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We study the problem of scalar particle production after inflation by an in8aton field which is
oscillating rapidly relative to the expansion of the universe. We use the framework of the chaotic
inQation scenario with quartic and quadratic in8aton potentials. Particles produced are described
by a quantum scalar field y, which is coupled to the inQaton via linear and quadratic couplings. The
particle production effect is studied using the standard technique of Bogolyubov transformations.
Particular attention is paid to parametric resonance phenomena which take place in the presence of
the quickly oscillating inHaton field. We have found that in the region of applicability of perturbation
theory the effects of parametric resonance are crucial, and estimates based on first-order Born
approximation often underestimate the particle production. In the case of the quartic inHaton
potential V(&p) = A&p, the particle production process is very eKcient for either type of coupling
between the inBaton field and the scalar field y even for small values of coupling constants. The
energy density of the universe after the decay of the in8aton oscillations is in this case a factor
[A In(1/A)] times larger than the corresponding estimates based on first-order Born approximation.
In the case of the quadratic infiaton potential the reheating process depends crucially on the type
of coupling between the inHaton and the scalar Geld y and on the magnitudes of the coupling
constants. If the infiaton coupling to fermions and its linear (in inflaton field) coupling to scalar
fields are suppressed, then, as previously discussed by Kofman, Linde, and Starobinsky, the in8aton
field will eventually decouple from the rest of the matter, and the residual inHaton oscillations may
provide the (cold) dark matter of the universe. In the case of the quadratic infiaton potential we
obtain the lowest and the highest possible bounds on the effective energy density of the inHaton field
when it freezes out.

PACS number(s): 98.80.Cq, ll. lO.Ef

I. INTRODUCTION

According to the simplest version of the inflationary
scenario (see [1]) the universe in the past expands almost
exponentially with time (such an expansion is called "in-
flation") while its energy density is dominated by the ef-
fective potential energy density of a special scalar Beld p,
called the inflaton. Sooner or later inflation terminates
and the inflaton Geld starts quasiperiodic motion with
slowly decreasing amplitude. Right after inflation the
universe is empty of particles, i.e. , "cold." Quasiperiodic
evolution of the inflaton field leads to creation of parti-
cles of various kinds, after thermalization of which due
to collisions and decays the universe becomes "hot." The
role of the inflaton Geld in the inflationary scenario is not
necessarily played by a fundamental scalar Geld. It can
be the expectation value of a scalar operator constructed
of Gelds of other type. It can also be the effective scalar
introduced in the inflationary models based on a higher
derivative theory of gravity [2]. Almost all such scenarios
have an important feature: the inflationary stage is fol-
lowed by quasiperiodic evolution of the effective inflaton

Geld that leads to particle creation.
In this work we are going to study the transition of

the universe from an inflationary to a hot stage sketched.
above. The problem is not new, and there are many pa-
pers devoted to its study using different methods in the
context of various inflationary scenarios [3—8] (see also
Refs. [1] and [9]). There is, nevertheless, a drawback
common to most of them the calculations were based
on ordinary perturbation theory. The rates of particle
production by the oscillating inflaton field were calcu-
lated in Grst-order Born approximation. However, as has
been shown in Ref. [10] this approach disregards possible
parametric resonance effects which can enhance the rate
of boson particle production. To detect such effects one
has to go beyond standard perturbation theory. Such res-
onance amplification effects have been studied in [10] in
the context of the new inflationary scenario. It was shown
that typically the oscillating inflaton field produces many
particles due to the parametric resonance effect even in
the case of extremely small couplings, and that estimates
based on ordinary perturbation theory miss the largest
effect. Parametric resonance effects as relevant to reheat-
ing of the universe were also studied in Ref. [11],where
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it was also demonstrated that there is no resonance en-
hancement of fermionic particle production.

In the present paper we are going to study the prob-
lem in a systematic way. We will consider a model with
inflation based on a power law potential for the inflaton
field. The inflaton field p throughout this paper will be
regarded as classical. In Sec. II we will describe the evo-
lution of the inflaton field after inflation without taking
into account its couplings to other fields. Couplings of
the inflaton field y to fields describing fermionic spin-2
and bosonic scalar particles will be considered in the fol-
lowing sections. In particular, the process of production
of these particles by the oscillating inflaton Geld will be
studied. In all the cases we will assume the couplings to
be suKciently small so that perturbation theory is valid.
In Sec. III we will derive the expressions for particle
production rates in first-order Born approximation of or-
dinary perturbation theory. The material of Secs. II and
III will closely follow a previous work [12]. In Sec. IV we
study general aspects of the parametric resonance eKect,
and in Secs. V and VI we apply the results obtained to
the concrete cases of quartic and quadratic inflaton po-
tentials. In Sec. VII we present our general conclusions.

It will be shown that in many important cases it is
not legitimate to neglect parametric resonance eÃects.
These eKects lead to a great enhancement of the particle
production as compared to the estimates based on ordi-
nary perturbation theory. The number of particles %I,
in a mode with wave number A: that has experienced the
resonance turns out to be much larger than unity. The
universe reheating temperature therefore can turn out to
be sufficiently large even for small values of the couplings
between inflaton and other fields.

The opinion of the authors of Ref. [11] is that para-
metric resonance e8'ects of scalar particle production are
likely to be suppressed by the processes of scattering and
decay of the particles produced. The reason is that par-
ticle scattering and decay will tend to reduce the mean
occupation numbers Np in each particular mode so that
these numbers will grow not so fast as to be able to be-
come large during the resonance period. This question is
very important and deserves thorough study. We do not
aim to touch on it in this work, but hope to consider it
in future publications.

In parallel to our own work, Kofman, Linde, and
Starobinsky have also been working on these issues for
several years. Their results were recently summarized in
Ref. [13]. In Sec. VIII we will compare our results with
those of Ref. [13].

II. INFLATON FIELD DYNAMICS

In this section we will derive approximate analytic ex-
pressions for the evolution of the inflaton Geld as it un-
dergoes quasiperiodic motion in the expanding universe,
and compute the resulting e8'ective equation of state of
the inflaton stress-energy.

Consider the chaotic inHation scenario based on the
scalar (inflaton) field dynamics. The Lagrangian of the
model is

with the inflaton field potential

V(~) = ~u' 'I~I' (2)

where q is an arbitrary positive power. We are working
in the standard system of units in which h = c = 1, and
M~ denotes the Planck mass.

The equations of motion for a homogeneous isotropic
universe and for a homogeneous scalar Geld look like

H'+ —,= M, [,'~'+V(~)la2 3M~

P + 3Hj + V'(p) = 0,
where H—:a/a is the Hubble parameter, v = 0, +1 cor-
responds to difFerent signs of spatial curvature, overdots
denote derivatives with respect to the cosmological time
t, and the prime denotes a derivative with respect to p.

From Eq. (4) it follows that

p=a
~

const— V'(p)asdt
~

This equation describes both the rapid evolution of p,
for which y oc a, and the regime of slow rolling down
during inflation, when &p = —(1/3H) V'(p).

According to the inflation scenario, during inflation the
scalar field p is rolling down the slope of its potential from
its relatively large value towards its minimum. The con-
ditions for slow rolling and for inflation are, respectively,

I@I «3HI~I (6)

/Hi « H'.

[O'V(p)]" « 2 QV(p)

[V'(v)] « 2 V (p) .

For the scalar field potential (2) these two conditions be-
come, respectively,

2 )) &I&
(p )) M~,

2

24vr

Note that conditions (10) and (ll) are essentially the
same.

As the scalar field evolves towards its smaller values,

During inflation the term K/a in the left-hand side of
Eq. (3) soon becomes insignificant, and the conditions
(6) and (7) read, respectively,
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the conditions (10) and (ll) cease to be valid, and a
new regime for the scalar field begins, namely, the regime
of quasiperiodic evolution with decaying amplitude. To
describe this new cosmological period, it is convenient to
rewrite the system of Eqs. (3) and (4) (with K=O) as
follows:

p' = —6H [p —V(p)], (21)

and taking the average of both sides, we get

(13) over the time period T of quasiperiodic motion of p.
Rewriting (13) in accord with (14) as

Sa
H = 2p,

P
(12) Ap(T) 6

H [p —V(p)]dt,
0

(22)

p = —3H(p )

where

p = ,'i'+ V—(v) (i4)

v(, (t) (15)

we can present the evolution of the scalar field in the
form

is the scalar field energy density. Introducing the positive
value po(t) by the relation Ap(T) 6

T T [p —V(~)]«

where H and p in (23) and below denote the correspond-
ing averaged values. The integral in (23) can be evaluated
as

where Ap(T) is the change of p over the time period T.
Now take into account that according to (20) and to the
equations (15) and (12) the values po(t), p(t), and H(t)
change only insignificantly during one period of oscilla-
tion of the p field. This enables us to replace all variables
except p under the integral in (22) by their averaged val-
ues. We will have then, to a good approximation,

V (t) = po(t) cos W(t)dt,

where W(t) is some unknown function of time. Note that
the representation (16) for the scalar field evolution with
yo defined by (15) is always possible. Using Eqs. (2)
and (12)—(15), one can then derive the following exact
expression for the function W(t):

2[p —V(V)] ( 6Hy V((p) l
1 + 1 — . (17)

The signs "+" and "—"correspond, respectively, to the
cases y & 0 and p ( 0. The second term in the large
parentheses in (17) is much less than unity if

T o J'
~ dry/Qp —V(p)

2 f;.«'(~)«/V'p —V(v)

f .d~/v'p —V(~)

(24)

In (24) we took into account the relation (14), integrated
in the numerator by parts, and made use of Eq. (2). In
the approximation considered we can replace the finite
difference expression on the left-hand side of (23) by the
derivative. Equation (23) then becomes

6q
p ~ ~p/+2 (25)

This condition is just the opposite of (10) and (11). When
(18) is valid, the expression (17) for W(t) acquires the
simple approximate form

2[p —V(v)]
'Po V'

All the values in (25) are now to be regarded as averaged
in the sense described above. Equation (25) is valid on
time scales large compared to the period of quasioscilla-
tions of p(t). This implies the following effective equation
of state for the matter described by the scalar field y:

and, in addition, the following condition becomes valid:
g —2

P = +2P. (26)

l~o/«I «W (20)

which allows us to regard the evolution of p(t) as
quasiperiodic with slowly decaying amplitude po(t).
Henceforth we assume that the condition (18) [hence also
(19) and (20)] is satisfied.

Our aim now will be to derive approximate evolution
equations for the values p(t) and yo(t) under the con-
dition (18). First we average the equation of motion

6
po = — Hpo ./+2 (27)

In particular, for the most interesting cases q = 2
(quadratic potential) and q = 4 (quartic potential) we
obtain, respectively, p = 0 (dust) and p = p/3 (radia-
tion).

Using the definition (15) we i.mznediately obtain the
approximate equation for the evolution of the value yo(t),
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III. PARTICLE PRODUCTION: BORN
APPROXIMATION iii2x ——

~ o') P„'+ Ii')
n=l n=l

(36)

In this section we will study the process of particle
production by the rapidly oscillating inflaton field. We
take the interaction Lagrangian to be

Remembering the expansions (29) and (30) we can put
the sums in the last expressions into the following form:

I'-t = fv—A —(~a+ ~v')x', (28) ) (p„n~) = 2((p ),
n=l

(37)

rp(t) = ) p cos(nut),
n=l

(29)

where vP and it describe spinor particles and y describes
scalar particles with corresponding masses my and m~,
f and h are dimensionless coupling constants, and o is a
coupling constant of dimension of mass. We will treat the
scalar field p as a classical external field. In this section
we will employ ordinary perturbation theory in coupling
constants, that is, we will work in the Born approxima-
tion. To calculate the rate of particle production we first
develop the quasiperiodic evolution of the scalar field p
into harmonics

).~.' = 2(V'),
n=l

(38)

).(.' = 2((~' —P')')
n=l

where the brackets (. ) denote the average over qua-
sioscillations of the scalar field p(t). These average val-
ues in the expressions (37)—(39) can be estimated in ex-
actly the same manner in which Eq. (24) is derived.
We obtain, finally, the following relations for the particle
production rates:

y (t) = @2+) („cos(2n~t),
n=l

(30)

where the value p2 = p2o/2 which is slowly varying with
time is p averaged over the rapid oscillations of the
scalar field p. p and ( are amplitudes which are slowly
varying with time, and

where

f'
«Z~ q+2

2 2 2 4'to2x = —(c~o' (po + c+h (po)8'

(40)

(41)

T pp
(31)

c= ~~2
1 —x&

(32)

is the leading frequency, also slowly varying with time,
related to the period T of the oscillations of the field y.
The constant c in (31) is of order 1, and is given by

x dx

i gl —x&

' (x2 —c2)2dx

Ql —x&

dx

, gl —z&
'

i —x&
(43)

in the case of a scalar field potential given by (2). To
derive the estimate (31) we made use of the relation (14).

Assuming the condition (18), it follows that the oscil-
lation period of p is small compared to the Hubble time,

H((u.
cr t'~ l'f', h, —«

I

—
I

Fo

iso�)

(44)

are constants of order unity.
Higher order contributions to the particle production

rates (40) and (41) will be negligible if

The last condition allows us to disregard the efFect of
cosmological expansion in evaluating particle production
rates. We will also assume that particle masses and the
coupling constant h are sufIiciently small, so that

m+, m +hy2 ((u
The rates of particle production, that is, the total num-

ber of pairs produced per unit volume and unit time are
then given in first-order perturbation theory in coupling
constants f, a, and h by the following relations:

Hence, our assumption (34) for the smallness of the cou-
pling constant h is justified since p2 go~/2. We will see
below what the conditions (44) imply for the concrete
inflaton potentials.

Equations (40) and (41) enable us to estimate the en-
ergy density production in the form of @, vP, and y par-
ticles created. To do this, note that pairs of particles
produced have average energy of the order u, if we rea-
sonably assume that the sums on the right-hand sides of
(35) and (36) rapidly converge. Then the equation for
p&, the particle energy density produced, can be written
as follows:

tUyy — ) (I'p~ncai)

n=l p„(production) = (I'y + I'z) p, (45)
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g(cut) = 2cry+ 2h((p —(p2) . (52)

is the contribution corresponding to the production of
fermionic particles, and

(47)

is the contribution corresponding to the production of
scalar particles y. Here and below we denote by the
symbol O(l) a constant of order unity. The values I ~
and I'z can be interpreted as the "p-particle" decay rates
in corresponding decay channels.

IV. PARTICI E PB.QDUCTION: PAB.AMETB.IC
B.ESQNANCE

The expressions {45)—{47) for the particle energy den-
sity prod, uction rates have been obtained in first-order
Born approximation, and. in this form they have been
used in all the seminal papers on reheating. However, as
has been shown in [10], this approximation does not take
appropriate account of the parametric resonance phe-
nomena which take place during the oscillation period
of the scalar field p. Parametric resonance effects can be
shown to be insignificant for fermionic fields [ll]. The es-
timate (46) for fermion production made in the preceding
section thus remains valid. However, the question of the
parametric resonance effect for the scalar field. y has to
be considered and this will be the aim of this section. We
will show that the resonance occurs when the frequency
uI, of the quantum field mode is equal to half-integer mul-
tiples of the in8ation frequency, u&~ = [(n/2)cu]2. This
results in exponentially enhanced production of particles
in narrow resonance bands, at rates which are computed
below.

The evolution of a particular mode y@ of the quantum
scalar field g in the presence of the quickly oscillating
classical scalar field &p with the interaction (28) is de-
scribed by the following equation:

gk+3Hyi, + (k +m +20.(p+2hrp )yg = 0, (48)

where k = k/a is the physical wave number of the mode
under consideration and A; is the comoving number.

Performing the transformation

+k
Xk

G

one obtains from Eq. (48) the following equation for the
function YA, '.

The function g{wt) is to a good approximation a 2vr/u-
periodic function of time t with two leading frequencies
w and 2u, as can be seen from (52) and the expansions
(29) and (30). We will regard this function as a small
perturbation in Eq. (50), and to be able to do this we
require the condition

20po+ hp (( uI, , (53)

which we will assume to be valid.
The time dependence of the coefficients in Eqs. (48)

and (50) will lead to y-particle production which can
be described by the standard Bogolyubov transformation
technique. The problem consists in finding the solution
to Eq. (50) with initial conditions corresponding to the
initial vacuum state and then evaluating the Bogolyubov
transformation coefficients. We expect that for Eq. (50)
the parametric resonance efFect will be dominant; hence
we are going to study this effect in detail.

Prom the general theory of parametric resonance (see
Appendix A for details ) one knows that parainetric reso-
nance occurs for Eq. (50) for certain values of the frequen-
cies uj, . Namely, the resonance in the lowest frequency
resonance band occurs f'or those values of cuI, for which

(54)

where n is an integer and g is the amplitud. e of the nth
Pourier harmonic of the function g(ut). Of course, for
such a conclusion to be valid in our case when the fre-
quencies uA, and w depend on time we must be sure that
these frequencies change with time slowly as compared
to their own values, that is,

QADI

(d (( (dg& M
4)A. (d

(55)

But this condition immediately follows from the esti-
mates (20), (33), and from (53) if we also take the re-
lation (54) into account. Note that condition (53) for wg

in the resonance band coincides with the conditions (44)
on the validity of Born approximation.

In this paper we will consider only resonance in the
lowest resonance frequency band for each Fourier har-
monic of the function g as given by Eq. (54). The ef-
fects of higher resonance bands, as is well known, are of
higher order in the amplitudes ~g ~

which we assumed
to be small. Hence we expect these effects to be less
eKcient.

Yg + [(u„(t) + g(art)]Yg ——0, (50)

where

(u„(t) = k + m„—4H —2H+ 2h&p2

In Appendix A we explicitly introduced a small dimension-
less parameter e. In the main text we have absorbed e into
the de6nition of g.
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~1, —k = m —-H —-H+ 26(p (((u2 2 2 9 2 3 2 2
X 2 (56)

It then follows from Eq. (54) that

k y) m —-H —-H + 2h, p2

for the resonance values of k . This means that the red-
shift of the frequency wA, due to the expansion of the
universe is, to a good approximation,

Prom the conditions (20), (33), (34), and (53) it also
follows that part of the expression (51) satisfies

Denote by w„, the resonance frequency nu/2 and. by
Auj, denote the difI'erence uI, —w, , Both frequencies u„,
and wk change with time. In a small time bt the shift be-
tween these frequencies will be bu = IdAurk/dt & „—oA.
Hence a new region in phase space of volume w„,Bur/27r~
will be filled with particles. The average number of parti-
cles in every state in this phase space region will be given
by Nk and each particle will have energy u„,. Then tak-
ing the sum over all parametric resonance bands [with
various numbers n in (54)] we can write down the equa-
tion for the energy density p~ of the scalar particles pro-
duced in the following form:

(ug(t) oc k oc a '(t) . (58) px (resonance production)

Due to the condition (33) we can neglect this cosmo-
logical redshift on the time scale of the scalar field p
oscillations. The mean occupation numbers for the gen-
erated y particles are then given by the Bogolyubov co-
efficients Pq as K~ = IPqI and the expression for them
can be approximately written as follows (see Appendix
B for derivation )

NI, sinh p+dt
I (59)

where

s+ = v'I~- I' —&.'
AM

(60)

is the eigenvalue of the growing resonance mode, and L
is given by (54).

The approximation (59) is valid only if we can treat the
value p+ as adiabatic. For our purposes it is sufIicient
to consider values of p+ close to the resonance (when
A„= 0) and the variation of p+ with time is mostly due
to the expansion of the universe. Then the adiabaticity
condition [see Eq. (B31)] will be as follows:

3, dLQJIc

27(
all resonance bands &4JIs =0

p„= 4Hp„+ (r-„+I i- ~)p,
where

p(res)
27' p all resonance bands

~res~res
dC A4) g —0

where N, , is the maximal value of %k, for the current
resonance value of k, achieved after the corresponding
mode has passed through the resonance band and has
been amplified.

Under condition (34) particles produced will be ultra-
relativistic and hence their contribution to the energy
density will decrease due to the cosmological expansion.
Taking this process also into account we are able to write
down the following complete equation for the evolution of
the energy density p„of the particles produced (including
the contribution from fermions):

(61)

As time goes on, the mode with the particular wave
number k gets out of the resonance band, and the value
Ni, ceases to grow. The reason for the frequency u~ (ini-
tially in resonance) to get out of the resonance band is
that the redshift evolution (58) of the frequency mg is
diBerent from the evolution of the leading frequency ~
and hence the resonance frequency nu/2 is continuously
passing through the spectrum of frequencies wA, of the
modes of the scalar field y. (In the case of the Ap po-
tential, the value ~ does redshift at the same rate, and
one has to take into account the back reaction of the cre-
ated particles to determine this frequency shift; see Sec.
V.)

V. CASE OF POTENTIAL V(rp) = A~

In this case we have from (31)

w = c~A&po, (65)

plays the role analogous to that of I'z in (45). The values
ofl'xi"'l given by (64) and I x given by (47) are to be com-
pared in order to make conclusions about the significance
of the parametric resonance for the process of scalar par-
ticle production. In what follows we consider two impor-
tant cases of the inflaton potential V(p), namely, quartic
and quadratic potentials.

We must use the expression (B32) for the number of par-
ticles produced, because in our case the value p+ varies vrith
time.

where the constant c is given by (32) with q = 4. The
resonance frequency ~„, is thus proportional to pG and
by virtue of (27) in the absence of back reaction of the
particle production process on the scalar field p we would
have

—l
~res CX:
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As we also have the condition (58) this would mean that
the resonance amplification takes place for all times in the
same wave bands, which satisfy the condition (54). How-
ever, due to the energy loss due to particle production,
the scalar field amplitude yo, and hence the frequency
w„„will decrease more rapidly than given by (66). We
see that in order to make correct estimates of particle
production one has to take into account back reaction on
the inHaton evolution.

Let us then consider back reaction of the particle pro-
duction process on the evolution of the scalar Beld y.
Since particle production is a random quantum mechani-
cal phenomenon, the change in the evolution of the scalar
BeM p will be random. We can picture the back reaction
as leading to abrupt changes in the state of the scalar
Beld at those random moments of time at which parti-
cles are produced. On suKciently large time scales, on
which many particles are produced, this change will ex-
hibit regular features, and it is these features which we
are to determine.

The evolution of the scalar field y can be described
by two parameters, namely, the scalar Beld energy den-
sity p and the frequency ~ of its quasioscillations. In
the absence of back reaction both these parameters are
changing slowly with time, when compared to the time
scale T = 2mjw of the quasioscillations. The vahie u is
directly related. to the energy density through the rela-
tion (31). We find it possible to describe the state of
the scalar field in terms of these two parameters also if
we take the back reaction mentioned above into account.
Indeed, it is always possible to speak of the scalar Beld
energy density. As far as its quasioscillation frequency
is concerned, we note that its very existence is necessary
for particle production, with rates given by (40) and (41),
or with average numbers (59) in the case of parametric
resonance.

Also note that on the quasioscillation time scale there
can be but few particles produced (this fairly general
statement follows from the standard analysis of transi-
tion amplitudes). Hence random moments of the abrupt
changes in the scalar Beld state will be time separated
on average by more than one scalar Beld quasioscillation
period. Between these moments of abrupt changes the
scalar Beld is evolving unperturbed. From this it follows
that we can assume the validity of the relation (31) be-
tween the quasioscillation frequency u and the energy
density p.

To determine in the most simple way the changes in the
evolution of the scalar Beld energy density p w'e can apply
the energy conservation law. The energy is transferred
from the scalar Beld p to the particles produced. Hence,
given the energy production rate (63) of the latter, we
thereby know the energy loss of the scalar field p. The
equation for the in8aton energy density will then be

Now taking (58) and (65) into account we will obtain the
following expression for the time derivative factor in (62):

i (I I (res)
)

Accpg —0
(69)

and from Eq. (64) we then obtain

5.
all resonance bands

. (70)

It is very remarkable that in spite of all the details
of the interaction between the Belds y and y the maxi-
mal occupation number mean values depend through (70)
only on the resonance frequencies u, , in di8'erent reso-
nance bands. This significant feature of the quartic in-
Haton potential makes the total analysis rather simple.

It remains to estimate the value I'~' ' . The expression
for Ng is given by (59) where the integration in the argu-
ment of the hyperbolic sine is taken over the time during
which resonance is taking place for the mode with the
wave number k. In terms of the value Awk ——wI, —~, „
the expression (60) for p+ can be rewritten as follows:

1
P+ =

2&res
~gn~ +~k(+~k + 2~res) (71)

(g„I/2~, ,
p+ dt-

~gn I/2~res 241

X
(I'~ + r,'"')

(I'~ + I'x"')~,'..
[g„[2

' (F.+ F.'-))-;..

lg-I' —&~&(2~- )'

Ql —2:2dx

(72)

In deriving (72) we considered slowly changing variables
as constants. Then the expression (59) for N„, becomes

N„, sinh
vr fg„/'

&2(l'~+ I'x" )~;..)
(73)

Substituting this expression for N„, into (70) we obtain
the following implicit expression for the value I'~ ':

Then using (69) and taking into account the smallness of
the value ~g~~ as compared to w„, [this follows from the
relations (52) and (53)] we can estimate the integral in
the exponent of (59) as follows:

p = —(4II + I'g + I'l"')
)p,

w'here I'z '
given by (64). From Eq. (2) with q = 4 and

from (15) it then follows

all resonance bands l 2(Fg + I'xl' '))~s„)

[H + —,'(r„+ r&" ) )]~ (68)
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( p(res)
x (75)

Typically one of the terms, say of the nth resonance band
dominates in the sum in the left-hand side of (74). In the
case (75) I'x"' is determined by this dominant term as
follows:

(„,) ir~g„~', (327r'pb
res 0 res )

(76)

Two of the Fourier harmonics of the function g given
by (52) will be of appreciable value, namely,

Consider first the case when energy production of
scalar particles dominates over that of fermions so that

A- &0-" (85)

they are extremely large. Hence, for the inflaton field
with the potential Ap with small A, in the domain of
applicability of perturbation theory [given by (44)], para-
metric resonance efFects strongly dominate over the usual
Born approximation estimates, so that the latter repre-
sent a serious underestimation of the particle production
rate.

Let us proceed further and estimate the possible re-
heating temperature for the model considered. The equa-
tion for the energy density of the particles produced is
(63). We should take into account also Eq. (67), modify
Eq. (12) as follows:

(d
~g,

~

= ~p, (wit;
2

(77)
(86)

h y20
Ig21 = ' (with ~...= ~) .

2

If the contribution from n=1 is dominant in (74) (that
is, if po & o'/6) then from (76) and (77) and using the
expression (65) for w and the explicit expression for the
inflaton energy density p = Ago, we get

for |po & — (79)

and then solve the system of equations (63), (67), and
(86) with initial condition pz ——0 at the moment of the
end of inflation. Then the maximal value achieved in the
course of evolution by p„would determine the reheating
temperature. The system of equations mentioned can
be solved exactly if we use the condition (75) to neglect
I'y and the expressions (79) or (81) for I'z'" . In the case
(79) the solution will be

p=po~1 — (e —1)
~

( I'p

)

In this case the adiabaticity condition (61) reads and in the case (81) the solution is

(80) r,p=pp~1+ (e —1)
~4Hp j (88)

If the contribution from n = 2 is dominant in (74) then
from (76) and (78) we in a similar way obtain

f» po & — (81)(...) «', f'32~'l a
4c3W»2

where I'0 and Ho are the initial values of I'z' ' and H,
respectively, po and ao are the initial values of the total
energy density and the scale factor, and r = ln(a/ao). In
both cases (87) and (88) the solution for p„ is given by

In this case the adiabaticity condition (61) implies P =P~ P. (89)

h
0&&M (82)

Until the condition p„& p holds, the solutions (87)
and (88) can be approximately written as

According to the note made at the end of the previous

section, the value (79) and (81) for 1x are to be com-
pared to the values of I'z in the corresponding cases. The
expression for I'x is given by (47). Calculating the ratios

of I'z' ' to I'~ in the two cases discussed just above we
obtain

f 1,(res)

P = Po 12 ( H
r, )
Hp)

(90)

r,("' 0
ln '~

~

forgo& —.
c ( c (84)

We see that these ratios look similar to two cases con-
sidered, and for typical values of the inflaton coupling
constant [1]

The value of the reheating temperature T~ will depend
also on the rates of particle decay and scattering, the pro-
cesses which lead to eventual thermalization. If all scattering
processes are strongly suppressed (this need not be the case
since the self-coupling constant of the y field is not necessarily
small), then TR could be many orders of magnitude smaller
than what would be inferred from the maximal value of the
energy density p„. In this paper we do not discuss the theory
of thermalization.
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f 1,(res)

p ~ p ] +
4

I
H

r, )
Hp)

respectively.
The solutions obtained determine the maximal value

achieved by }pz. Using the expressions (89)—(91) it is easy
to see that this value is achieved as soon as the condition

(93) gives the minimum possible value for the infiaton
Geld amplitude po at the moment of maximal p„. We
stress again that for the values of pp obeying (93) the con-

dition 4H & I'„' ' holds and reheating is extremely ef-
fective. To estimate the numerical value of the threshold
(93), note that according to the conditions (44) (which
we remember to be necessary in order that perturbation
theory is valid) we have the condition 6 « A. So taking
for example

P(1'&s) ) 4H
10

6
A

(98)
becomes valid. After this particle creation proceeds very
efI'ectively and the inflaton Geld loses all its energy in
less than one Hubble time. We shall therefore use the
condition (92) to estimate the maximal value of p„ in
various cases. First, assume that this value is achieved
in the region of pp & o/h. Then using the expression

(81) for I'z"' we obtain from (92)

t'tr) ', 1
&pp&10 MJ

~

—
~

ln
iA) A'

and taking into account (85) we will get from (93)

yo &10 M~. (gg)

The maximal value of p„ is estimated from the condi-
tion that it is of the order of p at the moment when
the condition (92) is first achieved. If we assume that
thermalization of the particles created occurs soon after
their energy density p„achieves its maximum, than the
reheating temperature T,h is estimated using the relation

where we also used that A is small to simplify the log-
arithmic factor. Now', the condition pp & 0'/h assumed
above will read Finally we obtain

+rh —Pp
i/4 (100)

o &10 M~6
~

—
~

ln
f t}'}', 1

tA) A
(94) Z } A ~ (pp ]0

A
(101)

Hence, if the condition (94) is valid, the value of the
inflaton Geld amplitude po at the moment of maximal p„
is given by the right-hand side of (93). Note that the
adiabaticity condition (82) is valid for the values of pp
given by (93) since the ratio h/A has to be small according
to the conditions (44).

If the condition (94) is not valid then the maximal
value of p„ is achieved when pp is in the region &pp & o'/6
and we must use the expression (79) for I'zy. In this case
from (92) we obtain the estimate

1/3 31
pp +

( ln

In case of the values (85) and (98) for the couplings we
get

T,h ~ 10 M~ 10 GeV. (1o2)

Actually, in the case of slow thermalization the reheating
temperature is lower than given by (102).

Now let us see what our condition (75) means. In the
region pp & a'/6 using the expressions (46) and (81) we
obtain the condition for the coupling f (again simplify-
ing the logarithmic factor by using the smallness of the
coupling constant A),

and the condition yp & o/h, would imply, as it should,
the opposite of (94), namely,

f & O(10)
~

—
~

ln
fh'} ', 1

},A) A' (103)

h1, 1
a &10 M}h —

~

ln
A) A

In this case the last inequality together with (95) leads
to the estimate

which does not depend on the value of po. For the val-
ues (98) of the ratio h/A the condition (103) is not very
restrictive.

In the region pp & 0 /h using expression (79) we obtain
from (75) the estimate

Vp&1O 'M}
I

—
~

ln '—
}A) A

(97)

for the boundary value of po at which efFective particle
creation starts.

Due to the conditions (44) the adiabaticity condition
(80) can again be seen to be valid for the values (95) of
po.

We see that the expression in the right-hand. side of

f' «(10')—,I—
A~ (yp) A

(1o4)

which depends on the value of po but certainly is satisfied
for pp sufficiently small. For the condition (104) to be
valid for our estimate (95) of the inflaton field amplitude
at the moment of maximal p„, the coupling f is to be
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2/3
f' & O(10')

I I

ln
~Any

(1o5)

Thus, to conclude this part, if the value cr satisfies (94)
and the coupling f satisfies (103) then the value of the
inflaton field amplitude pg at the moment of maximal
value of p„ is given by the right-hand side of (93). If the
value cr satisfies (96) and the coupling f satisfies (105)
then the value of the inflaton field amplitude yo at the
same moment is given by the right-hand side of (95) and
satisfies (97). In both cases the maximal reheating tem-
perature is given by (101), with the numerical estimates
(102) for the coupling values (85) and (98).

If neither of the two mutual conditions just mentioned
holds then at the moment of maximal pz the condition
(75) is not valid, and the reheating temperature is de-
termined by fermionic particle production. In this latter
case at the moment of maximal pz we have

It is useful to compare this value of I'~' ' to the value
of I'„given by (47). To do this, note that mainly two
resonance bands contribute to the sum (109), namely,
those given by (77) and (78). Therefore we can write

r(0~0) r(T88)
( ) + r(TBs) (h) (11o)

where I'z"' depends only on the coupling 0 and I'2' '
only on the coupling h. These two terms in the sum (110)
correspond to the two terms in the expression (47) for rz.
We then rewrite the expression for I'„ in a similar way:

r, = r, (~)+ r, (h.).

Now using the expressions (46), (47), (65), (77), and (78)
we can easily estimate the ratio of each of the two terms
in (110) to its corresponding term in (111) as

I(«s) (Ix ) (106)

and in the condition (92) we should replace the value

I z"' by r~. Then using expression (46) for I @ we obtain
for the value of the inflaton Beld amplitude yo at the
moment of effective particle production the well-known
expression

where

+(res)
n —sinh x„,r„

vrIg„I2

2I geo

(112)

(113)

yo 10 f MJ

and for the possible reheating temperature we get

T,, - 10-2A'/' f2M~ .

(1o7)

(108)

r~
8m2p

all resonance bands

, /' vrIg„I2 &

42rv ~-.)
(109)

In the case (106) from Eq. (74) we obtain the following
(res)expression for I'~

We can see that parametric resonance effects for the
scalar field y would be significant in the case (106) if the
values of x given by (113) were larger than unity. This
last condition, however, can be shown to be incompatible
with the assumption that fermionic particle production
dominates at the moment of eKcient particle production.
Hence at this moment the value rx given by (47) is larger

than the resonance value I'~"') given under the conditions
considered by (109).

All the results obtained in this section for the inflaton
Beld amplitude during effective particle production can
be written in a single equation

2 2i3
yo&MJ axm10 f, lo

I I
ln

A
I M I

ln
/ h l ] 1 ( 0. ) ]/3

A) A'&M A)
(114)

from which also all the necessary inequalities between coupling constants can be easily derived. We stress once again
that for the values of po given by (114) the condition 4H & r@ + I „"' is valid so the particle production process is
very effective.

The expression for the possible temperature of reheating is then

2 2/3
T h A (pQ M~A max 10 f, 101 4 i 4 i ( ti ) i 1 / cr l i/3 1

A
(115)

It is very instructive to compare our results (114) and (115) to those which would be obtained by making use of
the Born approximation (described in Sec. III) for the scalar particle y production rates. If instead of r~("') we used
the value r~ given by (47) then we would arrive at the following expressions:

po W max 10 *f,10 A( —(,A( „( )
/'hb ' f 0.

qA)
' (M~A)

(116)



5448 Y. SHTANOV, J. TRASCHEN, AND R. BRANDENBERGER

and

$1/4 1p
—2 2 1p

—2p
(A) ' (M~A)

(117)

One can see that for the scalar particle couplings the
values (116) and (117) are smaller by an enormous factor
[A 1n(l/A)] than the corresponding correct estimates
(114) and (115).

VI. CASE OF POTENTIAL V(y) = —m

v=m, (118)

so that inflaton field oscillates with constant frequency.
The resonance frequency w„, = nu/2 will thus be con-
stant in time. For the time derivative factor in (62) we
then obtain, taking into account (58),

In this section the analysis will proceed along the same
lines as in the previous one. In the case of a quadratic
inflation potential we get from (31) aiid (32)

and (78), we will arrive at an estimate of the same form
as (112) but with diferent x

vr [g„/2

8 H(u3,
(124)

Hm2 ACTr("') =
16m y (Hms) (125)

Again we see that parametric resonance effects for the
scalar field y are significant if the values x„are large.

As usual, one of the terms in the sum (123) will dom-
inate. In the case pp ( 0/h the harmonic with n = 1
dominates, whereas for pp ) 0/h the harmonic corre-
sponding to n = 2 is more important. The relevant ex-
pressions for the amplitudes in these two cases are given
by (77) and (78).

In the case pp ( o/h we get

dL(d A

dt
(dres

Acapg —0

and from (64) we will have

(119)
and the condition of effective particle production (92) in
this case will read

(126)

p(res)
27t p all resonance bands

4
~ ~ res~res (120)

where all the relevant variables have been explained in
Sec. IV. The expressions (59) and (71) remain valid in
the case considered but the estimate analogous to (72)
will be modified as follows:

Ig~ I/2~«s

~ g„~2 —Bur 2k (2cu„,) 2

I g~ I / ~res res

1
x dL(dy

H(LPres

4H~3, Ql —x2dx = — ", (121)
vr /g„f2

—1 res

so that the occupation numbers N, , will be given by

sinh , (~ /g„/2 l
(8 H(d )

(122)

and Eq. (120) for rz'" will read

p(res)
27l p all resonance bands

4

qS H~s„

(123)

We must compare this value to the value of I'~ obtained
in the Born approximation. Writing I'z ' and I"~ in the
form (110)and (111)and using the expressions (47), (77),

As soon as particle creation begins the Hubble parameter
depends on the total energy density of the inflaton field
and of the particles created. So the value of the Hub-
ble parameter definitely exceeds the expression given by
(12) with only inflaton energy density taken into account.
This enables us to obtain the lowest possible bound on
the region of the effective particle production. If we sub-
stitute in (126) the lowest possible value for the Hubble
parameter given by (12) we will get the result, up to a
numerical factor of order 1,

3 3
(pp m m
m 0.2Mp 0.2M' (127)

(12s)

The first inequality in (128) is the condition for perturba-
tion theory to be valid; it stems from (44). The second
inequality in (128) is the criterion of large occupation
numbers of the particles produced, that is, of effective-
ness of the resonance particle production [in other terms,
it is the condition for the value xi given by (124) to be
larger than unity]. The validity of the adiabaticity con-
dition (61) in this case follows from (127) and from the
first inequality in (128).

In any case there is also another region in which the
condition (92) holds so that particle production can be

This estimate is valid only if the coupling constant o is
in the range given by
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efFective. This region is given by

yp O M~
m m3 (129}

and it can be obtained by using the first term in the ex-
pression (47) for the value I'x since parametric resonance
in this region is not efFective.

In the case opposite to the one just considered, namely,
when &po ) o jh, we obtain

(. .) Hm . „2(irhpo&
i 32Hm')

and the condition (92) will give the estimate

(131)

The lowest possible bound on the effective particle pro-
duction region in this case will be obtained if we substi-
tute the lowest passible value for H, given by (12), inta
the right-hand side. We will get

If during the particle creation process the energy den-
sity of the universe becomes dominated by the particles
produced, then the estimates for the actual values of the
inBaton field energy density at which it freezes out will
be higher than those given by (127) and (132). Such a
condition is likely to take place in the range of coupling
constants given by (128) and (133) since, as discussed
in [13], at the onset of the oscillation period of the in-
Baton, the particle production process may be very eK-
cient. In this case one must use Eqs. (126) and (131),
in which it should. be taken into account that the Hubble
parameter H is dominated by the contribution from the
particles created and, hence, is much higher then given
by Eq. (18). We note that in the range of couplings
(128) and (133), at the moment of the onset of the in-
Baton oscillations, the perturbation theory developed in
this paper breaks down. It becomes valid again when the
amplitude pp decreases sufIiciently and the conditions
(44) start to hold. The value of the Hubble parameter
in Eqs. (126) and (131), however, cannot be higher then
its value H m at the end of inBation. This allows one
to estimate also the maximal possible boundaries for the
inflaton field freezing aut which will be [13]

(
pp 3 65m m

h2M /2M (132) ln—

The theory which led to the result (132) will be self-
consistent if the coupling h, is in the range

(m)', m

(Mp) M~
(133)

(134)

then the effective reheating condition (92) in the model
with quadratic inBaton potential takes place only for the
values of po given by (129). It is easy to see that in all the
cases considered above the minimal possible "freeze-out"
energy density pp, , of the inBaton field is

4
pfreeze (135)

Again, the first inequality in (133) is the requirement that
perturbation theory be valid and the second one is the
requirement of large occupation numbers of the particles
produced. For the values of yo (132) the adiabaticity
condition (61) can be shown to hold.

We emphasize that the condition (92) in the case con-
sidered determines not the possible reheating tempera-
ture but rather the "freeze-out" boundary (127) or (132)
for the inBaton field p: below the values of pp given
by these expressions the particle creation process is in-
effective and the inBaton field energy density decrease is
dominated by the cosmological redshift rather then by
particle production. The energy density of ultrarelativis-
tic particles created decreases more rapid. ly than that
of the inflaton Geld and the universe can well become
again dominated by the inQaton field p until the con-
dition (129) is satisfied. If the couplings o and 6 are
extremely small so that

and

(137)

These estimates are just on the boundary of the applica-
bility of perturbation theory.

If interactions of the inBaton p with fermions take
place, we obtain, using Eq. (46), the estimate

rpp&10 f Mp

for the condition of effective particle production, which
coincides with the analogous estimate (107) in the case
of the potential V(y) = Ap which we cansidered in the
previous section. It can be shown, using the expression
(31) for the value ur and the expression (46) for the value
of I y, that the estimate (138) does not depend on the
power q of the inflaton potential V(p).

VII. DISCUSSION

In this paper we considered the problem of scalar par-
ticle production after inBation by a quickly oscillating in-
Baton field. We were using the framework of the chaotic
inBation scenario with quartic and. quadratic inQaton po-
tentials, and we considered linear and quadratic coupling
of the inflaton field &p to a quantum scalar field y [see
formula (28) for the interaction Lagrangian]. The parti-
cle production eÃect has been studied using the standard
technique of Bogolyubov transformations. Specific atten-
tion has been paid to parametric resonance phenomena
nomena which take place in the presence of a quickly
oscillating inBaton field.

We have found that in the region of applicability of
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perturbation theory [when inequalities (44) are valid] the
eKects of parametric resonance are crucial, and estimates
based on the Grst-order Born approximation are often not
correct.

In the case of the quartic in8aton potential V(Ip)
Ay, particle production is very efFicient for any type of
coupling between the inBaton Geld and the scalar Geld

g even for small values of coupling constants. The re-
heating temperature in this case is [A ln(l/A)] times
larger than the corresponding estimates based on the
first-order Born approximation [see the expressions (115)
and (117)].

In the case of a quadratic inBaton potential the situ-
ation is more complicated. The particle production pro-
cess depends crucially on the type of coupling between
the inBaton and the scalar Geld y and on the magnitudes
of the coupling constants o and h. The theory predicts
not only the possible reheating temperature but also the
efI'ective energy density of the inBaton field "&eezing out"
below which the inBaton Geld energy density decrease is
dominated by the cosmological redshift rather than by
particle production. The inBaton, so to say, decouples
from the matter it creates. In the case of the quadratic
in8aton potential we obtained the lowest [Eqs. (127) and
(132)] and highest [Eqs. (136) and (137)]possible bound-
aries of the effective energy density of the inBaton field
when it freezes out. With an interaction linear in the in-
Baton Geld, besides these possible freeze-out boundaries
which exist for couplings in the range (128), there is also
an efFective particle production boundary (129). For an
interaction quadratic in the inHaton Geld the lowest pos-
sible freeze-out boundary (132) exists in the range (133)
of the values of coupling h, . If the couplings o and 6 are
as small as to satisfy (134) then the efFective particle pro-
duction condition I' & 4H is achieved only at the later
stages after the condition (129) starts to hold.

The situation is more complex for more complicated
potentials. For example, one may wish to consider the
inBaton potential of shape

with spontaneous symmetry breaking at a scale g. In
the chaotic inBation scenario the inHaton field rolls from
large values of ~p~ to the mirumum of its potential. After
inBation it starts quasiperiodic motion. For values of
the amplitude yo &) g the behavior of the inBaton is as
for a Ap potential, and particle prod. uction proceeds as
described in Sec. V. But as soon as the magnitude of po
becomes close to g the dynamics changes and the inBaton
field starts oscillating around one of the minima of its
potential at ~&p~

= g. The inflaton potential in the vicinity
of its minimum can be approximated as quadratic; hence
particle production (freeze-out) will be described by the
theory of Sec. VI.

In parallel to our own work, Kofman, Linde, and
Starobinsky have also been working on these issues for
several years. Their results were recently summarized in
Ref. [13]. While our paper deals only with the case when
the conditions (44) hold and perturbation theory in the
inBaton couplings to the other Gelds is valid, both the

V(y) = 2m (p + —(p (140)

coupled to a second scalar field y, then —calculated in the
Hartree approximation —quantum corrections lead to the
following correction to the in8aton mass (see, e.g. , [14]):

cases (44) and opposite to (44) are considered in [13].
The resonance frequency bandwidth can be shown to be
relatively narrow in the case (44), and broad in the case
opposite to (44), so these two cases are called in [13] "nar-
row" and "broad" resonance cases, respectively. In the
case of broad resonance, higher resonance bands domi-
nate the contribution to the particle production. After
the inBaton Geld amplitude decreases sufIiciently one en-
ters into the regime of narrow resonance which can be
accurately described by perturbation theory. The results
announced in [13] for the case of narrow resonance in gen-
eral agree with those obtained in our paper in Secs. V
and VI. There are some results for the case of broad res-
onance which we would like to compare with our results
for the narrow resonance case. In doing this we shall use
the notation of the present paper which somewhat divers
from that of [13].

In the case of quartic inBaton potential the esti-
mate of [13] Kk(t) oc exp(s ~Abbot) for the case of cou-
pling 6 = 6A (self-excitation of the inflaton, considered
in [13]) can be compared with our estimate Ny(t) oc

exp(2p+t) exp[(h/2A)~Apot] for the case of smaller
coupling (6 « A). We note that these estimates will be
numerically of the same order of magnitude if we choose
our smaller coupling to be h 2A/5. For the values
of h 0.22A our estimate (93) for the beginning of re-
heating will be of the same order as the estimate of [13]
yo & 0.005M~ in. (1/A) for h, = 6A. These estimates
show that the efI'ect of other particle production for the
values of coupling about h, & 0.3A may be larger than the
efI'ect of inBaton self-excitation. This value of 6 is on the
border of the applicability of perturbation theory. We
cannot say anything about the reheating with couplings
h & A as our perturbation theory breaks down in this
case.

If the inBaton potential is quadratic then, as previ-
ously discussed by Kofman, I inde, and Starobinsky (see
Ref. [13]), in the case of absence of in8aton coupling to
fermions and without linear (in inflaton field) coupling to
scalar particles, the inBaton Geld. will eventually decou-
ple from the rest of the matter, and the residual inBaton
oscillations may provide the (cold) dark matter of the
universe. Decoupling of the inHaton Geld occurs some-
where between the values given by the right-hand sides
of (132) (lowest possible freeze-out boundary) and (137)
(highest possible freeze-out boundary).

Our analysis has not taken into account several quan-
tum efI'ects which might be important. As stressed by
Boyanovsky et al. [14], particle production will lead to
corrections to the mass term of the inBaton. This correc-
tion enters both in the equation of motion for the inflaton
and in the equation for Huctuations. For example, in a
theory with inBaton potential
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[(~'(t) )~ —(~'(0))R]+ -,
' g'(q'(t) )

implies perturbation theory of a certain type in the small
parameter e.

The function g(z) being periodic, it can be developed
in a Fourier series as follows:

g(x) = ) g„e'"*, (A2)
where the subscript B indicates renormalized values. The
additional mass terms are not negligible (in terms of both
5 and coupling constant power counting) since they are
of the same order as the source term driving parametric
resonance.

We will postpone a careful study of these quantum ef-
fects to future work. Note, however, that the time scale
on which the terms in (141) become important is the
same on which the back reaction effects we already in-
cluded play a role. For example, the effective frequency
of infIaton oscillations changes as the infIaton amplitude
decreases, and the time scale for this change is the same
as the one on which the extra terms in (141) become
dominant. Hence we do not expect our qualitative con-
clusions to change. In particular, the importance of para-
metric resonance for the energy transfer from the homo-
geneous part of the infIaton field to other modes will per-
sist. Details like the precise time interval over which a
given mode remains in a parametric resonance instability
band might well change.
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APPENDIX A

with the amplitudes g satisfying

(A3)

With no loss of generality (for a small parameter e) we
can put go

——0 (redefining ceo if necessary). For the
following purposes it will be convenient to introduce the
phases o. as follows:

g„= ig„ie' " (A4)

Let us introduce the value 4 by the following relation:

~o=
~

—~
I

+e2 (p
kq )

where p/q is a rational noncontractible number (p and q
are integers). Equation (Al) then becomes

(pY +
~

—(u
~

Y = —e[g(~t) + A]Y .«) (A6)

The Bogolyubov method [15] consists in looking for a
solution to Eq. (A6) in the form of the following expan-
sion in powers of e:

Y = a cosg + ) e'u~'l
~

a, 8, t ~—(
q) (A7)

where

(A8)

the u~'~ are functions periodic in their second and third
arguments, a is the amplitude, and 0 is the phase of the
solution (A7). The values of a and 0 are not constant in
the Bogolyubov approach. Rather, they are functions of
time t.

We will be concerned explicitly only with the first-
order approximation in the small parameter e. For the
function u~ ~ we have

In this appendix we present necessary expressions
which describe the effect of parametric resonance in the
lowest resonance band.

Consider the equation for the function Y(t) of the fol-
lowing form

Y + [(u,
' + eg(~t)] Y = 0, (A1)

where wo and cu are constant parameters, g(x) is a 27r-

periodic function, and ~ is a small number. Our task
is to find the approximate solution to Eq. (Al) in the
first instability band of the frequencies uo. To do this we
will use the Bogolyubov method of averaging [15] which

ul'l
~

a, 0, t
~

= ) u—„(a,g)e*" '~'i,(
q)

with coefIicients u (a, g) periodic in 0.
Clearly, in the case of e = 0 the solution to (A6) will

be just the first term in the right-hand side of (A7), with
arbitrary constant amplitude a and phase 0, so in this
case we have a = 0, 9 = 0. For e g 0 according to
the Bogolyubov method we regard the values a and 0 as
functions of a and 0 and we expand these functions in
powers of e:
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a = tA(a, 0) + O(e ),

0 = ~B(a, 0) + O(e2) .

(A10)

From this expression one can see that p~ can be real only
if g, g 0, that is, if s is integer. Hence unstable growth
of the solution Y' to Eq. (A6) can take place only for the
values of A [4 is defined in (A5)]

Putting the ansatz (A7) into Eq. (A6) and using (A10),
after collecting terms of first order in e we will get the
following equation for the function u( ):

ii + I

—(d
I

u = —(g+ A)a cosy+ 2 —cdA sing(p p

kg ) g

+2 wBa—cos Q .p
g

(All)

Using the expansions (A2) and (A9) we can develop
both sides of Eq. (All) in harmonics exp(inst/q). On
the left-hand side of (All) we will have, to the zeroth
order in e,

(A18)

and the growth (decay) rate is exponential, Y'

exp(p~t), with p~ given by (A17).
For every integer s for which g, is nonzero the expres-

sion (A17) gives the growth rate of the solution Y in
the first instability band determined by (A5) and (A18).
There are also an infinite number of instability bands
whose width and growth rates are higher order in e (to
all orders of e). Relevant expressions can be obtained to
any desirable order in e by keeping track of the higher
order terms in the expansions (A7) and (A10). For the
purpose of this paper these higher order expressions are
not required.

) I

P
I I I

2 inst/q

kg) (g)
(A12)

APPENDIX B
and we see that terms with n = +p in this expansion
are equal to zero. The corresponding terms in the devel-
opment of the right-hand side of (All) should also van-
ish. These conditions allow us to determine the functions
A(a, 0) and B(a, 0). If we denote by s the number

(A13)

The aim of this appendix is to provide necessary de-
tails of the resonance particle production eKect studied in
Sec. III of this paper, in particular, to derive the formula
(60). We first consider the general problem of a harmonic
oscillator with time-dependent frequency, and after that
the problem of resonant scalar particle production.

then the expressions for these functions will look as fol-
lows:

1. Harmonic oscillator vrith time-dependent
frequency

A(a, 0) = ' sin(20 —n.),

1
B(a, 0) = [4 + Ig, l

cos(20 —n. )],
(A14)

Consider an oscillator with coordinate Q and conjugate
momentum P, whose frequency 0 depends on time so
that the Hamiltonian is

with the phases n, defined in (A4) for s integer. The
expressions (A14) are valid for arbitrary s, in the case
of s noninteger we should simply put g, to zero, and the
(unspecified) value of n, is of no importance.

If we make the change of variables

x=acos 0 ——'

'R = ,'[P'+ 0'(t—)Q'] .

For a quantum oscillator the values Q and P are Her-
mitian operators with standard commutation relations
(we put 5 = 1)

[Q, P] =i.

y=asin 0 ——'
(A15)

then the system (A10) in terms of the new variables 2:

and y will look as follows:

In the Schrodinger representation, these operators are
time independent.

Our aim will be to go to a convenient time-dependent
frame in Hilbert space, in which the Hamiltonian (Bl)
is diagonal at every moment of time. To do this define
time-dependent operators a(t) and at(t) by

*=
—, (lg I

—&)g+ o(")

(lg. l+ &)g+ o(") .

(A16)
ei f tidt

(OQ+ iP),
20

(B3)

To first order in e the system (A16) is linear and its
eigenvalues are

i f ti dt-
at = (QQ —iP) .

+2n

v+ = + v'lg I' —&'.
S(d

(A17)
These operators are mutually Hermitian conjugate and
have the standard commutation relations of creation-
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annihilation operators

[a, at] = 1.
At the moment t it will not be in the vacuum state lot),
annihilated by the operator a(t). Rather, there is the
following relation between the states considered:

In terms of these operators the Hamiltonian is expressed
as follows: lo, ) = exp

I la (t)]'
I lo, )

f p*(t)
l~(t)

I

(Bl1)

'8 = O(2 + ata) . (B5)

The orthonormal frame in Hilbert space which diag-
onalizes the Hamiltonian 'R is given by time-dependent
states (t) = (o.la (t)a(t)lo, ) = lp(t)l (B12)

which follows from Eqs. (B8). At the moment t the
average number of the oscillator excitation level (number
of quanta) is

I«) =, loi)
[ "(t)]"

(B6) In the Heisenberg representation, the equation of motion
for the operator Q(t) is

constructed from the time-dependent vacuum state lot)
which is annihilated by the operator a(t).

The operators a(t) and a"(t) obey the following equa-
tions of motion:

Q+0'Q= 0. (B13)

The solution to this equation can be expressed in terms
of the operators ao and ao so that

0 2i f Ddt
20 q(t) = q(-)(t)a, + q(+)(t)a', . (B14)

0 —2i f Bdt
20

(B7) Comparing this expression with Eqs. (B3) and (B8) we
can express the coeKcient P(t) in terms of Q( )(t) at the
moment of time at which the first time derivative of the
frequency 0 vanishes as follows:

so these operators vary with time only when 0 varies.
The solution to the equations (B7) can be written in
terms of constant creation and annihilation operators ao
and ao as follows:

a(t) = n(t)ap + p*(t)aot,
2. Resonance particle production

(B15)

with the complex functions cr(t) and P(t) obeying the
system of equations similar to (B7)

B 2i f Ddt~
20

Now let us turn to the issue of scalar particle cre-
ation in the external spatially homogeneous periodic field
eg(wt) whose properties were described in Appendix A
[see Eqs. (A2) —(A4)]. Remember that e is a small pa-
rameter of the perturbation theory. The scalar field op-
erator y which describes particles with mass mz can be
decomposed into spatial Fourier modes

B —2i f Ddt~ —2n~

d k

(2ir) ' (B16)

The system (B8) represents what is called the Bo-
golyubov transformation between two pairs of creation-
annihilation operators.

If the oscillator initially (at t = 0) is in the vacuum
state then its state los) is annihilated by the operator ao
and the initial conditions for the functions ct(t) and P(t)
are

(Blo)

This property is achieved by a convenient choice of the time-
dependent phase factors in the definition (B3) of the operators
a and at

so that every mode corresponds to a quantum oscillator
with Hamiltonian (Bl), complex coordinate Q = Qy, and
frequency 0 = Qk given by

k k+ g( ) (B17)

where u& ——m + k . Because the frequency OI, depends
on time, the oscillator with label k will be excited and
this means particle production. We can use all the above
expressions obtained for the generic oscillator by simply
adding a subscript k. Thus the theory of scalar parti-
cle production in the case under consideration is only a
slight modification of the oscillator formalism described
above. One only has to take into account correctly the
presence of an infinite number of oscillators labeled by
wave numbers k and interrelations between them. The
expression analogous to (Bll) relating the initial scalar
field vacuum to the vacuum at the moment of time t will
look as follows:
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oo) = exp I, ag(t)a i, (t) I
loi)

1 f P„*(t)

1~ (t)l

(»8)
where a@(t) and aA,. (t) are the time-dependent creation
and annihilation operators which diagonalize the scalar
field Hamiltonian at the moment t. From the expression
(B18) it can be seen that scalar particles are created in
pairs with opposite wave numbers k. The average number
of particles produced at the moment t in the kth mode
will be given by an expression similar to (B12) with the
only modification being the addition of the subscript k.
To determine the average number Nk of particles pro-
duced we can use the formulas (B12) and (B15). We

only need to know the solution for Q& (t). This func-( —)

tion obeys the equation

x~ ——a~ cos 0~, x2 ——a2 cos 02,

y] ——ay sin 0], y2
——a2 sin 02,

I»I'+ I»I' = I»I'+ ly2
' =1

(B26)

To lowest order in e, the expression for the value Pi, is
given by

then to first order in the small parameter e the equations
for xi 2 and yi 2 will be identical to (A16). The initial
conditions for these functions follow from (B24) as

Q„+ [(uk + eg(art)]Q„= 0, (B19)
pA,. = -'[x, + ix2+ z(yi+ iy2)] . (B27)

which is just Eq. (Al) which we considered in Appendix
A. Initial conditions for Qk stem from the initial vac-
uum conditions (Blo) and are

IQg '(o)I=, (~iQ'„' —iQ„' ')Ii=o ——o.
/20g (0)

It obeys the equation

pk = v+pk,2 (B28)

which follows from the system (A16), with p+ given by
(A17). The initial conditions for the value PA, stem from
(B26) and are

(B2o) p, (o) = o, Ip„(o)l (B29)

—(d + CA ) (B21)

The solutions to Eq. (B19) in the resonance band were
studied in Appendix A. According to (A5) we introduce
the value A by

Solving the linear system (B28) for the function Pk with
the initial conditions (B29) we obtain the expression for
the mean number of particles produced:

where we replaced p/q in advance by the half-integer s/2
according to the results of Appendix A. Now the solution
to Q&

i will be given by a complex linear combination of
solutions of type (A7), namely,

QA, = (Qi cos 'i(i + xil2 cos g2) + O(e), (B22)(—)

2(d y

1
Nk IPkl, sinh (p+t), (B3o)

where as we recall, the value p, + is given by (A17).
The analysis developed in this appendix can also be

used in the case when the value of p+ is not constant in
time but changes adiabatically. Namely, if

with
8

Wi, 2 = 2~t+Oi, 2 . (B23) Iv+ I «u+,

The initial conditions for ai 2 and Oi 2 stem from (B20): then the mean number of particles created can be ap-
proximated by

jr
ay ——a2 ——1, 02 —Oj ———

2
(B24)

If in analogy to (A15) we introduce the variables xi 2

and yq 2 as

Ni, —sinh (B32)

The constant value of the phase n defined in (A4) can be
eliminated without loss of generality by a shift of the values
of Og, g.

where the integral in the argument of the hyperbolic sine
is taken over the time during which resonance condition
(A18) is satisfied for the mode with wave number k, and
the prefactor similar to that of (B30) has been set to
unity, which is reasonable because at the edge of the
resonance wave band (when 4 lg, l) the adiabaticity
condition (B31) ceases to be valid.
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