore do iri the p = p
case) by

least two degenerate minima with vanishing cosmologi-
cal constant. Furthermore, we assume that the universe
goes through a period of inflation followed by a period
of Friedmann-Robinson-Walker (FRW) expansion. It is
supposed that inflation is due to some other mechanism,
perhaps a different inflation scalar field, but is not caused
by scalar P. On the contrary, we assume that the height
of the P potential energy between the minima is very
much smaller than the Hubble parameter at the time of
inflation.

The dynamics of an out of equilibrium scalar field ex-
isting on an inflating de Sitter space breaks into two
pieces. First, there is a classical field P„which satis-
fies the classical equation of motion

and (3) p (p„s » sq,
+3HQ, + =0, (4.1)

D = 1 818,

& = 1 903lp —p-I
'"' (3.27)

As discussed in Appendix A, D is the fractal dimension
of the s cluster. Note that the fractal dimension changes
with p. In particular, the s cluster is more fractalized for

p & p„ less so for p = p„and droplike for p ) p .
It follows from (A3) or (A4) that the percolation prob-

ability P is given by

(3.28)

IV. NONEQUILIBRIUM PHASE TRANSITIONS

In this section we discuss a mechanism for phase tran-
sitions in a scalar field P, all of whose couplings are so
small as to render the field out of thermal equilibrium.
The potential energy of this scalar is assumed to have at

for p & p, and vanishes for p & p . In the next section,
where we discuss the role of percolation theory in large-
scale structures, we will always take the occupied sites to
have p & p . Therefore, for the occupied sites, P = 0,
there is no percolating cluster and all such s clusters are
finite. In this case, however, the empty states satisfy
q ) 1 —p, = 0.689. Since q & p, P is nonvanishing for
the empty sites and there is a percolating empty cluster.
Furthermore, since q is considerably bigger than p, we
expect the percolating cluster to be very large and P to
be near unity. This can be explicitly checked using the
animal results in Ref. [13j and reproduced in Appendix
B. Unfortunately, these results are for q & 0.5. Let us
calculate P~ for q = 0.5, knowing that P is larger for

q & 0.5. Using Appendix B and (3.28) we find that, for

q = 0.5, P = 0.96. Therefore, for q ) 0.689, P
0.96. That is, in excess of 96% of the empty sites are
in the percolating cluster. We conclude that, for d = 3,
when p & p, the occupied sites all form into relatively
small finite clusters embedded in a vast sea of percolating
empty sites, the finite cluster empty sites being negligible.

P(g) = (4.2)

where V is the potential of P and H is the Hubble pa-
rameter. We have assumed in (4.1) that the spatial gra-
dient terms have been exponentially driven to zero by
inflation. Now, during inflation, and long afterward, H
is very large (by assumption) compared to the poten-
tial and its derivatives. It follows that we may drop
the dV/dP, term in (4.1) and the resulting equation is
solved by P, = c, where c is an arbitrary constant. To
next order, there is an extremely tiny damped velocity

(dV/dP, )/H which one may safely ignore. There-
fore, during infiation, and long afterward, P is, to ex-
treme accuracy, an arbitrary constant. We emphasize
that there is no information in the theory which could
fix the value of c. It is completely arbitrary. We will
make the standard assumption that our present horizon
is embedded in an enormous inflation horizon, created by
exponentially blowing up a single causal horizon in the
distant past. It follows that P, = c will be the same over
the entire inflationary horizon. Note that since our the-
ory is not in thermal equilibrium, there are no thermal
corrections to potential V. Hence there are no thermal
effects forcing P, = 0 or to any other value. In our case,
P, is an arbitrary constant. Second, we must consider
the quantum fiuctuations of the quantum field P in the
de Sitter space background. As is well known, and dis-
cussed widely in the literature [18], there are quantum
fluctuations impressed on the vacuum state of P due to
the boundary conditions of de Sitter space. These fluc-
tuations are sometimes referred to as contributing to the
"Hawking temperature" of de Sitter space but, in fact,
they are not true thermal e8'ects. These fluctuations can
be described by a "quasiclassical" scalar field P~, which
contains Fourier components with wavelengths ranging
from the size of the particle horizon during inflation, H,.
where H; is the initial Hubble parameter, all the way out
to the inflation horizon H,. e~', where t, is the time
at the end. of inflation. Now at any point x these spa-
tial fiuctuations lead to fiuctuations in the value of P, in
field space, around P, = c. These can be described by a
Gaussian distribution centered at P with width o'~, given
by
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The value of og depends on the range of spatial Huctua-
tion wavelengths one wants to consider. In general, if we
consider wavelengths from small size ) up to larger size
I, then these induce fluctuations at x with a width

(4.S)

(H(x)) = H; H(z) (4 4)

As long as (H(x)) is greater than the height of the po-
tential energy V, and this has been assumed in all of the
above discussion, then the Huctuations are "hot" and can
freely jump back and forth from one to another. There-
fore, the vacuum does not settle down into a specific value
but, rather, it retains the random character described by
(4.2) and (4.3).

Eventually, after a long time, H decreases to a point
where the damping term in the equation of motion, 3HQ,
becomes comparable to the potential term dV/dP. At
this time, which we designate by the redshift z& (t for
transition) the potential V can no longer be ignored and
we must reanalyze both the classical and quantum contri-
butions to the P vacuum. It is not hard to show that zz is
also the redshift at which (H(x)) becomes comparable to
the height of the potential V. What changes take place
at zq and thereafter? Under the force of the dV/dttt term
in the equation of motion, both hatt, and each Iluctuation
around P, begin to roll toward the nearest ininimum in
V. If we, henceforth, assume that the width of (4.2) at
zq is of the same order of magnitude as the distance v
between two adjacent minima of V, that is,

For example, if we want to include the efkct of all
wavelengths in the quasiclassical Geld at the moment
that inflation ends, then we would take l, = H, and
l = H,. e ' . It is important to note that, since these
fluctuations are generated in a homogeneous way on the
inflating spatial manifold, the formulas for the Gaussian
distribution (4.2) and width (4.3) are the same for any
two points x and y within one inflation horizon.

Now after inflation ends and the FRW period begins,
the Hubble parameter begins to decrease and hence the
size of the particle horizon to grow. As the particle hori-
zon grows, the smaller-wavelength Fourier components of
the quasiclassical field P~ begin to enter the horizon. As
they do, they start to oscillate, their amplitudes become
exponentially damped in time, and they can eII'ectively
be ignored. Hence, at any redshift z during the FRW
expansion phase, the quasiclassical field P~ is composed
only of those Fourier modes with wavelengths from the
size of the particle horizon at z, H(z) i, out to the size
of the inflation horizon. As a consequence, the distribu-
tion of spatial Huctuations at any point x at redshift z is
still given by (4.2), but where o& is to be evaluated using
I, = H(z) i. Note, however, that since the change in t,
relative to the inflation horizon radius during this period
is not dramatic, it follows froin (4.3) that the fluctuation
distribution is relatively stable. It is also of interest to
compute the expectation value of the Hamiltonian den-
sity, H, at any point x at redshift z during the FR&
phase. Generically, we find that

0.)(zg} = v , (4 5)

then it is clear that we need only consider the two adja-
cent minima of V nearest to P, = c. I et us call the mini-
mum to the right of P, the (+) vacuum and the minimum
to the left of P, the (—) vacuum. Furthermore, we will
center the zero of P space, P = 0, to be at the top of the
potential hill between (+) and (—). It is clear then that,
under the force of the dV/dP term, any field to the right
of P = 0 will roll into the (+) vacuum and any field to the
left of P = 0 will roll into the (—) vacuum. Furthermore,
from the distribution (C2), we know that the probability
that a vacuum Huctuation will be to the right of P = 0
and hence roll to the (+) vacuum is given by

dP P(Q), (4.6}

22=-g" 0 $0„$+ P ——P ——m
m 2 A 4 3

4! 2A
(4.7)

where g„ is the Robinson-Walker metric with the line
element

In general, k can take the values +1, 0, or —1. However,
we will assume that 0, the ratio of the total energy den-
sity to the critical density p, is unity. This then implies
that k vanishes. We henceforth take 0 = 1 and k = 0.
The potential energy

V(P) = — P + —P + —m
m2

2 A 4 3 4
2 4! 2A

(4.9)

is minimized by two separate vacua

where o~ is evaluated at redshift zq.
Since P, is arbitrary, it follows that p can take any

value in the range 0 & p & 1 and need not be 2. Clearly,
the probability that a fluctuation will roll to the (—) vac-
uum is 1 —p. It is also important to note that after zq

(H(x)) becomes smaller than the height of the potential.
Therefore the system becomes "cold." Once a Huctua-
tion occurs, say to the (+) vacuum, it is impossible for
it to then jump to the (—) vacuum since there is not
enough energy density to get over the potential barrier
between the two minima. Therefore, at any point x at
zq or shortly thereafter, the Geld must choose the (+)
vacuum with probability p or the (—) vacuum with prob-
ability 1 —p, where p lies in the range 0 & p & 1 but
is otherwise arbitrary. This type of out of equilibrium
phase transition, with "biased" probability of being in
one vacuum as opposed to another, was first introduced
in [10]. We refer to the reader there for more details.
This justices our use of p g —percolation theory in this
paper.

To proceed it is useful to give an explicit example for
the scalar Geld theory. We will, for simplicity, consider
the simplest relevant scalar Geld potential. Our results,
however, are essentially unchanged for any other scenario
of this type. Consider a real scalar field P which has, as
its Lagrangian,
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(4.10) (4.14)

both of which have vanishing cosmological constant. It
is well known that there is a static kink solution inter-
polating between these two vacua which, in the rescaled
coordinate x perpendicular to its surface, is given by

P(x; xo) = tanh
~

(z —
xD I) (4.11)

where xo, the location of the kink, is arbitrary. The width
of the kink is well described by A = ~2/m and the zero-
zero component of its stress-energy tensor is found to be

(4.12)

The kink solution (4.11) defines a domain wall between
the regions of space with difFerent vacuum structure. The
width of this domain wall is, again, 4 = ~2/m and the
energy density at its center, the value of Too at x = xo, is
pDvv = 3m /A. The surface energy density of the domain
wall, defined by g = j Too dx, is found to be

(4.13)

The requirement that the P field be out of thermal equi-
librium immediately implies that A (( 1. Furthermore,
since the height of the potential barrier must be much
smaller than H,. during infIation, it follows that m has
to be very tiny.

We can now return to the discussion of the nonequi-
libriurn phase transition. At the redshift zq the scale
of fluctuations, (H), falls below the height of the po-
tential, and also the Compton wavelength of the scalar
field, A = 1/m, becomes smaller than the horizon scale,
A, ( H . As discussed above, the field must then roll
to the (+) vacuum with probability p or the (—) vacuum
with probability 1 —p. Whichever way it rolls, there will
be a period of coherent oscillations around the vacuum
until, at the redshift we will denote by z;, the field. comes
approximately to rest at the minimum. It follows that be-
tween zq and z; the potential barrier is not clearly visible
above the background energy density due to these oscilla-
tions and hence domain walls do not form. It is only after
z, , when the height of the potential becomes significantly
larger than the energy of the oscillating background, that
stable domain walls can occur. When one considers the
equation of Inotion for a generic scalar field one finds that
the zero-mode solution behaves as P(t) = A(t) cos(mt)
which, after averaging over the period of oscillations,
gives the average energy density of the background equal
to p „(t) = 2A (t)m (A denotes the amplitude of oscil-
lations). Assuming adiabatic expansion during the mat-
ter dominated epoch one obtains the energy conservation
law in the form (d/dt)[A (t)m B (t)/2] = 0. It follows
that, in terms of redshifts, the oscillation energy density
evolves as

where 0 & e & 1, z ( zi, and (1 —e)(P) is a typical am-
plitude of P at zi. Here we discuss a transition occurring
during the matter dominance. Similar reasoning applies
if the transition occurs during the radiation dominated
epoch. It is easy to see that these coherent oscillations
behave like matter. Then we find using (4.14) and (4.13)
that the ratio of the energy density of the oscillating vac-
uum to the height of the potential barrier is

p,. (1 —e)'(1+ z)'
g/A (1+z, )s (4.15)

The coefIicient of proportionality is easily shown to be
smaller than unity. Hence, at zq, p „is approximately
the same as the potential height but quickly decreases
relative to it with time. For concreteness, we will define
z; as the redshift at which p „/(g/A) = 10 . Then it is
easy to see that z, is related to zq through the equation

1+ z, = —,'(1+ z,), (4.16)

so if for example z, = 10 then z, = 500, and so on. In or-
der to see whether the vacuum oscillations can dominate
the energy density of the Universe, let us compare p „
with pp where pp is the energy density of the baryonic
component of the Universe. Denoting the present value
by pb, and noting that pg(z) = pg (1 + z) and taking
e (& 1 one obtains

pose
( ) 10—sQ (q )

ps Pbo
(4.17)

A; =/A, (4.18)

where l is a small real number satisfying l & 2. Second,
we assume that the probability that a lattice site is in
the (+) vacuum is p, where 0 & p & 1, and the proba-
bility that a site is in the (

—) vacuum is q = 1 —p. We
further demand that there is no correlation between the

which is independent of z. The requirement that the ratio
(4.17) is smaller than unity results in an upper bound on
the (P) which is found to be (P) ( 2 x 10 GeV, which is
satisfied in all physically relevant theories. To conclude
this paragraph, we stress again that it is at z; rather than
at zq when the stable domain walls electively form.

Let us describe this initial distribution of walls in some
detail. To this end we now make two important assump-
tions. The first is that, at redshift z, , if the system is in
the +~(6/A)m state [henceforth called the (+) vacuum]
at some point in space, then that point is necessarily con-
tained in a three-dimensional volume, of order A, , all of
whose points are also in the (+) vacuum. The same is
assumed to be true for spatial points in the —g(6/A)m
state [henceforth called the (—) vacuum]. That is, three-
dimensional space at redshift z, is assumed, as far as the
vacuum structure is concerned, to be partitioned into a
lattice with lattice spacing A;. Since domain walls of
width A will occur between lattice sites of difkrent vacua,
A; must satisfy
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vacuum structures of any two difFerent lattice sites. Sub-
ject to these two assumptions, the spatial distribution of
the (+) and (—) vacua at redshift z; can be computed
using three-dimensional percolation theory. The second
of these assumptions is very nontrivial and requires justi-
fication. To begin with, we emphasize that the extremely
small value of the coupling paraineters of the P field en-
sures that the system is completely out of thermal equi-
librium. Hence one cannot apply temperature dependent
field theory to analyze the P phase transition. This is im-
portant because it is well known that equilibrium phase
transitions lead to the unique choice of p =

2 and are be-
set with additional difFiculties [19]. Our theory, because
it is completely out of thermal equilibrium, avoids these
problems.

Let V; be the volume of space at redshift z, . For
concreteness, we will assume that the minimal vacuum
volume is a cube of volume A;. Then, as far as the
vacuum structure is concerned, space at redshift z; is
a three-dimensional cubic lattice with lattice spacing A,.
and K; = V;/A, . lattice sites. Since the main results of
this section depend, primarily, on universal quantities, we
are justified in choosing a specific lattice to carry out our
analysis. Having chosen the cubic lattice, all the results
of Sec. III can be used. In this section, we will always
assume that

p & p. (= O.311) .

It follows from the discussion in Sec. III and Appendix
A that all lattice sites in the (+) vacuum lie in finite,
nonpercolating 8 clusters. The total number of sites in
the (+) vacuum is given by N~+l = pK;. Of particu-
lar importance is the analytic expression for the cluster
numbers n, of (+) vacuum, finite s clusters. These were
shown in Sec. III to be given by

n, = 0.0501s exp —0.6299 p —p. &

p. )

( = 0.187~p —p.(-'"A, , (4.21)

where we have made ( dimensional by introducing the
physical lattice spacing A, . The associated cluster size is
given by

0.311

(0.311 —p ) (4.22)

B, = 0.702ip —p, i

s A, . (4.23)

This equation can be inverted to give

s = 1.903/p —p.f-""
~(A')

The fractal dimension of such a cluster is D = 1.818.
The fact that D & 3 implies that these 8 clusters are not
droplike and exhibit considerable fractal behavior such as
discussed, in two dimensions, in Sec. II. Now for 8 (& sq
the structure of the finite (+) vacuum s clusters is some-
what di6'erent. It follows from the discussion in Sec. III
and (3.19) that

a. = {0.702s'"' —O.351)A, . (4.25)

This equation can be inverted to give

) 2.544

s =- 2.460 + 0.351
iA;

(4.26)

The fractal dimension of such a cluster is D = 2.544.
Again, since D & 3, such clusters are not droplike and
exhibit mild fractal behavior. No matter what the size
of s is relative to sq, a finite (+) vacuum s cluster has a
boundary containing t, lattice sites of (—) vacuum where

As discussed in Sec. III, the average radius of gyration
B, and the fractal dimension D of the finite (+) vacuum
8 clusters depend on the size of 8 relative to sq. When
s )) sg, then it follows from (3.21) that

xs '
~

s + 1.6679
p

(4.2o) /1 —p'l t9
~

s —(1 —p) —inn, ,
Bp

(4.27)

where 7 = 2.17, 0. = 0.48, and p and 8 are restricted to
satisfy —1.63 & [(p —p, )/p, ]s & 1.41. The values of p
and 8 relevant to our analysis will lie comfortably within
this range. The total number of s clusters at redshift
z; is then given by N, = n, N;. Since p & p, then q ) 1
—p, (= 0.689). It follows from the discussion at the end
of Sec. III that in excess of 96% of all sites in the (—) vac-
uum lie in the percolating cluster, which extends across
the entire spatial volume. Hence all (—) vacuum lat-
tice sites which lie in finite 8 clusters can simply be ig-
nored. The total number of (—) vacuum sites is given by
N~ ~

——q¹.Note that Ã~ ~
& N~+~. We conclude that

space is dominated by a vast, percolating sea of (—) vac-
uum, with relatively small, finite islands of (+) vacuum
embedded in it. The structure of the finite (+) vacuum
clusters is very much controlled by the percolating cor-
relation length (. For p & p, it follows from (3.22) that

(1 —
p) (4.28)

when p & p and 8 ) 10. The values of s relevant to
our discussion will always satisfy this bound. The prop-
erties of the boundary of an 8 cluster are more compli-
cated than one might at first realize. To begin with, the
boundary need not be totally external. Some, or many,
of the boundary points can lie inside the s cluster. Fur-
thermore, if D = 3 (which, for p & p„ it is not) then
the boundary, both external and internal, would form a
smooth surface. However, in our case D & 3 and the

as discussed in Appendix A. Using (4.20), it is a bit
messy, but straightforward, to show that the second turn
in (4.27) is much smaller than the first and hence t, is
well approximated by
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boundary becomes fractalized, more for 8 )) sq and less
so in the s « sq case. I,et us denote by f the average
number of faces of the lattice cube surrounding a bound-
ary point that directly touch the s cluster. Of course, f
must satisfy 1 & f & 6. If D = 3, then f = 1. How-
ever, for D & 3 the fractal behavior of the boundary
allows more surfaces to touch the 8 cluster. For example,
an isolated (

—) vacuum point totally inside the s cluster
would have six faces touching the cluster. We have not
computed f analytically for D & 3. A cursory numerical
study indicates that 2 & f & 4. Fortunately, we do not
need to know the exact value of f in the following anal-
ysis. Note that the average surface area of any finite (+)
vacuum 8 cluster is given by

bT
T

—Sar G~gII (4.31)

&4x10 "M~,
H z;

(4.32)

where G~ denotes the Newton constant and H is the
horizon size at the time when the photon passes the wall
[23]. In the case of stable walls, one puts into (4.31) the
present-day horizon size instead of H, but, since our
wall bags are not stable and rapidly disappear, we have
to use the formula (4.31) in its basic form. This formula,
when one requires that hT/T & 1 x 10, gives an upper
bound on the ratio g/H(z, ) of

A, =t, fA; . (4.29) which transfers into an upper limit on {P) given by

As discussed previously, between any nearest neighbor
(+) and (—) vacuum sites there will be a domain wall
with surface energy density q given in (4.13). It follows
that a finite (+) vacuuin s cluster is bounded by a domain
wall with average total energy:

{y) &3M
m (4.33)

bM, =gA, . (4.30)

In the preceding, we have focused on the vacuum struc-
ture of the biased phase transition and the properties of
the associated domain walls at redshift z, . This discus-
sion presumed that 0 = 1 and therefore that A: = 0 in the
Robinson-Walker metric (4.8). In order to make a con-
nection to the present-day observed matter distribution
we have to assume a specific scenario for the development
of the wall system and that of the induced fluctuations
in the energy density of the matter content of the Uni-
verse. Several scenarios are possible, two viable examples
being presented in detail in [20] and [21]. In general, de-
tails of the evolution of matter-wall systems depend on
the epoch when the transition takes place. If z; happens
to lie deeply in the radiation dominated epoch, then the
system evolves as described in [21]. The accretion of
matter onto walls is greatly slowed down with respect
to the predictions of the spherical collapse model [22].
Furthermore, wall bags with radii fitting our horizon an-
nihilate before photon decoupling or their abundance is
very strongly suppressed, so that they do not distort the
microwave background. As demonstrated in [21] this sce-
nario gives rise to a significant wall-induced contribution
to the total bp/p spectrum, which is strongly suppressed
at small scales, but significant at large scales. This ad-
ditional spectrum can add significantly to a cold dark
matter (CDM) spectrum at intermediate scales and at
the same time give an observable signal at the Cosmic
Background Explorer (COBE) scales, as required by cur-
rent data. The other possibility, discussed in [20], is that
the transition takes place after photon decoupling so the
walls do not leave any direct imprint on the last scatter-
ing surface. In this case, however, one has to compute
the postdecoupling distortions of the photon background
due to the gravitational potential of domain wall bags.
In first approximation, this is taken care of by fulfilling
the limit on the wall tension g arising from the formula

Again, this limit is not difFicult to satisfy and it is obeyed
by all the examples presented in [20,21]. To indicate all
the possibilities overed by the second approach, where
it is more likely that the pattern of wall bags would di-
rectly correspond to the observed distribution of galaxies,
one has to distinguish two distinctly difFerent physical
regimes within the restriction p & p . The first is for p
suKciently small that the percolation correlation length
is much smaller than the observable lattice size at z, .
That is, ((z;) « K; A(z, ). In this regime, one predicts1/3

only small matter clusters well described by n, in (4.20).
The second regime occurs as p approaches p, and the
correlation length becomes comparable to the lattice size
at z, . That is, ((z, ) = N, A(z;). In this case, in ad-&/s

dition to smaller matter clusters described by n„ there
are few, large "primordial" percolating matter clusters.
These, while not actually percolating, are much larger
than the smaller clusters. These two regions are the ana-
logue of those studied in d = 2. We refer the reader to
Sec. II to gain physical intuition about them. The sec-
ond regime might be considered as a realization of the
"bubbly" Universe, where there exist large voids (cor-
responding to large, "almost percolating" clusters). In
this model matter would accrete to the surface of these
voids forming a frothy foam or bubblelike structure. This
generic picture seems to be in basic agreement with ob-
servation.

We close this section by pointing out that the final, sta-
ble vacuum state of a scalar field with potential energy
(4.3), when evaluated on a three-dimensional lattice, is
that of the d = 3 Ising model. From this point of view,
the percolation theory results discussed in this paper rep-
resent the initial unstable state of the theory at redshift
z;. This state will relax in time toward the stable Ising
model vacuum. In this paper, we have referred to this
relaxation as the dynamical motion of the domain walls,
which is the same thing. The efFect of dynamics in our
scenario is expected to be relatively small, and will be
discussed elsewhere.
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V. CONCLUSIONS

We have demonstrated in this paper how percolation
theory can be used to analytically compute both the qual-
itative and quantitative features of the initial conditions
for large-scale structure formation induced by a cosmo-
logical phase transition in an out of thermal equilibrium
scalar field. In closing we would like to emphasize two
points. The first is that our scalar field P is a new field,
whose only physical role is to induce either all, or part, of
observed large-scale structure. To distinguish it from all
other scalar fields that may occur in cosmology, like the
in8aton, or in particle physics, like the Higgs boson, we
would like to give P a name, the "structuron. " Second,
we point out that, although for postdecoupling transi-
tions we expect the matter clustering to resemble the
main features of the original wall distribution, in general
there is a complicated dynamics of the matter-wall sys-
tem which leads from the initial conditions at redshift z,.

described in this work to the observed large-scale struc-
ture. The analysis of this dynamics lies beyond the scope
of this paper, the more detailed discussion of the exam-
ples corresponding to difFerent regimes being presented
in Refs. [21,20].
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APPENDIX A: PERCOLATION THEORY

This appendix is intended to acquaint the reader with
the concepts and formulas of percolation theory neces-
sary to comprehend the main body of the text. All
material in this appendi~ can be found in [12,17] and
references therein. The arena of percolation theory is
a d-dimensional lattice containing N" lattice sites.
can be finite, but the "thermodynamic" limit is obtained
by letting N —+ oo. The structure of the lattice is not
unique. For example, in three dimensions, the lattice may
be simple cubic, or body centered cubic, or face centered
cubic, or even random. In physical applications, there
is a length associated with nearest neighbor lattice sites,
generically denoted by A. It follows that each side of the
lattice has length L = NA and that the lattice volume is
L

Percolation theory is defined on such a lattice as fol-
lows. Assume that every individual lattice sites can be in
one of two states, either "occupied" or "empty. " Further-
more, assume that each site is occupied or empty entirely
randomly, independent of the state of its neighbors. It
follows that the entire theory, for a given lattice struc-

N, =n, N". (A1)

Also, it follows from the above definition that the prob-
ability that a given lattice site is any elexnent of an s
cluster is given by

P, =sn, . (A2)

An s cluster that extends from one end of the lattice to
the other is called a percolating or infinite (since in the
thermodynamic limit N —+ oo this cluster would have
s ~ oo) cluster. Any other s cluster is called a finite
cluster. For small values of p one finds only finite clus-
ters, whereas for large p a single percolating cluster (as
well as finite clusters) is found to exist. One never finds
two or more percolating clusters. It follows that at some
critical probability, denoted p, there is a phase transition
such that for p ) p, a unique percolating cluster exists,
whereas for p ( p all clusters are finite. Exactly at
p = p there also is a percolating cluster which, however,
has the property that the fraction of sites belonging to
it goes to zero as N ~ oo. Hence the percolating cluster
at p = p, is called the "incipient" percolating cluster.

We define the percolation probability P to be the
fraction of occupied sites belonging to the percolation
cluster relative to the total number of lattice sites N".
Note that P is a function of p. It follows from the above
that for p & p P = 0, whereas P is nonvanishing for
p ) p, . Clearly P = 1 for p = 1. In general, every
lattice site has two possibilities. It can be empty, with
probability 1 —p, or it can be occupied, with probability
p. If the site is occupied then there are again two possi-
bilities. It can be an element of the percolating cluster,
with probability pP, or it is part of some finite cluster,

ture, is defined by the probability p (0 & p & 1) that an
individual site is occupied. The probability that a site is
unoccupied is clearly q = 1—p. To be precise, percolation
theory defined in this manner is called site percolation
theory. It is possible to define so-called bond percolation
theory, where the links between nearest neighbor lattice
sites are assumed to be either "open" or "closed" with
probability p and 1 —p, respectively, independent of the
state of neighboring links. Site and bond percolation the-
ory are identical in many respects, difFering only (&om
the point of view of this paper) in inessential aspects.
Hence, in what follows, we discuss only site percolation
theory.

Consider percolation theory defined on some lattice.
The occupied sites are either isolated from one another
or they form small groups of neighbors. These groups
are called clusters. An s cluster is defined as a group
of s occupied lattice sites connected by nearest neighbor
distances. In a large lattice, there are more s clusters
than in a small lattice and hence the total number of
such clusters is not a fundamental quantity. However,
the total number of s clusters divided by the number of
lattice sites N" is a fundamental quantity, and is denoted
by n, . That is, n, is the probability per lattice site that
that site is a fixed element of an s cluster. It is impor-
tant to note that n, is, in general, a function of p. By
definition, the total number of s clusters, N„ is given by
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with probability p(1 —P ). Note that

p(1 —P ) =) P. , (A3)

where g, denotes the sum over all finite clusters. Since
the sum of these probabilities must be unity, it follows
from (A2) and (A3) that

Furthermore, let g, q be the number of configurations that
are related to the above by a rotation. (Configurations
that differ by a translation are considered to be equiva-
lent. ) Coefficient g, q counts the number of "animals" of
type s and t. Now note that, in general, there are many
different shape configurations of s occupied lattice sites,
each with its own perimeter t and animal number g, q. It
follows that the cluster number n, is given by

1 —p+pP +) sn, = l. sns=g gsgp q (A7)

If the cluster numbers n, are known, then P can be cal-
culated from this expression. Hence the cluster numbers
n, are of fundamental importance.

The behavior of systems close to a phase transition is
usually described by critical exponents. For percolation
theory the relevant exponents are defined by

sing

where P is a sum over all difFerent shape configurations.
For very small s, n, can readily be computed from this
equation. However, as s increases the number of shapes
and animals vastly increases and (A6) becomes useless.
There is, however, a region of large s in which n, can be
computed by other means. This is in the so-called scaling
regime in which s -+ oo and p m p, . Define z = (p —p, )s
where o is a parameter to be discussed below. Then, in
the limit in which s ~ oo, p —+ p„and z is finite,

) sn, (p)
n, = qos f(z), (As)

sing

(A5)
where w is a second parameter independent of o and f is
a scaling function of z only with the property that

) s n. (p)
sing

) sn, (p)e
"'

sing

where p is near p and 6 is near zero. The subscript
"sing" denotes the leading nonanalytic part of the quan-
tity and does not necessarily diverge as p ~ p or 6 ~ 0.
These critical exponents are not all independent as we
will see below. Note that it follows from (A4) and (A5)
that

P oc (p- p. )~ (A6)

for p slightly above p . Otherwise P vanishes.
The cluster numbers n, can be evaluated as follows.

Fix s and consider one configuration of the s occupied
lattice sites. Let t be the number of empty lattice sites
that are nearest neighbors of the s occupied sites. These
empty sites are called the perimeter of the configuration.

f(o) = 1.

2 —n = (7- —1)/o. ,

p = (7. —2)/o. ,

—~ = (r —3)/~
1/8 = ~ —2.

(A1o)

It follows that the critical exponents are not all indepen-
dent and satisfy the equations

~ = 2+1/h,
~ = 1/Ph = 1/(q+P),

2 —o. = p + 2P = P(b + 1) .
(A11)

The form of f can be calculated in various ways and is
dependent upon the dimension d. Similarly, constant q0
can be computed and depends on d. Inserting (A8) into
(A5) leads to the relations

2

222 x 10
212 x 10
191 x 10
164 x 10
134 x 10
105 x 10
781 x 10
502 x 10
331 x 10
295 x 10
155 x 10
714 x 10

6

241 x 10
311 x 10
349 x 10
347 x 10
309 x 10
249 x 10
182 x 10
106 x 10
610 x 10
522 x 10
211 x 10
675 x 10

998 x 10
151 x 10
190 x 10
206 x 10
193 x 10
160 x 10
117 x 10
665 x 10
365 x 10
307 x 10
112 x 10
313 x 10

658 x 10
728 x 10
729 x 10
671 x 10
570 x 10
450 x 10
330 x 10
200 x 10
122 x 10
106 x 10
484 x 10
182 x 10

780 x 10
720 x 10
645 x 10
562 x 10
475 x 10
391 x 10
313 x 10
226 x 10
167 x 10
154 x 10
975 x 10
567 x 10

117 x 10
120 x 10
114 x 10
101 x 10
844 x 10
662 x 10
488 x 10
305 x 10
193 x 10
170 x 10
830 x 10
345 x 10

391 x 10
467 x 10
494 x 10
473 x 10
411 x 10
328 x 10
240 x 10
143 x 10
844 x 10
729 x 10
313 x 10
109 x 10

153 x 10
214 x 10
254 x 10
263 x 10
241 x 10
197 x 10
144 x 10
827 x 10
464 x 10
394 x 10
151 x 10
450 x 10

TABLE IV. The exact values of the cluster numbers n, (p) computed in d = 2 on a square lattice for a range of values of p
and small values of s. These were computed by explicit animal calculations.

P+8 1 3 4 5 7 8

26
30
34
38
42
46
50
55
59
60
65
70
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In other regimes of s and p the exact functional structure
of n, is unknown but there is some partial information.
For example, in the regime s ~ oo, fixed p, it is known
that

(A17)

and R(z) is a scaling function of z only with the property

where

inn, cx: —s~,

q(0 & p & p.) = 1,

(A12) R(0) = 1.
R(z) is known, and is given by

R(z) = lzl
"

(A18)

((p. & p & 1) = 1 —1/d .
(A13) where the value of p depends on the regime of p. For

p = p„z vanishes and (A18) requires that

When p = p„ the large-s behavior is described by (A8)
and (A9).

Consider a fixed value of s and a specific configuration
of s nearest neighbor connected occupied lattice sites.
The radius of gyration of this configuration is defined by

v (p = ».) = ~//3~ .

For p & p, it is known that

(p) p) =1/d.

(A20)

(A21)

s ) /

P. l~' —~..-.l'/s l

i=1

where r, is the vector location of the ith occupied site and
r, is the location of the center of mass of these sites.
In general, difkrent configurations of s occupied sites will
have diferent radii of gyrations. One defines the radius
of an s cluster, A„ to be the animal weighted average
over all possible configurations of s occupied sites. That
is)

R. = col» —p. l~" (A22)

The percolation correlation length ( is defined as a
weighted average over B, given by

t') s'n. R')

Finally, for p ( p there are rough theoretical estimates
for y which are not consistent with Monte Carlo data.
It is safest to use the Monte Carlo results which depend
on d. Finally, constant co can be computed and is d
dependent. Combining (A16) and (A19) we find that, in
the scaling regime,

(Q(g, tp'q'R, ') ~

ns
(A15)

(A23)

R. = cos R(z), (A16)

where v is related to the previous critical exponents by

where g is a sum over all difFerent shape configurations.
It is important to note that, in general, B, is a function
of p. As was the case for cluster numbers n„(A15) can
be used to evaluate B, for small values of s but rapidly
becomes intractable as s increases. However, as was the
case for n„B, can be evaluated in the scaling regime
where s m oo, p m p, and z = (p —p, )s is finite. In
this limit

It can be shown that, as p —+ p,
C ~ l»

—».
I

(A24)

Note that ( is a function of p. It is very hard to compute
( directly from Eq. (A23). However, there is a procedure
that allows one to get a fairly accurate expression for (. If
one examines the explicit structure of the scaling function
f in (A8), one discovers that f is approximately constant
for z & zq, where zq is some computable value, and f
decays exponentially as z for z ) zq. Furthermore, zq
is found to be close to p . It follows that zq corresponds

TABLE IV. (Continued)

66O x 1O-'
108 x 10
145 x 10
163 x 10
158 x 10
133 x 10
975 x 10
548 x 10
294 x 10
246 x 10
861 x 10
224 x 10

10
443 x 10
787 x 10
112 x 10
131 x 10
131 x 10
112 x 10
825 x 10
461 x 10
243 x 10
201 x 10
676 x 10
165 x 10

11
300 x 10
579 x 10
873 x 10
107 x 10
110 x 10
959 x 10
712 x 10
393 x 10
204 x 10
168 x 10
541 x 10
125 x 10

206 x 10
430 x 10
689 x ]0
886 x 10
938 x 10
831 x 10
621 x 10
341 x 10
173 x 10
142 x 10
440 x 10
959 x 10

13
142 x 10
321 x 10
548 x 10
738 x 10
805 x 10
726 x 10
547 x 10
298 x 10
149 x 10
122 x 10
363 x 10
750 x 10

14
984 x 10
242 x 10
439 x 10
618 x 10
696 x 10
640 x 10
485 x 10
263 x 10
130 x 10
106 x 10
303 x 10
594 x 10

15
687 x 10
183 x 10
354 x 10
522 x 10
606 x 10
568 x 10
434 x 10
235 x 10
114 x 10
922 x 10
256 x 10
476 x 10

16
481 x 10
140 x 10
287 x 10
443 x 10
530 x 10
507 x 10
391 x 10
211 x 10
101 x 10
812 x 10
218 x 10
386 x 10

17
339 x 10
107 x 10
233 x 10
377 x 10
467 x 10
456 x 10
354 x 10
190 x 10
901 x 10
721 x 10
187 x 10
316 x 10
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to an s value given by

/ ) 1/o.

(A25)

I I I I I0 CD O O O

X X X X X

Cb O Cb O

I I Io0 0
X X X

I0
x x

Substituting this expression into (A22) gives

&.~ =«(p.)' 'Ip —p. I

" (A28)

I I I I I

O O O 0 0
X X X X X

Cb A 0

I0 0 0
X X X

O

x x
which has the appropriate scaling behavior for (. It turns
out that setting

(A27)

is a very good approximation to (. Note that (since v is
positive) for p away from p, ( is small, whereas ( ~ oo
at p M p, as it must.

Consider some value of p with C' the associated corre-
lation length. For any finite s cluster with the property
that R, « ( or B, )) ( it can be shown that

s = AB, (A28)

where D is the "fractal" dimension (in general, different
than d), A is a function of p, and both D and A depend
on the regime of p. First consider the p = p regime.
In this case ( -+ oo and B, « (, for any Bnite s. Such
systems are "self-similar, " &om which it can be proven
that

(A29)

Recall that for p = p in the scaling regime

(A3O)

Inserting (A29) and (A30) into (A28) gives

(~ d/(1+1/b)
)

vd/(1+1/S)Pb (A31)

where A denotes the parameter A at p = p, . Consistency
requires that

vd = (1+ 1/b)PS

which, using (All) and (A17), is easily shown to be true.
Furthermore, we must have

A
—d/(x+ x/h)

Cp =
) (A33)

which allows us to find cp from existing Monte Carlo data
on fractals at p = p . We further conclude that, since
(A28) is valid for all s when p = p„Eq. (A30) is also
valid for all s, not just the s ~ oo scaling regime. Now
consider the case that p g p, but s is such that R, « (.
It is clear that, for such small clusters, B, is still given
by (A30) and the fractal dimensions by (A29). We can
invert the logic of the previous discussion to derive a
general expression for the fractal dimension in terms of
the parameter y. Inserting (A22) into (A28) yields the
conditions
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and

~d/(i+i/b)
[

[u
—Pb(p

1/~

For P = p, or p g p, and B, « ( (A34) and (A35) give
(A29) and A = A, respectively. For p & p, and R, » (,
it follows from (A21) and (A34) that

D(p&Jr, ) =d.
Therefore on this regime

~d /(i+i/b)
[

[P

(A36)

(A37)

where we have used expression (A32). Finally, for p & p,
and B, » (, Eqs. (A34) and (A35) determine D and A
given the Monte Carlo value for p in this regime.

The above considerations can be used to derive an ex-
pression for P for p near to p . Assume p ) p . Then
for 8 ~ oo, the density of occupied points is well ap-
proximated by pP . It follows that, in d dimensions, for
8M QG)

P(g.tP'e't)
S ) (A4O)

/' I —p 5 0
t, =

[
s —(1 —p) —inn, .

) Op
(A41)

Recall that the structure of a d-dimensional lattice is
not unique. It is important to ask which of the per-
colation quantities defined above are "universal, " that
is, independent of lattice structures, and which quan-
tities are not. It turns out that the critical exponents
cr, P, p, h, v and o, r, (, p are universal. Furthermore, the
scaling functions f(z) and R(z) are found to be univer-
sal. We emphasize that these universal quantities can
and do depend on the dimension d. An important quan-
tity which is not universal is the value of p, which ex-
hibits a mild dependency on the lattice structure. Two
other nonuniversal quantities are qo and co which again
depend weakly on the structure of the lattice.

where g is a sum over all different shape configurations.
Note that t, is, in general, a function of p. It is not hard
to show that

~d/2 B"
I'(d/2 + 1)

(A38)
APPENDIX B: CLUSTER NUMBERS

Inserting expression (A22) for A, into (A38) and using
(A21) and (A32) we find

I (d/2+ 1) 1
oo g/2 d P Pc

co p
(A39)

Note that this expression is only valid for p —p positive
and small and is of the form given in (A6).

Fix s and consider one configuration of 8 occupied lat-
tice sites with t empty nearest neighbor sites. Assume
the number of animals of this type is g, &. Then one de-
Gnes the average perimeter of an s cluster of any type to
be

In this appendix we list the cluster numbers n, (Ii) for
a range of values of 8 and p in both two and three di-
mensions. These results were first obtained from direct
animal calculations in the two references in [14]. We re-
produce their results in this appendix since they are vital
to the discussions of the range of the scaling approxima-
tions to n, (p) given in Secs. II and III. The values of
n, (p) computed on a square lattice in d = 2, for a set
of p's between 26 and 70 and for 1 & 8 & 17, are listed
in Table IV. The values of n, (Jr) computed on a simple
cubic lattice in d = 3, for a set of p's between 10 and 50
and for 1 & 8 & 11, are listed in Table V.
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