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Monte Carlo computer simulations of Compton scattering and e e+ pair production processes,
in the ergosphere of a supermassive ( 10 M~) rotating black hole, are presented. Particles from
an accretion disk surrounding the black hole fall into the ergosphere and scatter o8' particles that
are in bound orbits. In this paper, the equations that govern the orbital trajectory of a particle
about a Kerr black hole (KBH) are used to derive analytical expressions for the conserved energy and
angular momentum of material and massless particles that have orbits not con6ned to the equatorial
plane. The escape conditions to determine whether or not a particle escapes from the potential well
of the KBH are applied to the scattered particles. The x enrose mechanism, in general, allows
rotational energy of a KBH to be extracted by scattered particles escaping from the ergosphere to
large distances from the black hole. The results of these model calculations, presented in this paper,
show that the Penrose mechanism is capable of producing the astronomically observed high energy
particles ( Gev) emitted by quasars and other active galactic nuclei (AGN). This mechanism can
extract hard x-ray and p-ray photons, from Penrose Gompton scatterings of initially low energy
UV and soft x-ray photons by target orbiting electrons in the ergosphere; such low energy infalling
photons, and high energy scattered escaping photons, are consistent with observations and popular
theoretical accretion disk, black hole models. The Penrose pair production processes (pp —+ e e+),
presented here, allow relativistic e e+ pairs to escape with energies up to 2 GeV; these pairs are
produced when infalling low energy photons collide with bound target, highly blueshifted photons
at the photon orbit. This process may very well be the origin of the relativistic electrons inferred,
from observations, to emerge from the cores of AGN. Overall, these Penrose processes can apply to
any mass size black hole, more or less, and suggest a complete theory for the extraction of energy
from a black hole.

PACS number(s): 97.60.Lf, 95.30.Sf, 98.70.@y, 98.70.Rz

I. INTR.ODU CTIQN

The presence of black holes in nature is a widely ac-
cepted concept by the astrophysical community. In par-
ticular, they are believed to be the power source of
quasars and other active galactic nuclei (AGN), where,
in these cases, the black holes are assumed to be super-
massive (M 10 M~). Black holes have been termed
by relativists as having "no hair" [1,2]. This means the-
oretically that black holes can be described at most by
three parameters: mass, angular momentum, and elec-
tric charge. The term no hair is another way of saying
that the black hole has left no evidence as to what the
progenitor was prior to its formation we do not know,
for example, in the case of a supermassive black hole, if
it were initially a cluster of stars or a single supermas-
sive star. Smaller black holes, say 15Mo, are believed
to exist also; however, their observational detections are
diKcult.

A main reason for this difFiculty, other than the black
hole being isolated, is that hitherto we do not have a de-
veloped theory for the extraction of energy from a black
hole, a theory that should predict what features are to
be detected observationally, features that are intrinsic
to the identification of the black hole. In this paper,
I present such a theory, with emphasis on the mecha-

nism by which energy is extracted from a rotating black
hole, i.e. , the Penrose mechanism, and on comparing the
resulting energy-momentum spectra, predicted by this
model, with observations of celestial objects we believe
to be powered by black holes, in particular AGN.

I begin with a discussion of some fundamental charac-
teristics of stellar black holes. The plasma around black
holes will be in some dynamical state. Close to the black
hole, much of the plasma will presumably be accreting
into it. Spherical accretion results if the plasma has no
angular momentum; however, if the plasma initially has
angular momentum, an accretion disk forms, straddling
the equatorial plane of the event horizon. If the black
hole has angular momentum, i.e. , rotation, referred to
as a Kerr black hole (KBH), particles from the accretion
disk fail into a region called the ergosphere (meaning en-
ergy sphere), before reaching the event horizon.

A mechanism, suggested by Penrose [3], permits rota-
tional energy to be extracted from a KBH. The classical
Penrose process utilizes the existence of retrograde parti-
cle orbits (with respect to the rotation of the KBH) in the
ergosphere, for which the energy, as would be measured
by an observer at infinity (far away from the KBH), is
negative [3,4]. Such orbits do not come out to infinity,
because if they did, an observer there would measure a
negative energy, which is physically impossible. There-
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fore, these negative energy particles never leave the er-
gosphere. However, it is possible for a particle, say pi,
that has fallen inwardly from infinity into the ergosphere
to scatter oK another particle, say p2, initially in a di-
rect orbit in the ergosphere. If the orbit of the scattering
particle p2 changes into a retrograde orbit (of negative en-

ergy), then the scattered particle pi can escape to infinity
with more mass-energy than the sum of the initial ener-
gies of pi and p2. Since the orbit of the initially bound
particle p2 is dependent on the angular momentum of
the KBH and the curvature of spacetime defined by the
mass M of the black hole, then, consequently, when p2
gives up energy to the escaping particle pi and falls into
the event horizon, the KBH loses energy in the form of
rotational energy. This can be seen in the equation for
the mass-energy of a black hole of angular momentum j,
which in geometrical units (G = c = 1) is

2
M' = M,.', + 4M.2

to 1 (0.999 & a/M & 1), a small amount of accretion
(AM/M & 0.05) through a disk quickly spins the hole
down to a limiting state o/M 0.998. Conversely, if
a/M is initially below this limiting value, accretion spins
the hole up toward it. Note that, in general, these present
calculations show that, using a larger o,/M closer to 1 has
little effect (if any) on improving the amount of energy
that can be extracted.

A Monte Carlo simulation near a KBH, similar to the
one presented in this paper, for inverse Compton scatter-
ing in the ergosphere [sometimes referred to as Penrose
Compton scattering (PCS)] was previously coinputed by
Piran and Shaham [4,8—10]. They used equatorial target
electrons to calculate emission spectra. Here, I present
energy and momentum spectra from using equatorial and
nonequatorial targets to show how emitted PCS photons
can contribute to the emission spectrum, and how they
may acquire the necessary momenta to serve as cata-
lysts for other Penrose processes, which can extract even
higher energies (Sec. IV C 2).

[5], where M;, is the irreducible mass. Since M;, can
never decrease, but can only increase or remain the same,
a decrease in the mass-energy of a KBH can only result
from a decrease in its rotational energy.

Another possible class of Penrose processes occurs
when particles already inside the ergosphere (say par-
ticles belonging to an accretion disk) undergo local rel-
ativistic scatterings [6]. Such types are investigated in
this paper. If one of the scattering particles is initially in
a bound orbit, then it is possible for the other initially
unbound scattered particle to escape to infinity with a
portion of the rotational energy of the KBH. This pro-
cess allows scattered ergospheric particles to (1) escape to
infinity with more mass-energy than they would have had
if the scattering occurred outside the ergosphere and (2)
escape to infinity with mass-energy initially trapped by
the KBH, mass-energy that possibly had no other way
of escaping, save only by processes occurring near the
horizon; otherwise, this mass-energy would eventually be
accreted onto the black hole.

In this paper, I present model calculations using the
Monte Carlo method to treat Penrose processes in the
ergosphere of a KBH: for inverse Compton scattering,
p-ray —proton pair production (pp ~ e e+p), and p-ray-
s-ray pair production (pp ~ e e+). These processes are
assumed to occur in material falling into the ergospheric
region of a rotating black hole from a surrounding accre-
tion disk. (The Monte Carlo method is a technique for
obtaining an approximate solution to certain mathemat-
ical and physical problems, characteristically involving
the replacement of a probability distribution by sample
values. } The model calculations presented in this paper
require multidimensional integrations for large distribu-
tions of particles; such integrations are best done using
a computer code based on the Monte Carlo method. For
definiteness, a canonical KBH is used, with its limiting
value n/M = 0.998, as defined in Ref. [7], in the in-
vestigation of an accretion disk around a KBH, where
a is the angular momentum per unit mass parameter of
the KBH. It is found that, if o/M is initially very close

A. Inverse Compton scattering

In the PCS process of these present model calculations,
photons are emitted from material that has fallen inward

from infinity and scatter off tangentially (equatorial or
nonequatorial) orbiting electron rings, of completely ion-

ized plasma, revolving near the event horizon. The ef-

fects of local thermal random motions superimposed on
the orbiting velocity of the electrons are also investigated,
to simulate a finite electron temperature. Now, some of
the photons, after being scattered by the electrons, even-

tually escape to infinity. An observer at infinity sees a
low-energy (in most cases & p, where p,, is the electron
rest mass-energy) photon being scattered by a direct or-

biting electron, after which the photon comes out with
a higher energy (inverse Compton scattering). Subse-

quently, the target electron may recoil to another direct
orbit of lesser energy, or the electron may be put on a
retrograde orbit of negative energy; in both cases, the
target electron gives up energy as measured by an ob-
server at infinity. However, to a particular local frame
observer this is just a normal Compton scattering pro-
cess in which the photon loses energy to the electron,
since the photon arrives at the local frame with initial
energy higher than p, . The infall of the final electron
results in an observer at infinity measuring a decrease in
the rotational energy of the KBH. This inverse Comp-
ton scattering process is difFerent from its R.at spacetime
counterpart. In the Bat spacetime process, cold photons
are heated by hot electrons to the temperature of the
electrons. In the Penrose process, which occurs in the er-

gosphere, generally, photons are heated by the rotational
energy of the black hole and the curvature of spacetime

[.41.

B. y-ray —proton pair production

The model calculations of the pp —+ e e+p process in
the ergosphere proceed along a similar path to that of the
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Compton scattering discussed above. The initial condi-
tions of the p-ray photon are basically the same as for the
PCS. Here, however, the photon collides with a proton
instead of an electron, and the p ray must have an ini-
tial energy in the local frame greater than 2m, ,c = 1.022
MeV, which is the threshold energy of the pp —+ e e+p
reaction. This is the energy needed to form an electron-
positron (e e+) pair when a p ray passes through the
Coulomb field of a nucleus of charge eZ. Note that the
negatively charged electron will be sometimes referred to
as the negatron.

The accretion disk assumed in these calculations is of
the form found to occur in Lightman's [ll] investigation
of a thin, time-dependent disk around a black hole. His
calculations showed that as time progress, density and
thermal instabilities develop in the thin disk, causing a
corona region to form. Astrophysicists call such accretion
disks thin disIr/ion corona models. The ions (p) in the
region of instability will have temperatures T„10 K,
which allow for the existence of p rays with sufFiciently
high energies, that are needed for these Penrose pair pro-
duction (PPP) processes to occur. These high energy p
rays will exist because of the following: At T„10
K, the most energetic ions will collide with one another
resulting in nuclear reactions, which create neutral pions
7r, by the process pqp2 m p~p2vr [12,13]. (The threshold
energy for this nuclear reaction is 290 MeV; therefore, at
Tp 10 K, equivalent to 100 MeV, only particles be-
longing to the high energy tail of the Maxwellian velocity
distribution will undergo such a reaction. ) A 7r subse-
quently decays into two energetic p-ray photons, with
energies 50 MeV, by the process 7ro -+ pp [13].

Now, near the event horizon, at the marginally bound
orbit (Sec. III A 1) these p rays are blueshifted by a factor

30, to energies of the order of the proton rest mass-
energy 938 MeV [14]. It has been suggested that ener-
gies up to GeV can be extracted &om a KBH by this
PPP (pp -+ e e+p) [12,15], involving these blueshifted

p rays. In this paper, I investigate what happens to the
p rays ( 50 MeV) resulting f'rom vr decays that scatter
ofF initially bound, direct orbiting protons in the ergo-
sphere, thus testing the validity of this suggested process,
i.e. , to see if this PPP process is a possible source of the
relativistic electron fluxes, inferred &om the presence of
synchrotron radiation in the observations of AGN.

[16,17]. The initial energies used in these calculations,
as measured by an observer at infinity, for the infalling
photon and the orbiting photon, E~q and E~2, are in
the following ranges: 3.5 keV& E~i & 1 MeU and
3.4 MeV& E~2 & 2.146 GeV. These ranges are consis-
tent with those produced by thin disk/ion corona mod-
els, as described above. The high energy range for E~2
is chosen based on the expected blueshift in photon en-
ergy at the photon orbit. The blueshift factor e of Eq.
(2.8d) at the photon orbit is 52. The p rays produced
in Eilek s hot accretion disk model [12,13], with energies

50 MeV, referred to in Sec. IB, can very well be seed
photons, bound at the photon orbit, for these pp —+ e e+
reactions [18]. In addition, the PCS processes of this pa-
per show that some of the scattered photons could also be
seed particles for these reactions. Moreover, these photon
collisions can occur at other radii in addition to the pho-
ton orbit, say at a turning point, thereby increasing the
probability of collision with another particle; however,
such scatterings are not considered here.

Overall, in this paper, I calculate the energy-
momentum spectra of the resulting scattered parti-
cles produced by the above-described Penrose processes.
These energy-momentum spectra are then examined and
compared with the observations of AGN. The results of
these model calculations show that the Penrose mech-
anism, occurring in the ergosphere of a supermassive
KBH, is capable of producing the necessary high energy
spectra observed from AGN. The remaining structure of
this paper is as follows. In Sec. II, I present the general
formalism, which contains properties of the Kerr metric
spacetime, the escape conditions, and the eKciency of the
Penrose mechanism. Next, the methods of these Monte
Carlo model calculations are presented in Sec. III, and
the results are presented in Sec. IV [in this Section, the
energy-momentum four-vector (or the four-momentum)
components of the scattered escaping particles are pre-
sented]. Finally, Sec. V contains a summary, a discussion
of how well these results agree with astronomical obser-
vations, in particular, of AGN, and Sec. VI contains the
conclusions with suggestions for further investigations.

II. GENERAL FORMALISM

C. p-ray~-ray pair production

This PPP process (pp -+ e e+) consists of collisions
inside the ergosphere between radially infalling photons
and circularly orbiting photons bound at the radius of
the photon orbit [see Eqs. (2.22) and (2.23)]. If we define
the energy of the infalling photon and orbiting photon
as c~i and a~2, respectively, as measured by a local ob-
server, then an e e+ pair may be created in the collision,
provided that

(1.2)

A. The Kerr metric

The Kerr metric [19], a stationary, axially symmet-
ric, asymptotically flat spacetime solution to the vacuum
Einstein field equations, describes the geometry outside
of a rotating massive body. This metric can be used to
define the spacetime separation between events near a
rotating (Kerr) black hole. The Kerr metric written in
Boyer-Lindquist coordinates [20] and in geometrical units
(G=c=1) is
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t' 2Mr ) 2 4Mar sin 0
d8 = — 1— dt dC

Z+—dr2 + gdO2

(2 2 2Marsin Ol+~r +a +. sin Od@

(2.4)

More precisely, the stationary limit is the larger root of
g«, given analytically by

(2.1a)
r=ro ——M+(M —a cos 8) i (2.5)

or, in component notation,

ds —g«dt + g&@dt d4 + g„„dr + g~~dO + g@@dC

(2.1b)

where a is the angular momentum per unit mass param-
eter and M is the mass of the black hole. Z and 4 are
defined by

4—:r —2Mr+ a (2.2)

and

Z=r +a cos 0 (2.3)

respectively. In general, the parameter a can have values
0 ( (a/M) ( 1, values which allow for the existence
of an event horizon. For a KBH, the event horizon is
located at r = r+ ——M + (M2 —a ) ~, the larger root
of the equation A = 0. When a = 0, Eq. (2.1) reduces
to the form of the Schwarzschild metric for a nonrotating
massive body. Then 4 = 0 gives the event horizon known
as the Schwarzschild or gravitational radius.

Upon approaching a KBH from infinity, a limit or a
region is reached where the angular momentum of the
KBH causes inertial frames to be dragged around in the
direction that the black hole rotates. That is, it is impos-
sible for an observer inside this so-called stationary limit
to remain at rest relative to distant observers. This limit
is characterized by the vanishing of the g«component in
Eq. (2.1):

The region between this stationary limit and the event
horizon is called the ergosphere.

Inside the ergosphere, the Kerr metric in the Boyer-
Lindquist coordinate frame (BLF) does not allow an ob-
server to be stationary (in the sense of the observer being
at rest with r, 0, 4 = const) because of the dragging
of inertial frames. Moreover, physical processes are dif-
ficult to describe in the BLF, because (1) for physical
observers inside the ergosphere, the dragging of inertial
frames becomes so severe that the time coordinate ba-
sis vector changes from timelike to spacelike and (2) the
nondiagonal Kerr metric characteristically introduces al-
gebraic complexity when raising and lowering tensor in-
dices. In order to examine physical processes inside the
ergosphere, Bardeen, Press, and Teukolsky [21] devised
a frame of reference called the local nonrotating frame
(LNRF). Observers in this frame rotate with the KBH
in such a way that the frame dragging efFect of the ro-
tating black hole is canceled as much as possible. In the
LNRF, special relativity applies since locally spacetime
has Lorentz or Bat spacetime geometry. That is, one can
use the LNRF as a convenient inertial frame to describe
physical processes inside the ergosphere.

On the other hand, it is better to use the BLF when
describing the general orbits of particles (including pho-
tons) near the KBH. The BLF admits three constants
of motion as measured by an observer at infinity [22].
In terms of the covariant components of the particles
four-momentum [P~ = (P„P~ P@ P&); (p = r, O, O, t)]
at some instant of time, the conserved quantities are

E = —Pq = total energy,
L = P@, = component of the angular momentum parallel to the symmetry axis,

and

L
Q =PC, +cos O a (p() —E )+

sin
(2.6)

where po is the rest mass-energy of the particle, which is
a trivial fourth constant of motion. The value of Q is zero
for particles whose motions are confined to the equatorial
plane. The nonzero values of Q belong to particles which
are moving in the 0 direction and jor are not confined to
the equatorial plane.

The transformation laws, for the covariant components
of a four-momentum, between the BLF and the LNRF
&», = [p. , pe, pe, p~(= —e)]; with p = q "p.;g
Minkowski metric components) read

P„=e"'pr,
Po ——e"'pe,

L = e&p~,
E = e r+(ue&p~,

p„= e "'P„,
po —e Po

pc, —e &L,
e = e "(E—(ul,),

(2.7a)
(2.7b)
(2.7c)
(2.7d)

(2.8a)

(2.8b)

(2.8c)
(2.8d)

[4], where the coefficients are found from the standard
metric valid for any stationary, axisymmetric, asymptot-
ically fiat spacetime geometry (vacuum or nonvacuum):
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ds = —e dt + e ~(dC' —ddt) + e ~'dp + e ~'d8

(2.9)

The standard metric becomes Kerr if the coefBcients are
expressed by r 3!2 —2Mri/2+ aM1/2

p / (p / —3Mp / + 2aM /2) /2
b

(2.16)
Po

(2.10a)
and

for a circular orbit at constant radius, r = r,b, where
E,b and L,b are obtained from the equations governing
the orbital trajectory of a particle about a KBH. These
conserved parameters are given by

e"=sin 0—,A

E '

P1 Z

2@2

(2.10b)

(2.11a)

(2.11b)

2Mar
A

(2.12)

where

A=(p +a) —aAsin 8,
and u gives the frame dragging velocity.

(2.13)

B. The escape conditions

—cA, (2.14)

After the scattering events, not all of the particles es-
cape to infinity. There are certain conditions that a par-
ticle must satisfy in order for it to be on an outgoing
orbit, which leads to its escape. We now take a look at
these conditions.

It is known that outside the horizon, the orbit of a
photon (or an unbound material particle with E/po ) 1),
may have one or no radial turning points for which P„=0
[4]. If E/L for that particle lies in the range

~orb Ml/2( 2 2 Ml/2pl/2 + a2)
p3/4(p3/2 3Mpl/2 + 2aM1/2)1/2 (2.17)

[21] for circular orbits confined to the equatorial plane
[Q = 0; see Eq. (2.6)], and they are given by Eqs. (A20)
and (A21) of Appendix A for nonequatorial (Q ) 0)
"spherical-like" orbits [23]. The relevant algebra to de-
termine the conserved energy and angular momentum of
Eqs. (2.16) and (2.17) for these nonequatorial spherical-
like orbits can be found in Appendix A. One of these
spherical-like orbits consists of a particle repeatedly pass-
ing through the equatorial plane while tracing out a he-
lical belt lying on a sphere at constant radius. The belt
width or the maximum and minimum latitudes that the
particle achieves increase with increasing Q, where Q is
given by Eq. (2.6). When a scattered material particle
has its energy E', as measured by an observer at infinity,
equal to E,b (the isoenergy orbit = the circular orbit of
equal energy at constant radius), the radius correspond-
ing to E,b, namely, r,b, represents a possible turning
point for that particle [9]. For photons, p,b is equal to
p~h, the radius of the photon orbit [the circular orbit of
infiinte energy per unit rest mass-energy; see Eq. (2.23)].

Looking generally at the escape conditions, there are
two. The first is this: If the particle is moving outwardly
with P„)0 at the point of emission and if it is to escape
to infinity, its angular momentum I' must be less thanI,b, or E,b must not exist. This guarantees that the
particle has no radial turning point outside the horizon
and, thus, can escape to infinity. This set of inequalities,

for a prograde or direct orbit, there will be one turning
point; otherwise, there will be none. As explained in the
next paragraph, A is defined as the E/L of the isoen-
ergy orbit at constant radii. For photons, as we shall
see later, A is directly related to the impact parameter,
which describes the trajectory of the particle as seen by
an observer at a large distance from the KBH. Particles
scattered by a local source near the KBH must have a
turning point to escape to infinity if they are scattered
inward with P & 0 (the primes indicate final conditions);
however, if the particles have P„' ) 0, a turning point
means they will be trapped.

The following explains how A must be defined in order
to determine whether or not a particle escapes to infinity.
Let E,b and L,b (the conserved orbital energy and an-
gular momentum as measured by an observer at infinity)
be defined such that

P„') 0,

E'/L' ) A or E,b does not exist,

(2.18a)

(2.18b)

is referred to as the "radial momentum condition" for es-
cape [4]. Note that the particle trajectories that do not
have turning points, i.e. , satisfying Eq. (2.18b), are inde-
pendent of the radius of emission: ingoing particles are
trapped, outgoing particles escape. On the other hand,
particle trajectories that do have turning points are de-
pendent on the radius of emission: both ingoing and out-
going particles will escape if r ) r,b,. conversely, both
ingoing and outgoing particles will be trapped if r ( r,b.
Now the second condition is this: If at the point of emis-
sion (p ) p,b) the particle is moving with P„' & 0 or
P„' ) 0, and if it has an angular momentum I' ) I,b
(guaranteeing a turning point outside the horizon), the
particle will escape to infinity. This set of inequalities,

Eorb

b
(2.15)

P„'&OorP')0, (2.19a)
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E'/L' & A at r & r.,b, (2.19b)

is called the "angular momentum condition" for escape
[see Eq. (2.14)]. If either of the two sets of conditions
Eq. (2.18) or (2.19) is satisfied, the particle will escape to
infini:ty if it is (1) a photon escaping along the equatorial
plane (photons not confined to escape along the equato-
rial plane require an additional condition, as we shall see
later) or (2) a material particle with E'/po ) 1; if, how-
ever, E'/po & 1, the material particle will be trapped by
the KBH.

In the following, we investigate specifically the escape
conditions for particles, material and massless, not con-
fined to escape along the equatorial plane: the nonequa-
torial escape conditions. It is found that the nonequa-
torial escape conditions for material particles depend on
the angular momentum parameter a, the scattered parti-
cle energy E', its azimuthal angular momentum L', and
its Q value, Q' [related to the polar angular momentum
as in Eq. (2.6)]; and these conditions depend on the pa-
rameter a and the ratio Q'/E' for scattered massless
particles. In these calculations, the nonequatorial escape
conditions for massless and material particles are em-
ployed.

where c = l. (Note that, unless for clarity, the velocity
of light is set c = 1 throughout this paper. ) In the above
equation, 6 is the impact parameter for hyperbolic orbits.
It is the distance at which a particle would pass the origin
if it were moving in ordinary Minkowski space with no
gravitational field. The radius of the photon orbit rph
is given by the root of the denominator of Eq. (2.16) or
(2.17):

(2.22)

[21]. It follows that

r~b = 2M(1+ cos[(2/3) arccos( —a/M)]), (2.23)

where, again, rph represents an unstable circular orbit.
This orbit is the innermost boundary of circular orbits
for particles. We sometimes refer to rph as the orbit
that has infinite energy and angular momentum per unit
rest mass [see Eqs. (2.16) and (2.17) with po ——0]. For
a KBH with a = 0.998M, mph 1.074M. When rph
is substituted into the ratio of Eq. (2.16) to (2.17), an
analytical expression for Aph of the photon orbit confined
to the equatorial plane can be found:

1. The photon (ov any massless pat ticle)
Arg = 2(Mrrt, )

'~ (3+ ") (2.24)

E/po ~

L/Po ~

individually go to infinity; however, their ratio goes to a
finite value [2]:

L/po 1
lim = ~ph =

~o Eo/po A&b
(2.20)

The escape conditions for photons escaping along the
equatorial plane, with Q' b

——0, and those for photons es-

caping not confined to the equatorial plane, with Q' b ) 0
are presented here separately for clarity (and for practical
purposes) only.

First, A = Aph is described for photons escaping along
the equatorial plane. In the gravitational potential well
of a KBH, Aph depends only on the angular momentum
per unit mass parameter c and is independent of the
scattered photon energy E'h. This independence occurs
because the path of a photon in a gravitational field is
governed by its direction (i.e. , its momentum) and not by
its energy. For this reason, photons that are bound to the
KBH exist only in unstable circular orbits at the radius
of the so-called photon orbit, regardless of the differences
in their energy values. Now, ordinarily, the A's are found
from Eqs. (2.15) through (2.17). But in the limit po M 0,
the quantities

[9]. This value of Azb is then substituted into the escape
conditions of Eqs. (2.18) and (2.19) to determine which
of the scattered photons escape moving in the equatorial
plane.

Now we will determine the value of A = A*b ——1/b*b,
corresponding to when the photon orbit is not confined to
the equatorial plane. The asterisks indicate nonequato-
rial confinement. In this case, the radius of the photon or-
bit [Eq. (2.23)] is substituted into the ratio of Eqs. (A20)
and (A21), and thus, the value of A*b is determined in
a manner analogous to that used for Aph of the equa-
torial photon orbit [Eq. (2.24)]. Note, the radius of the
photon orbit for nonequatorial confinement [Eq. (2.23)]
is the same as for equatorial confinement [23]. This value
of A*b is then used in the escape conditions of Eqs. (2.18)
and (2.19) for the scattered photons. However, there now
arises another independent condition for the nonexistence
of a turning point outside the event horizon that must
also be satisfied by the photon, in addition to Eq. (2.18).
This additional escape condition is sufficient to account
for those photons escaping above and below the equato-
rial plane.

This second condition depends on the Q value of the
scattered photon, Q' b, which is directly proportional to
the square of the polar coordinate angular momentum
component (P'b)e for a particle moving through the
equatorial plane of the KBH [see Eq. (2.6)]. Define

where bph is the impact parameter of the photon orbit.
In general, this impact parameter is given by ~ph E/2

ph

(Pi', b) o (2.25)

(angular momentum) Lb=
( linear momentum ) (E2 —po)i~2

[using q. (2.6)], again with Q'b and E'b being the pa-
rameters of the scattered photon; then, the additional
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condition is that

0 ( mph ( mph (2.26a)

[24], where

Qp„(Pi*,„)o
tph E42 @42

ph ph
(2.26b)

The inequalities in Eq. (2.26a) indicate that the scattered
photon must have Q'

h ) 0, and that Q*h must also be
greater than zero (requiring the existence of nonequato-
rial photon orbits about the KBH), in order to apply this
escape condition; the right-hand-side inequality implies
that a scattered photon with g'h greater than mph has a
turning point in the eo direction, at which (P h)o = 0.
From Eqs. (2.6) and (2.26b), we see that, Q"

&
——(P*&)2O

is the Q value for a photon orbiting at the radius of the
photon orbit rph, passing through the equatorial plane, in
which its path traces out a helix that repeatedly crosses
the equatorial plane, as mentioned earlier [23]. The en-
ergy E*& of Eq. (2.26b) is the conserved total energy of
the bound photon in a nonequatorial unstable orbit at
Pph as measured by an observer at infinity

Displayed in Fig. 1(a) is (P*h)e = Q*h versus the

conserved energy of the nonequatorially orbiting photon,
E*h, at the photon orbit. Note that this energy E* [see
Eq. (A20)] for nonequatorial confined circular orbits at
constant radii is the counterpart of Eq. (2.16), which
is for the equatorial confined circular orbits. It can be
shown from the algebraic equations of Appendix A that,
in general, E* has the form

75.
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and g*h are associated with the critical impact parame-
ters which separate capture from scattering orbits [24].
These impact parameters describe the trajectory of the
photon as seen by an observer at a large distance from
the KBH. The parameter Aph or Aph relates to a possible
turning point due to the conserved azimuthal component
of the angular momentum I' h, i.e. , where (P'h)„~ 0;
t/ p h relates to a p ossible tur n in g p oint due to the p o-
lar component of the angular momentum (P'h)e, i.e.,
where (P'h)~ —+ 0. A photon scattered with (P'h), ) 0
and (P'h)o g 0 must satisfy both the conditions of
Eqs. (2.18) and (2.26a), for the nonexistence of a turn-
ing point outside the horizon, in order for it to escape
to infinity. On the other hand, in addition to the escape
conditions of Eq. (2.19), a photon with (P'h), ( 0 and

E = [fi(a r M)po+ f2(a r M)Q ] (2.27)
E(Mev)

I
I

I I I ] I I

with of course po ——0 for photons, where in principle the
functions fi and f2 can be found from the algebraic rela-
tions of (A14) to (A24). Note that when Q* of Eq. (2.27)
is set equal to zero, E* = E of Eq. (2.16); see Fig. 1. An
equation similar to Eq. (2.27) exists for L*, the conserved
angular momentuin, which reduces to L of Eq. (2.17)
when Q* = 0.

Now, to find il*h of (2.26a), the radius of the photon or-
bit mph is substituted into the general expressions for the
conserved orbital energy and angular momentum, (A20)
and (A21); from these, the ratio of Eq. (2.26b) can be
evaluated. Like A~h = A~h(a) in the equatorial plane for
null geodesic orbits, it is found that A*h ——A*h(a) and
q'h ——il'h(a, M) for nonequatorial null geodesic orbits.
Moreover, for a given mass M, mph behaves in the follow-

ing manner: (1) il'h is constant for all photons orbiting
at Pph independent of the none quatorial orbiting photon
energy as well as its Q value Q'h, for KBH's of massph&

M & 10 Mo, (2) il*& varies slowly with E'h and Q*h for
mass M & 10 Mo. Note that when g*h is not constant,
the Q value of the scattered particle determines which

77p h to us e
The additional coiidition of Eq. (2.26a) should be in-

cluded with Eqs. (2.18) and (2.19) for null geodesics when
Q'h ) 0. Also, like A~h of the equatorial plane, A'h

50.

25.

L(M&V)

FIG. l. Orbital parameters of massless and material par-
ticles. Magnitude of polar coordinate angular momentum as
the bound orbit crosses the equatorial plane (= ~Q') vs the
conserved nonequatorial orbital energy: (a) (P*h)o vs E'„
at the photon orbit, r~h 1.074M. (b) (P,*)o vs E; of
an orbiting electron at rMa 1.089M (lower curve), and at
r Ms 1.2M (upper curve). Notice that as these momenta go
to zero, each of the orbital energies goes to its equatorial con-
finement value —i.e., as gQ'z m 0, %~i, —+ 0; as QQ; —+ 0,
E' —+ 0.539 MeV at GAMB, and E* —+ 0.349 MeV at rMs.
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(P'h)o P 0 at r ) r,b will escape also if Eq. (2.26a) is
not satisfied implying the existence of a turning point.
Moreover, the expressions found for the above parameters
(evaluated by methods as described above) are the follow-
ing: bah = 1/Aph = 1/A*h ——2.1109M; rl*q 0.6518 s

for M = 10 Mo and g*h ——53.402 s for M = 10 Mo,
where b~h(= b*h) is the impact parameter of Eqs. (2.20),
(2.21), and (2.24). Although A~h and A'h turned out to
be equal, they were, however, evaluated independently,
from the ratios Eq. (2.16) to (2.17) and (A20) to (A21),
respectively.

In summary, the escape conditions depend only on
A~h = A*h for equatorially confined photons (Q' h

——0),
and on both A'h and g*h for nonequatorially confined
photons (Q' h ) 0). So in general, the values found for
A*h and rl*h (by methods described above) are used in

Eqs. (2.18), (2.19), and (2.26a), for application of the
escape conditions to the scattered photons.

2. The electron (or any material particle)

fractions. In the BLF,

E1
ET + ET

ET3 abs
ET + ET

(2.28a)

(2.28b)

1
T

f
8'2 + 8'1

3p T

7 Z+ E'1

(2.29a)

(2.29b)

where E;„and E „q are the fractional parts of the total
input energy made up by the incoming particles and the
outgoing escaping particles, respectively, as measured by
a HLF observer; the absolute efIiciency e ' is defined as
shown in Eq. (2.28b). The superscript T indicates the
total energy of a distribution of particles. Each of the in-
dividual energy terms in Eq. (2.28) is the combined ener-
gies of those particular particles indicated by subscripts.
Similarly, in the laboratory frame (LF),

The escape conditions for the electrons (negatrons and
positrons) are determined from Eqs. (A20) and (A21);
these equations reduce to Eqs. (2.16) and (2.17), respec-
tively, when the Q value of the orbiting electron, Q*„ is
set equal to zero. This reduction for the conserved en-
ergy E* of an orbiting electron (see Appendix A) to its
equatorial value can be seen in Fig. 1(b). Figure 1(b) dis-

plays (P; )e = ~Q,* versus the energy E,* for nonequa-
torially orbiting electrons at the radii of rMB 1.089M
(marginally bound orbit) and rMs 1.2M (marginally
stable orbit).

The value of A = A,* of Eq. (2.15) for an orbiting elec-
tron, in the case of material particles, does depend on
the scattered particle energy, with A,* being determined
in the following manner. When the energy E' of the scat-
tered electron and Q', are substituted into Eq. (A20), the
radius r,* of the isoenergy orbit can be solved for numer-
ically. Once this radius r is known, substitution into
Eq. (A21) gives I,*. At this point, the ratio of Eq. (2.15)
can be evaluated, obtaining A,* for a particular scattered
electron.

This determined value of A* for a specific scat-
tered electron is then used in the escape conditions of
Eqs. (2.18) and (2.19), along with the condition for un-
bound orbits (E,' ) p, ), to determine whether or not the
electron escapes to infinity.

C. The e8iciency of the Penrose mechanism

Three types of efIiciencies are established: Williams's
efficiencies (W efficiencies), Piran-Shaham (PS) efficiency
[4], and absolute eKciency. We next define and derive
expressions of these eKciencies for general Penrose scat-
tering processes.

First, let the subscripts 1, 2, and 3 indicate the infalling
particle, the orbiting target particle, and the scattered
escaping particle, respectively, and define the following

where f;„and f „q are the fractional parts of the total
input energy made up by the incoming particles and the
outgoing particles, respectively, as measured by a LNRF
observer (indicated by the energy notation e).

Now, using the above fractions, the W efIiciencies are
defined as

TV
~LF

W
BLF

for,
fin

+out

~BLF
W

~LF

p T
3

p T
1

ET
J

1

(2.3Oa)

(2.3ob)

(2.30c)

and the PS efFiciency is defined by

ps Es —(Ei + E2)
)E1+E2 (2.31)

as measured in the BLF. The efIiciencies eLF and eBLF
express the total energy of the final escaping particle dis-
tribution relative to the initial infalling particle distribu-
tion, as measured by a LF observer and a BLF observer,
respectively; i.e. , eLF and eBLF give us the factor by which
the total initial energy of the infalling particle distribu-
tion is increased or decreased, by the Penrose scattering
process, in the respective frame. The eKciency e in-
directly measures the blueshift efI'ect due to the frame
dragging on the ratios of (2.30a) and (2.30b), by relat-
ing the ratio in the LF to its corresponding value in the
BLF. On the other hand, e tells whether or not rota-
tional energy was extracted from the KBH by the clas-
sical Penrose process (as discussed in Sec. I). For exam-
ple, for e ) 0, rotational energy was extracted in the
scattering event by the classical Penrose process, and for( 0, there was no energy extracted by this classical
Process; however, for cps ( 0, and with Es (the energy of
the escaping particle) greater than Ei (the initial energy
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of infalling particle), and if Es is greater than the value
it would had acquired had the scattering occurred out-
side the ergosphere or in Hat spacetime, then rotational
energy was indirectly extracted from the KBH, although
the PS eniciency does not refI.ect this. This latter process
of extracting KBH rotational energy, I have classified as
a quasi-Penrose process (Sec. IV). Note that ePs must be
evaluated separately for each scattering event (it cannot
be used as I have defined the absolute and W eKriencies
above for a distribution of scattering events). Details of
the efficiencies in (2.30) and (2.31), as they are applied
in these scattering processes, will be discussed in Sec. IV.

III. MODEL CALCULATIONS
IN THE KB.GOSPHEHE

A. Inverse Comptan scattering

f. Initial condition8 in the HLF

The initial conditions for the photons are the follow-
ing: a photon of energy Epb as measured by an observer
at infinity (i.e. , in the Bl F) is assumed to be emitted
inside the ergosphere, from the inner region of the disk
(or it may come from outside as in the case of the low

energy UV photons), and follows a null geodesic trajec-
tory before colliding with an orbiting electron at a specific
radius. Here, only incoming photons moving in the equa-
torial plane are considered. The motions of the incom-
ing photons discussed in these scattering processes are
those moving radially inward. For simplicity, the con-
ditions that the infalling photon encounters in its free
fall through the ergosphere before arriving at the des-
ignated scattering radius are ignored in these calcula-
tions. Otherwise, conditions such as the particle den-
sity in the ergosphere and radiative transfer efFects would
have to be incorporated into the calculations along the
null geodesic of the photon. It is assumed that these
conditions cause little qualitative change in the results.
The photon arrives at the radius in which the scat ter-
ing takes place with an initial covariant four-momentum
(P~b) p = [(P~i,)~, (P~i, )ci, I~i„—E~i,], as measured by an
observer at infinity. For a photon falling radially inward
along the equatorial plane, (P~i, )o = I~i, = 0. The ini-
tial energy of the photon, Epp, used in these calculations
is either monochromatic or chosen from a blackbody dis-
tribution of temperature 'I~g. To select a photon from a
blackbody distribution, a Monte Carlo sampling method
is employed [25].

The spatial distribution of the electrons is specified as
circular orbiting rings, equatorial or nonequatorial. The
equatorial orbiting rings can have superposed thermal
random velocities on each individual electron, governed
by the electron temperature T . These rings represent,
say, regions of high density in the ergosphere, analogous
to those found to form in the inner region of a time-
dependent accretion disk around a nonrotating black hole
[11].

Two radii are considered for the model electron rings:
rMs( 1.2M), the radius of the marginally stable circular

E-' = right-hand side of Eq. (2.16) (3.1)

I—' = right-hand side of Eq. (2.17),
Pe

(3.2)

respectively, as measured by an observer at infinity
[see Appendix A for the general expressions of the
above-conserved quantities which include orbits that
are nonequatorially confined, attributed to Q g 0 of
Eq. (2.6)].

2. Conditions in the L1VRS' (PCS)

a. Special parameters of the four-momenta. We first
define the general geometry used in the Kerr metric [25].
A space vector p in the LNRF relative to the BLF, at
an instant of time in the equatorial plane of the KBH
(0 = m. /2), is given by

p = p sin Oi cos Pie, + p sin Oi sin Pico + p cos Oie@,

(3.3)

where e„, e~, and e@ are the space components of a
unit four-vector tangent to the coordinate lines at the

orbit (where E/po ( 1) and rMis( 1.089M), the radius
of the marginally bound circular orbit (where E/po 1),
for a canonical KBH (a/M = 0.998). Recall that an un-
bound circular orbit is one with Ejpo ) 1: given an
infinitesimal outward perturbation, a particle in such an
orbit will escape to infinity on an asymptotically hyper-
bolic trajectory [21]. The unbound circular orbits are
circular in geometry but hyperbolic in energetics, and
they are all unstable. Similarly, the orbits at rMB are
circular in geometry, but parabolic in energetics. Note
that the outer ergosphere boundary, the photon orbit,
and the event horizon of a canonical KBH are located at
ro ——2M, rzg " 1.074M, and r+ 1.063M, respectively,
in the equatorial plane. The region between the radii
rMS and rMB represents the innermost possible perias-
trons (radial turning points) for bound unstable orbiting
particles (E/po & 1). A particle in this region, if given
a suKciently large inward perturbation, will eventually
fall through the event horizon. Moreover, rMB is the
minimum periastron of all circular orbits. Any parabolic
trajectory which penetrates to r ( rMB must plunge di-
rectly into the black hole [21].

The electrons that constitute the equatorial circular
orbiting rings about the KBH are assumed in some cases
to be cold (T, = 0 K), and in others hot (T, g 0 K). In
the case of hot electrons, a random motion is superposed.
on the orbital velocity of the target electron, chosen by
applying the Monte Carlo sampling method, simulating
a Maxwellian velocity distribution for the electrons at a
finite kinetic temperature T, [25]. The initial conserved
orbital energy and angular momentum of an electron be-
longing to a particular ring (with T = 0 K) are given

by
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event (r, 0, 4', t). This unit four-vector is an orthonormal
tetrad, i.e. , eq . e~ ———1, e„.e„= 1, e„.e~ ——0, and so
on. In other words, this unit four-vector defines the basis
vectors of a local Minkowski metric, where the directions
of the space components e, e„, and e of the unit four-
vector in the LNRF are in the same directions as e„,
ee, and e@ of the BLF, respectively, using a right-hand
rule coordinate system. Note that the upper case Greek
letters (0,4) refer to angles centered on the KBH and
the lower case letters (9, P) refer to angles centered on
the LNRF.

Next we define the geometry intrinsic to the scattering
process. This particular geometry defines a coordinate
system in the LNRF with the e, axis (which defines the
direction that the incident photon is traveling) in the
same direction as —e„of the BLF. In this geometry, the
directions of the space unit vectors e, e&, and e, of the
LNRF are in the same directions as e@, eo, and —e„of
the BLF, respectively. The vector p, as defined above,
can be expressed in this geometry by

following section. As usual, in the LF, the angles of (3.7)
are given by

[(p. ).' + (p. )8]"
(p. )~

(3.8a)

[26], and

(3.8b)

From Eq. (3.4), we can again define local space mo-
mentum vectors of the target electron and the final pho-
ton in the LF [as in Eqs. (3.7) and (3.6), respectively].
However, now, these space momenta are defined relative
to the direction that the initial photon is traveling i.e. ,

the polar direction of the coordinate system is in the di-
rection of the momentum vector of the primary photon.
Thus, for a radially infalling primary photon, the initial
space momentum vector of the electron is expressed in
this geometry by

p = —pcos02e„+ psin02 sin% 8 + p 02cos4&2e@ . p~ = —p~ cosOe„+ p~ sinosino. 'iee + p~ sinocoso. 'peg,

Note that the magnitudes of the vector p given in
Eqs. (3.3) and (3.4) are equal. The reason for using these
two geometries of the coordinate system in the LNRF rel-
ative to the BLF will become apparent later.

In the LNRF, we first define two frames of reference:
the LF (the lab frame of a general observer in the LNRF)
and the electron rest frame (ERF). The parameters in the
ERF are indicated by superscript B and those in the LF
have no superscript. The ERF is introduced because in
this frame, the determination of the four-momenta of the
scattered particles becomes simpler.

From Eq. (3.3), for general initial photon directions in
the LF, the initial and final photon space momenta are
defined to be

Pph Pph sin oph cos Pphe„+ Pph sin Oph sin Pphee

+mph cos 6phee (3.5)

and

p' h
———p' h cos be„+p' h sin b sin o.2eo

+pph sin b cos a 2 e@ (3.10)

[cf. Eq. (3.6)], where 8 is the final polar angle of the
photon with the pole in the p~h direction; o.2 is the final
azimuthal angle of the photon between the (ec,pph) plane
and the (p' hpph) plane.

The specific angles defined in the Compton process are
b, the scattering polar angle between the initial photon
vector p~h and the final photon vector p' h, and o. , the

scattering azimuthal angle between the (p, pph) plane
and the (p' hpph) plane, where

[cf. Eq. (3.7)], where 0 is the initial polar angle of the
electron with the pole in the direction of the initial pho-
ton (the pph direction) in the LF; ni is the initial az-
imuthal angle of the electron between the (e@,pph) plane
and the (p, pph) plane. Similarly, the local vector of the
final photon is

p' h ——p'
h sin 8'

h cos P' he„+ p' h sin 0'
h sin P' heo

+p' h cos 8'„„eg, , (3.6)
0!2 —0!i (3.11)

p, = p, sin 9, cos P,e„+p, sin 0, sin P,eo
+p, cosO e@, (3 7)

where p is the total space momentum vector of a cir-
cular orbiting electron, allowing for superposed random
motion; the magnitude of p will be determined in the

where Oph and 0'h are the polar angles (the polar axis
is in the direction of ec, ) of the incident and scattered
photons, respectively; Pph and P' h are the corresponding
azimuthal angles.

In addition, from Eq. (3.3) we can write, for the target
electron,

[see Eqs. (3.9) and (3.10)].
From the transformation equation (2.8d), the photon

will arrive at the scattering radius with initial energy

eph —e (@ph ~~ph) (3.12)

as measured by an observer in the LF, where L~h ——0 for
radial infall.

First, we consider the orbiting electrons to be cold
(T, = 0 K). The electrons in the LF will have fiat space-
time energy-momentum four-vectors (principle of relativ-
ity). However, since the electrons are initially moving in
circular orbits, before local thermal motions are included,
the only nonzero components are (p )& (the time compo-
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e = Peme (3.13)

and

nent) and (p, )@ (the azimuthal component). Thus the
initial energy and momentum in the e@ direction for an
electron as measured by an observer in the LF are

ever, the electron has no random motion as measured by
a co-LNRF observer (with v,'.„=0), then, the ERF will
move with the same velocity as the co-LNRF (i.e., the
orbital velocity v, ). It follows that, for an electron mov-
ing with orbital velocity (v, )@ and a superposed random
velocity v, „as measured by a LF observer, its total ve-
locity u in the LF is

(&.)~ = ~~m. (v.)~ (3.14) u = (v )ye@ +v ~~ (3.17)

l„e -+
(v. )~ =

@e ~ e

(E, —~I,)e
Qc = Pe

(3.15a)

(3.15b)

respectively, where p@ is the electron Lorentz factor due
to circular orbital motion only, and (v )@ is the azimuthal
velocity of the electron relative to the LF. By substitu-
tion of Eqs. (3.13) and (3.14) into the transformations,
Eqs. (2.7c) and (2.8d), the expressions for (v, ) c, and
p@, can be derived in terms of the conserved energy E
[Eq. (3.1)], and the angular momentum L, [Eq. (3.2)], as
measured by an observer at infinity [27]. It is found that

these must be added relativistically. The random veloc-
ities v, „of the electrons, due to thermal motions, will
be given by a Maxwellian velocity distribution.

Now, the electron temperature T of the Maxwellian
distribution, as measured by a LF observer, is a thermo-
dynamic quantity that must be initially defined in the
co-LNRF. In the proper frame comoving with the mat-
ter, the thermodynamic state is governed by the laws of
thermodynamics in their usual form [28]. The co-LNRF
is related. to the LF by a Lorentz transformation. It fol-
lows that, the electron temperature in the co-LNRF, T',
transforms to the electron temperature in the LF, T„ac-
cording to

e P2

erne
(3.16)

The Lorentz factor p, for the nonequatorial orbiting elec-
trons, may be obtained from Eqs. (3.15a) and (3.16), or
Eq. (3.15b), when E, and L, are used from Appendix A
[Eqs. (A20) and (A21)]. We next consider what happens
when the target electrons have a 6nite temperature.

b. The comoving frame. The scatterings between the
electrons and the photons are evaluated in t,he ERF. The
ERF and the LF are inertial frames related by a Lorentz
transformation for frame motion in the direction that the
electron moves in the LF. Whenever the electron local
kinetic temperature T, is not zero, the comoving frame
(co-LNRF) must be included in the scattering process
[25]. The co-LNRF is the proper frame of the matter,
say of a group of neighboring electrons; and any inertial
observer comoving with the matter is at rest with respect
to this frame, i.e.„ in this frame, d~ = dt, where 7. is
the proper time and, of course, t is the time measured
by an arbitrary inertial observer. Quantities measured
in the co-LNRF are denoted with superscript "co." For
example, the random velocity of a particle in this frame
is indicated by v,' „.

If an electron has a random motion relative to the or-
bital velocity v, = [0, 0, (v, )@] in the LF, the ERF will
move with velocit;y v,' „relative to the co-LNRF. If, how-

where the de6.nition arises because p, is the general
Lorentz factor and does not have to be in the e@ di-
rection only. Equation (3.15) is in agreement with the
results of Ref. [21].

Second, still we consider the target electrons to be
cold (T, = 0 K); however, now they are allowed to have
nonequatorial orbits. In this case, the angular velocity of
the target electron in the eo direction must be included
in the calculations. This velocity is given by the follow-
ing. From Eqs. (2.6) and (2.7b) as the electron passes
through the equatorial plane, it is found that

Te —+O'Te (3.is)

[28,2S], where

~~ = [1 —(v )~1 '" (3.iS)

this is the same pc, given by Eq. (3.15).
Once the random motion vector v, „ is chosen from

a Maxwellian velocity distribution (using a Monte Carlo
sampling method), the Lorentz factor of the thermal or-
biting electron is then given by

(i 2) —i j2

&ph —'Ye [sPh P (PPh) r Po (PPh) 0 P4 (PPh) c ]

(3.2 la)

2

(P h). = —' &.[Ã~bph)~+ ~o-(Pph)e)+1
+

I
1 + 4' '

l (J ph)- —~.&.~ph (3»b)"&-+1)

(P,"h) o- = 'Ve
Pe [PC (Pph) C + P.(P,h) ]+

2

+ 1 + o Pph 8 Pe oomph ~
3 21c

p, +1)

where the velocity u, is the total initial velocity vector
of a thermal orbiting electron [see Eq. (3.17)] relative to
the LF.

Now that we have examined ways to obtain the
Lorentz factors of the target electrons: equatorial orbits,
nonequatorial orbits, and orbits with thermal motions
(T, g 0 K), [Eqs. (3.15), {3.16), and {3.20)], the general
Lorentz transformations (Appendix B) for the initial pho-
ton four-momentum components from the LF to ERF are
given by
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(+
~

1 + P~ I (pi h) c —&.Pc ei h,
&. +1)

R' R' R' R' R' R'
p „=p „sinO „cosg „e„+p „sinO „sing „eo

R' R'
+p h cos 0 he@ (3.24)

where

(3.2ld) +ph ~ph (3.25)

where

p2) —I/2 (3.21e)

and

P. = (P. , Pe, Pc)
= [0, 0, (n, )c,] for equatorial targets,

(3.21f)

= [0, (v )o, (u, ) g, ] for nonequatorial targets,

= [(u,), (u, )8, (u, )@] for thermal targets;

the four-momentum components for the initial photon in
the LF are given by the transformations of Eqs. (2.8a) to
(2.8d).

the angles 0 h and P h are the final polar and azimuthal
angles of the photon as measured by a ERF observer [cf.
Eq. (3.6)]. In the magnitude of Eq. (3.25), e h is given

by Eq. (3.23).
We must determine how the above angles of Eq. (3.24)

are related to the scattering polar and azimuthal angles,
6+ of Eq. (3.23) and n, respectively, which are the polar
and azimuthal angles defined by the Elean-Nishina cross
section for Compton scattering processes [Eq. (3.41)]. To
determine how these angles are related, we take the scalar
vector products of the following: from Eqs. (3.5) and
(3.6), p h p' h gives

cos 6 = cos Oph cos 0 h + sill Oph slI10ph cos(/ah —/ah)

(3.26)

8. Scattering process in the LNRF (PCS)

In this section, the four-momentum of the Penrose
Compton scattered (PCS) photon in the ERF, (p h)~ =

I ~l
(p+&, ie &/c), will be determined, and subsequently used
in the Lorentz transformations of Appendix B to find
the corresponding four-momentum as measured by an
observer in the LF. (Note that, in the LNRF, I will
sometimes not make the distinction between covariant
and contravariant four-momentum, but will instead write
the time component to be imaginary, as was done in the
above four-vector. )

The final energy of the photon after a scattering event
is given by conservation of the four-momentum equation,
for this particular scattering process:

(p~h)~ + (p=)~ = (p', h)~ + (p'. )~ (3.22)

where the primes indicate final conditions. The Compton
scattering process in this pseudo Hat spacetime (i.e. , the
LNRF) is evaluated in the same way as for a Compton
scattering process in flat spacet, ime. Thus, it is found
that the final energy of the photon as measured by an
observer in the ERF is

1+ (e~„/p, )(1 —cos8~)

where b+ is the scattering (polar) angle between the ini-
tial and final space momentum vectors of the photon in
the ERF. In general, these vectors are given by Eqs. (3.5)
and (3.6), of course, however, with the superscript R ap-
pearing in these vectors, indicating parameters measured
in the ERF.

tA'e need now to find the scattered photon space mo-
mentum vector in the ERF:

similarly, from Eqs. (3.6) and (3.7), p' h p, gives

cos 0' = cos 0, cos 0'
h + sin 0, sin 0'

h cos(P, —P' h);
(3.27)

from Eqs. (3.5) and (3.7), p~i, pT gives

cos 0 = cos 0, cos~h + sin 0, sin O~h cos(g, —P~h); (3.28)

and from Eqs. (3.9) and (3.10), p'h p, gives

cos 0' = cos 0 cos b + sin b sin 0 cos o. , (3.29)

aI aIcos0 = cos0 h,
I

cos 0 = cos0 cosh + sinb sin0 coso.
cos0 = cos0 h,R R

(3.31)

(3.32)
(3.33)

since the angles 0, = P = 0, as can be seen in the
invariant equation (3.8), with p, = 0.

In the above equations, the unknown angles are

where Eq. (3.11) has been used; again 8 is the scatter-
ing angle between the initial and 6.nal photons; 0 and 0'
are the angles between the target electron and the initial
and final photons, respectively. Equations (3.26) through
(3.29) are invariant under a Lorentz transformation, i.e.,

they retain their same forms. The use of the two geome-
tries, giving rise to the vectors of Eq. (3.3) and (3.4),
should be apparent by now'. it allows us to relate an-
gles of the inertial frame to the scattering angles by way
of Lorentz invariant equations that can, in practice, be
solved analytically. Moreover, in the ERF, Eqs. (3.26) to
(3.29) reduce to

= cos 0 h cos 0 h + siI1 0 h S1110 h cos(p h
—

p&g)

(3.30)
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0R' yR' 0R 0R' (3.34)

where 0 h and P h are defined in Eq. (3.24); 0 and 0
are angles of the initial and 6.nal photons, respectively,
as defined in Eq. (3.29), now however, in the ERF. We
now solve for these four unknown angles in terms of the
known angles

gR R 0R d yR (3.35)

gR 0R
ph (3.36)

and Eq. (3.32) gives

R'
0 = arccos(cos 0 cos h + sin 8 sin 0 cos n ) .

(3.37)

The known angles are defined as the initial angles of the
incoming photon (0 h, P h) and the scattering angles of
the final photon (h, o. ), as given by the cross section
[Eq. (3.41)] for a particular scattering event.

Solving Eqs. (3.30) through (3.33) for the unknown
angles of Eq. (3.34), we obtain the following. From
Eq. (3.33), it is found that

Equations (3.36) through (3.39) give the unknown angles
of Eq. (3.34). Tn particular, Eqs. (3.38) and (3.39) define
the desired azimuthal and polar angles of Eq. (3.24).

We now proceed to specify the known angles of (3.35).
First, the angles 0+h and P h of the initial photon in the
ERF are given by Eq. (3.8), with the replacements

ph &. &ph (P. ).~ (Pph)- (3.40)

[cf. Eq. (3.8)], where the space momentum vector com-
ponents of the initial photon [(p h)„o @] in the ERF
are given by the Lorentz transformations of Eqs. (3.2lb)
through (3.21d). Next, the scattering angles 8+ and o.
are obtained by applying the Monte Carlo method to the
Klein-Nishina cross section, used for Compton scattering;
this is done in the following section.

a. The plein-Nishina cross section. The scattering
angles 8 and o (dropping the R superscripts briefly for
simplicity of the notations) in the ERF are obtained by
applying the Monte Carlo method to the Klein-Nishina
cross section for scattering interactions between free elec-
trons and photons. An expression for the probability that
a photon will be emitted at particular angles of n and b

follows from the differential form of the Klein-Nishina
cross section [30]:

From (3.31), we see that

OR' OR'
ph

d~(~, n) 1, &~phd &~ph mph

ph) ( ph ph )

(cos8 —cos0 hcos0 h)
P h ——P h

—arccos
~ sin 0+h sin 0Rh

(3.39)

Then finally, we solve Eq. (3.30) for P h yielding that where dO = sinbdbdo. ; r, = 2.818x10 cm is the classi-
R'cal electron radius; E h and E h are given by Eqs. (3.21a)

and (3.23), respectively. Substitution of Eq. (3.23) into
the above diIH'erential cross section and integration over
angles b and o. yield that

8 cx

sin bdbdo.

—12 1 1 1 1= —r2o —p, 1 — + in[1+ pi(l —cos b)] + —1
2 [1 + pi (1 —cos 6)2] 1 + pi(l —cos 8)

(1+»)' 2
pi (1 —cos 8) —2(1 +») in[1 + pi (1 —cos 8)] ——— + (1 + pi)

~1 1 +»(1 —cos 8)
(3.42)

where

R
~ph

$1

The above o (8, o.) is the integral form of the cross section, or the efFective area, of an electron producing a scattering
event in which a photon is emitted at particular angles of b and o.. When b = m and o. = 2' are substituted into
Eq. (3.42), we obtain the total cross section of the target electron for scattering of a photon in any direction of b

(between 0 and vr) and n (between 0 and 2a):

3 1 1+pi 2pi(1+ pi)o, , = crT - ln(1—+ 2pi) + —
s

—ln(l + 2pi)tot 1+ 2pi

1+ 3pi
(1+2pi)2

(3.43)

where oT = 8vrr, /3 is the cross section for Thompson scattering. The probability that a photon will be emitted at
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particular angles of b and o. is

o.(8, n) cr(S, n) o (h) g o-(n) 2

o (vr, 2vr) o.(h = vr), o.(n = 2') 2
(prob), prob 2,

where the last equality arises because the occurrences of
the angles 8 and n are independent. That is, Eq. (3.42)
is separable, in the sense of

o.(h, n) = o(8)go-(n)2,

with

o-(b, n)

O 0! 2=0!

Einal conditions in the BLE (PCS)

Recalling that the final conditions an observer at in-
finity measures are the same as those measured by a
BLF observer, the transformations of Eq. (2.7) allow us
to obtain final measurements in the BLF, in terms of
the final conditions of the photon in the LF as given by
Eq. (3.46). For the scattered photon, the following en-
ergy and space momentum components are measured by
a BLF observer:

o (b)g o.(b, n)/n
o(b = vr)g o, ,/2~

(3.44)

It follows that the probabilities that a photon will be
emitted at angles b and o. are (P'„),

(P,'~) o-

(PI',„)C.

e e h+~e (p h)c
e"'(p', h)-
e"' (p,'h) e
-L', h = e"(p', h)~ .

(3.47a)

(3.47b)

(3.47c)

(3.47d)

and

(prob)2 = = —= G2,
0 Ck 2 A'

o(n = 2~)~ 2vr
(3.45)

e', h = ~.[e,h+ &-(p,h). + &8(p,h)o-+ &~(p,h) ~]

(3.46a)

(p', h). =
2

g~+1 &-[&~(p,"h)c + &~(p,h) 8]

+ I
1+&. ',

I (p,h)-+ ~.&-e,h
R'

"&, +1
(3.46b)

2

(p,'h)o = '
&8[&~(p,h)~+ &-(p,"h) ]7. +1

+I1+Pe ' l(ph)e+&&o& h
2 Pe ) R' R'

&. +1)
(3.46c)

2

(p', h)~ = ' -&~[&8(p,~)e+ &-(p,h)-]
p, +1
+

I
1+Pc I (p,h)~ + &.&~&,h

& +1)

respectively, where the G's are random numbers. The
values of b and o. are found from random choices of Gi
and G2.

After values of b and o. are obtained, the final com-
ponents of the photon four-momentum can be evaluated
from Eqs. (3.23), (3.24), and (3.36) through (3.39). The
final four-momentum of the photon in the ERF is trans-
formed to the LF by the inverse of the Lorentz transforms
given in Eq. (3.21a) through (3.21d), see Appendix B:

After these local scattering events, some of the photons
will escape to infinity, while others will not. Whether or
not a particular photon escapes to infinity is governed by
the escape conditions given earlier in Sec. IIB1. It fol-
lows that the four-momentum components of Eq. (3.47)
are used in the escape conditions Eqs. (2.18), (2.19), and
(2.26) to determine whether or not a photon escapes to
infinity after a scattering event.

B. p-ray —proton pair production

1. Initial conditions in the BIF
The initial conditions of the p rays are similar to

those for the initial photons of the Compton scatter-
ing process. However, the photons are now assumed
to have high enough energy-momentum parameters that
they can be classified as p rays, with energies 50
MeU. The incident p-ray covariant four-momentum is

(P~)„= [(P~)„,0, 0, E~], as measu—red by an observer
at infinity for radial infall. The energy distribution of
the infalling p rays is assumed to be monochromatic in
the scatterings.

The spatial distribution of the protons are rings with
the same orbital characteristics as the electrons in the
Compton scattering process, and the protons are as-
sumed to be cold (T„=0 K). The conserved energy and
angular momentum of the orbiting protons, as measured
by a BLF observer, are given by equations of the form of
(2.16) and (2.17) for equatorial confinement orbits, and
by Eqs. (A20) and (A21) for nonequatorial orbits. The
scattering between the p ray and proton takes place at
rMB (radius of marginally bound orbit).

2. Conditions in the LNRE (pp ~ e e+p)

again P, is given by Eq. (3.21f).

(3.46d)
a. Special parameters of the four-momenta. In the

LNRF, we define, the LF and the proton rest frame
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(PRF). The scattering proce,. s is done in the PRF, since
the kinematics are simplest in this frame, as in the ERF
for Compton scattering.

Using the geometry that led to the vector of Eq. (3.3),
the space momentum vectors are expressed by the fol-
lowing. The general initial LF vector for the proton is

pP = pP slI1 0P cos /Pe + pP slI1 0P sill QPeo + pP cos 0Pe@

(3.48)

where 0p and Pp are the initial polar (the pole is in the
e@ direction) and azimuthal angles, respectively, of the
orbiting proton. Similarly, the general LF p-ray vector is

p~ = p~ sin 0~ cos P~e„+p~ sin 0~ sin P~e~
+p~ cos 0~e~, (3.49)

p+ ———p+ cos 0+e, + p+ sin 0+ sin pieO
+p+ sin 0+ cos pie@, (3.52)

for the negatron,

p = p sin0, cosp, -e„+p sin0, sing, eI1

+p cos 0 —e@, (3.51)

where 0 and P, — are the polar and azimuthal angles,
respectively.

Using the geometry that led to the space momentum
vector of Eq. (3.4) [i.e. , the geometry with the pole of' the
coordinate system in the direction of the incident p ray
(—e„)],the space Inomentum vectors for the positron, the
negatron, and the primary proton can be defined. Thus,
for the positron

where 0~ and P~ are the polar and azimuthal angles,
respectively, of the incident p ray. The general LF vector
of the scattered positron is

p+ —p+ sing + cos p ~e„+p+ sin 0,+ sill/ +eo
+p+ cos 0,+e@, (3.50)

p = —p cos 0 e„+p sin 0 sin $2ee
+p sin 0 cos $2e@,

and similarly, for the primary proton,

pP: pp cos 0ppe + pp sill 0pp sin p~P eQ

+p„sin 0~p cos Its~pe@ .

(3.53)

(3.54)

where 0,+ and P,+ are the polar and azimuthal angles,
respectively. Similarly, the general LF vector of the scat-
tered negatron is

The polar and azimuthal angles of Eqs. (3.52) through
(3.54) are defined below.

Specific angles defined in the pp ~ e e+p process are

0+, PI = scattering polar, azimuthal angles between p~ and p~,
0, P2 = scattering polar, azimuthal angles between p and p~,

0~p, P~p = polar, azimuthal angles between pp and p~,
(3.55a)

as in the momentum vectors of Eqs. (3.52) through
(3.54), and additional specific angles are

0„=spherical polar angle between p„and p+,
—:spherical polar angle between p„and p

0, = spherical polar angle between p+ and p
(3.55b)

We must determine how the above angles relate to the
angles of Eqs. (3.50) and (3.51) in order to arrive at the
four-momenta of the e e pairs (this is done in the fol-
lowing section) .

The p ray arrives at the scattering radius with initial
energy

apl ~ e~ (pph) ~ (p~)

&P"h ~ &,
"

(PPh). ~ (P, ).
Pe ~ Pp

(3.57a)

with

&p —= (&. &o &c) = [o o (vp)~] (3.57b)

where the p-ray momentum components (p~) „,in the LF,
are given by the transformations of Eqs. (2.8a) to (2.8c).

I

four-momentum components of the incident p ray, from
the LF to the PRF, are given by Eqs. (3.21a) through
(3.21f), upon changing the subscripts as follows (defined
in Appendix B):

e~ = e (R~ —(el~) (3.56)
8. Scattering process in the LNRF (pp —+ e e+p)

[from Eq. (2.8d); cf. Eq. (3.12)], as measured by an ob-
server in the LF. The circular orbital velocity (vp)@ and
Lorentz factor pp(:—p~) of the cold protons (Tp = 0 K)
relative to the LF are the same as for the cold electrons
[see Eq. (3.15)], at a particular radius.

The orbital velocity of the proton relative to the LF,
v„, and the corresponding Lorentz factor pz are used in
the Lorentz transformations to find momentum param-
eters in the PRF. The Lorentz transformations for the

As discussed earlier, an observer in the LNRF will see
an e e+ pair produced in the Coulomb field of a pro-
ton. In this section, the four-momenta of the e e+ pairs
are obtained. The energies of the pairs, c and e+, in
the PRF (as indicated by the superscript R) will be ob-
tained explicitly from the application of the Monte Carlo
method to the differential cross section for this PPP
(pp -+ e e+p) process, and then, approximate values



REVA KAY WILLIAMS

of the scattering polar angles 0+ and 0 [see Eq. (3.55a)]
can be found. Next, these energies and scattering angles
are used to determine the relative spherical angle between
a pair, 0, , from which the scattering azimuthal angles PI
and gP2 of the pairs are obtained. These scattering an-
gles and energies, along with the spacetime geometry in
which the scattering takes place, enable the acquisition
of the four-momenta of the pairs.

a. The differential cross section. The angular dis-

tributions and energies of the scattered e e+ pairs will
be governed by the differential cross section (def1ned in
PRF). This cross section gives the probability of the emis-
sion of a positron of energy e+ and a negatron of energy

in the directions 0+ and 0, respectively, relative
to the direction of the primary p ray, into the element
de'+d0+d0 dPi, with P+ being the relative azimuthal an-
gle of the e+e pair (the superscript R has been dropped
briefly for simplicity of the notations):

sin 0+ sin 0 d0+d0 dq')+
Z2 e4 p p+ de+
137 2' ~3 q4

0
2

2 n 2 2 6
p+ sin p S111 0

x (4e —q )+ 4s+ —q{+—p+ o +)' {s —p cos 0 )2

2p+p sill 0+ slI1 0 cos Q++ 4s+s + q —2S
(s —p cos 0 )(e+ —p+ cos 0+)

p+ slIl 0+ + p slIl 0—2E
(s —p cos 0 )(sc —ps. cos 0+)

(3.58)

[31]. The expression q in Eq. (3.58) is the magnitude of
the recoil momentum or the momentum transferred to
the proton, defined. by

pairs in the PRF. The energy of c+ will vary from p,
to (s~ —y,,). We integrate Eq. (3.60) between the limits
[p„s+] to obtain the integral form of the cross section:

q = (pp p+ P —) (3.59)
do-(s+) . (3.61)

Equation (3.58) is symmetrical in s+ and s . An asym-
metry would arise only in higher Born approximations
and is small for higher energies. In the extreme relativis-
tic regime where all the energies are large compared to
(L(„Eq. (3.58) can be integrated over all angles [31] to ob-
tain the cross section for the creation of a positron and
a negatron with energies c+ and r, respectively:

But erst, set Z = 1, assuming a pure hydrogen disk,
and assume that the recoil energy given to the proton
is small, therefore negligible, so that the conservation of
energy glvcs

(3.62a)

do(s+) = 4S' r.' r', , 2

137',Si + 3

( 2s s+ 1i„ (3.60)

or

(3.62b)

for no screening in wh1ch
Substituting Eq. (3.62b) into (3.60) and performing the
integration of Eq. (3.61) yield that

2c'+ 8' p~

(1/137)ZI)'

The Monte Carlo method will be applied to the cross
section of Eq. (3.60) to calculate energy spectra of the

0 8'+
4 r, ~

137 E'
y i=l

(3.63a)

(2m+I, =s~ s+ lni —1
( Pe

I2 = — e+ lni
9 +

(( p j 3

+ Ss.(1 —|o2))
1)—p, /ln2 ——

/

(3.63b)

(3.63c)
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2, (2e+l 1,(I, —:——e, e+ ln( +
I

—— —p'. /

ln2 ——
f

& p')
2 ( e+5 ( p. &

(~+ —~,)»
I

' —
I

—~+ —(~ —~,)»
I

' ——
I + li.)

( p,. ) 1, p. 1 (p, ) 1 (p, )
3 '

q e ) 3 e 2 ye~) 3 (e
2

4 1, , ( e+l 1, e+ 1 (e+')
-(e+ —e,)»I 1 —

I

—-e, —+-
I32 i e)2e2(, e

1, 2 ( pb 1, p, 1 (p, ')'
x ——(p,, —e )ln/1 ——'")

1 2I7 =———e'(z+ —p.),2 ~

2
Is = ——(e+ —p, ),3 3

9 +
1

Ig = —e~(e+ —p, ) .
3

(3.63d)

(3.63e)

(3.63f)

(3.63g)

(3.63h)

(3.63i)

(3.63j)

If we substitute e+ ——e~ —p, (defining the upper limit
of the integration) into Eq. (3.63), we get the total cross
section for the creation of an e e+ pair, which depends
only on the p-ray energy:

109
»7"' 9 "&p. )

(3.64)

[31]. The probability that a positron is emitted with a
particular value of energy e'+ (resuming to use the super-
script R to indicate the PRF) is

(3.65)

where the numerator and denominator are given by
Eqs. (3.63) and (3.64), respectively, and Gs is a random
number varying between 0 and 1. The values of e+, and

I

hence e, from Eq. (3.62), are found from the random
choice, or Monte Carlo selection, of G3 for each scatter-
ing event.

b. Approximate values of the scattering angles The.
angular distribution of 0+ and 0 is generally obtained
by integrating the differential cross section of Eq. (3.58);
however, the integration is complex. Yet, through suit-
able approximations, a usable formula for the mean

Rsquare angle (0 ) (or (0+ )) is found in the relativis-
tic regime (e, z+, e )) p,,). At such high energies, the
maximum emission of electrons in the angular distribu-
tion, in the forward direction (traveling direction of the p
ray), becomes more pronounced, which makes use of the
root-mean-square angle valid. For smaller energies, the
concentration in the forward direction is less marked [16].
The mean square angle between the electron and the p
ray is given below (it applies as well to the positron):

4lJ,' E»())~ „//)) + G»(n' + (l + u)0~ /a' + (l + n)P'I

)e (1+ ')f (~.)+ ', f.(~.)- (3.66a)

[32], where screening by atomic electrons has been ne-
glected, with

I"—:2(l + n ) 1n(2e+e /p, e ) + n(2 —n) —1, (3.66c)
G—:[(2+ n)(4+ 4n —n )/16(l + n)], (3.66d)

( a)
(3.66e)

e

Once the energies of the produced pairs are obtained by

the Monte Carlo method described in the previous sec-
tion [Eqs. (3.58) through (3.65)], the root-mean-square
angle of Eq. (3.66) (8 ) / (or (0+ ) / ) can be found,
since Eq. (3.66) is symmetrical in 0 and 0+. Note that
the restrictions on Eq. (3.66) are

~R
(& —& 1,

4&R

P&0 „(60 (3.67)

The two functions fz(p2) and f2(p2) in Eq. (3.66a) are
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functions of

100@ e
R RZ] /3E'+ G'

(3.68)

[31], the quantity which determines the effects of screen-
ing. For p2 ( 1 screening is important, where as for
pq &) 1 screening can be practically neglected. The func-
tions fi and f2 are given in several papers [31—33]. Af-
ter the suitable high energy approximations are made in
the cross section of Eq. (3.58) [34], 0 „ is defined as
the upper limit of the integration, leading to the deriva-
tion of the root-mean-square angle given in Eq. (3.66).
The choice of 0 „ofEqs. (3.66) and (3.67) is, unfor-
tunately, ambiguous. However, the higher the energy of
the p ray, the smaller the value of 0 is allowed to be,
and thus, the more accurate is the determined scattering
angle 0+ (the same applies for 0+).

c. Conservation of the four-momentum equation. The
four-momentum equation is solved for this PPP pro-
cess to obtain an expression for the angle 0, , which is
the spherical angle between an emitted e e+ pair [see
Eq. (3.55b)], as measured by a PRF observer. The four-
momenta in the LF for the p ray, the proton, the positron,
and the negatron will be denoted by p~p, p„p, p+p, »d
p p, respectively, where A is a summation index. From
the conservation of four-momentum

I
p~A + pIA —p+A + p —A + pzp i (3.69)

where the prime indicates the scattered proton. Equation
(3.69) leads to

) .(p,~+ p,~ —p-~ —p+~) = .p„& .
A

The individual four-momenta in the above equations can
be expressed as the following. For the

incident photon: p~p = (p~, is~),
scattered positron: p+g = (p+, is+),
scattered negatron: p y = (p, is ),
incident and scattered proton:

ppp = (p„,is„) and p„'~ = (p„', ie„') .

(3.71a)
(3.71b)
(3.71c)

(3.71d)

p+~p —~ = .(p, ),p+~+ p,u ~+ p,~p-.~
A A

2—p, ~p,))+m, . (3.72)

We then use Eq. (3.71) to evaluate the individual terms
in Eq. (3.72), where, for example,

Squaring Eq. (3.70), and using the Lorentz invariance of
the scalar product of the four-momentum with itself (i.e. ,

pz ———mo), we obtain the Lorentz invariant form of the
conservation of four-momentum equation:

i.e. , with similar relations existing for the other four-
momentum products in Eq. (3.72). Substitution of the
evaluated four-momentum products of Eq. (3.73) into
(3.72), with the space momentum vector of the proton
p„= 0 in the PRF, and using the definition of the an-
gles in Eq. (3.55), the conservation of the four-momentum
equation expressed in the PRF is given by

p+RpR cos OR ~R+~R = p~RpR+ cos 0+R ~R~+~

+p~ p
R R R 2—PpF —PpE+ —PpE + m

(3.74)

where p,„ is the rest-mass-energy of the proton. In the
extreme relativistic regime, where c+, c )& p„ the mag-
nitudes of the momenta of the positron and negatron in
the PRF are given by

(3.75)

respectively. And as usual, the magnitude of the p-ray
momentum is

(3.76)

Substitutions of Eqs. (3.75) and (3.76) into Eq. (3.74)
yield the desired. angle

cos 0, = 1+z & (cos0+ —1) + & (cos0 —1)R R i R R

+

R+ R R) 2]
E'+

(3.77a)

or, using the assumption of Eq. (3.62),

cos 0, = 1 + s & (cos 0+ —1) + —(cos 0 —1)R R R 1 R

+
2

~e
~R~R+

(3.77b)

cos 0+ ——cos 0~ cos 0,+ + sin 0~ sin 0 + cos(P~ —P,+ );
(3.78a)

from Eqs. (3.49) and (3.51), p~ . p gives

cos 0 = cos 0~ cos 0, + sin 0~ sin 0,—cos(P~ —P, —);
(3.78b)

d. The four-momenta of the pairs. We now want to
find the relationships between the scattering angles of
Eq. (3.55) and the angles (0 +, gP+) and (0,$ ) in
order to calculate the four-momenta of the e e+ pairs,
Eqs. (3.50) and (3.51). The scalar vector products give
us the following: from Eqs. (3.49) and (3.50), p~ p+
gives

(3.73a) from Eqs. (3.48) and (3.50), pz p+ gives

p~p p+~ ——pz ~ p+ —z&e+, etc. ,

A

(3.73b) cos 0„=cos 0„cos0,+ + sin 0„sin 0,~ cos(P„—P,+);
(3.78c)
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cos 0„+ ——cos 0~„cos0+ + sin0~~ sin 0+ cos(P~„—Pi);
(3.78g)

from Eqs. (3.53) and (3.54), p„p gives

cos 0„=cos 0&„cos0 + sin 0~„sin 0 cos(P~„—P2),
(3.7Sh)

[cf. Eq. (3.55)]. The angular relations of Eq. (3.78) are
Lorentz invariant. Since in the PRF, equations similar to
(3.8) give for the proton, that, 0„=P = 0, and since

by way of deduction, PR = 0, i.e. , the azimuthal angle
(defined by a plane) between the proton at rest and the
p ray is zero the angular relations of Eq. (3.78) become,
in the PRF,

cos 0+

cos 0

cos 0p+

cos 0„
cos0 „R

cos 0,

cos 0p+

cos 0„

cos 0 cos 0,+

cos 0 cos 0,
y

cos 0,+,

+ sin 0 sin 0,+ cos(P —P + ),
(3.79a)

+ sin 0 sin 0, cos(P —P ),
(3.79b)

(3.79c)

cos 0— (3.79d)

cos 0 (3.79e)

cos 0+ cos 0 + sin 0+ sin 0 cos(Pi —Pz ),
(3.79f)

cos 0 „cos0+ + sing sin0+ cos PP, (3.79g)

cos 0 „cos0 + sin 0 „sin 0 cos P2 . (3.79h)

The equations of (3.79) must be solved simultaneously
for the unknown angles:

0R yR 0R yR
R R R R0,„4,„,0„+,4„-,

yR yR (3.80a)

from Eqs. (3.48) and (3.51), p„p gives

cos 0~ = cos 0„cos0,—+ sin 0„sin 0 cos(P„—P, —);
(3.78d)

from Eqs. (3.48) and (3.49), p„p~ gives

cos 0 „=cos 0„cos0~ + sin 0„sin 0~ cos(&P„—P~);
(3.78e)

from Eqs. (3.52) and (3.53), p+ p gives

cos0, = cos0+ cos0 + sin0+ sin0 cos(Pi —P2);
(3.78f)

from Eqs. (3.52) and (3.54), p„p+ gives

where (pR)„, with p = r, 0, 4, are the space momentum
components of the p ray in the PRF, given by the Lorentz
transformations of Eq. (3.57).

Now let us proceed to solve the equations of (3.79),
with the goal of obtaining the polar and azimuthal angles
of the e e+ pairs in the PRF. These angles are found to
be (see Appendix C)

0 +
——arccos(cos 0 cos 0+ + sin 0~ sin 0+ cos pp),

(3.82a)

P,+ ——P —arccos
f cos0+R —cos0 cos0, + )

sin 0R sin 0 +

(3.S2b)

and

0 = aiccos(cos 0 cos 0 + sin 0 sin 0 cos Pz ),
(3.83a)

—arccos
(cos 0 —cos 0 cos 0,

sin 0R sin 0R

(3.83b)

for the positron and negatron, respectively, where

i cos 0, —cos 0+ cos 0

sin 0+R sin 0R )
Except for the scattering angle PP [see Eq. (3.55)],
we now know of ways to determine all the angles of
Eq. (3.80). In the following paragraph, the determina-
tion of the angle PP is presented.

The Monte Carlo method is employed to determine
an appropriate value for the angle pp. Recall that the
scattering azimuthal angle P+R of Eq. (3.58) is the angle
between the (p p+) plane and the (pRpR) plane. From
the scattering geometry used to derive the momenta of
Eqs. (3.52) and (3.53), with the pole of the coordinate
system in the direction of the p ray,

4+ = 142 —4il (3.85)

the unknown angles [Eq. (3.80a)], we complete the deter-
mination of the known angles [Eq. (3.80b)]. Recall that
once the energies of the pairs, c+ and c, are given by
Eqs. (3.62b) and (3.65), the angles 0+R and 0R are found
from Eq. (3.66), since this equation is symmetrical in 0R

and 0+R. Also recall that 0, is given by Eq. (3.77). The
last of the known angles to be determined are the angles
0 and PR of the infalling photon [cf. Eq. (3.49)]; they
are determined by Eq. (3.8), with the replacements

(3.81)

in terms of the known angles:

0R 0R 0R 0R yR (3.sob)

[cf. Eq. (3.55a)]; therefore, by the invariance of the dis-
tance between two spatial points in Minkowski spacetime
under a Lorentz transformation, it follows that, in the
PBF,

[cf. Eqs. (3.49) through (3.51), and Eq. (3.55) for defi-
nitions]. However, but first before solving Eq. (3.79) for (3.86)
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In principle, we could solve for the angle Pi from
Eq. (3.86), if the angle P+ were known. However, since
the cross section of Eq. (3.58) is a function of P+, 0+,
and 9 in the sense that the probabilities of these angles
cannot be separated as was done in the Klein-Nishina
cross section for the Compton scattering processes [see
Eqs. (3.41) through (3.45)], we cannot apply the Monte
Carlo method to &P+ directly. For this reason, we must

apply the Monte Carlo method directly to Pi, to be used
in Eq. (3.84); then, if desirable, the relative angle P+ can
be obtained from Eq. (3.86). Therefore, the probability
that the positron will be emitted with azimuthal angle
q i existing somewhere between 0 and 2vr is given by

in Eq. (3.88), an observer at infinity will obtain for the
positron the following energy and. space momentum com-
ponents:

E+ ——e e+ + (ue@(p+)c, , (3.89a)

(P+). = e"'(1+)- (3.89b)

(P+)o = e"'(p+)o, (3.89c)

(P+)~ = L+ = e (&+)~ (3.89d)

where similar equations exist for the negatron.
Whether or not the scattered electrons can escape to

infinity is governed by the escape conditions given in
Sec. IIB2, for an electron or any material particle. The
four-momentum components of Eq. (3.89) are used in the
escape conditions of Eqs. (2.18) and (2.19) to determine if
the electron escapes from the potential well of the KBH.

where G4 is a random number ranging between 0 and 1.
Choices of G4 will give values of Pi, and thus, P2 can
be found by Eq. (3.84).

In summary and to conclude this section, the energies
of the positron and the negatron in the PRF are given
by Eqs. (3.65) and (3.62), respectively. Substitution of
the appropriate angles of Eqs. (3.82) and (3.83) into the
vectors of Eqs. (3.50) and (3.51) gives the space momenta
of the positron, p+, and the negatron, p, as measured
by a PRF observer. We next use the Lorentz transfor-
mations (Appendix B) to find the four-momenta of the
e e+ pairs as measured by a I F observer:

+ ~.[ + p——-(I").+ p- (p+) - + p (p+) l

(3.88a)
2

p. [p~(&+)~ + pe(&+) el~p+1 "

1+P„' " (p"+). + ~„P„e+", (3.88b)
(

"
1pe [p~(p+) ~ + p-(p+). ]

Wp+ 1

+ 1+ Pe2
" (&~)e + &r Pee+ (3 88')

~&+

p~ [pe(p+) o- + p-(p+)-l
Vp+ 1

(1+p,' "— (p+)~ + q„p e+, (3.88d)"+'i
where P is given by Eq. (3.57b), and pr is the correspond-
ing Lorentz factor of the orbiting proton. A Lorentz
transformation similar to the above exists for the nega. —

tron also.

Final conditions in the BLF (gg ~ e e+g)

The transformations of Eq. (2.7) give us the final mea-
surements in the BLF, in terms of the final conditions of
the e e+ pairs in the LF. From the measurements given

C. p-ray~-ray pair pro&Ruction

Initial cenditiana in the 23LE

Initially, a photon of energy E~i, assumed to be emit-
ted inside the ergosphere (say from processes intrinsic to
an accretion disk or from prior Penrose processes), col-
lides with another photon of energy E~2 orbiting at the
photon orbit, r~h 1.074M [see Eqs. (2.22) and (2.23)].
This collisional process subsequently produces an e e+
pair. The energies E~q and E~2 are those measured by
an observer at infinity. Since the scattering takes place
in the equatorial plane of the KBH, an observer at infin-
ity will measure the following initial four-momenta. For
the incident radially infalling photon (only the radially
emitted incident photons are considered here), the BLF
observer measures

(P,)„=[(P,)„,0, 0, —E,],
and for the orbiting photon he measures

(P„)„=[0, (P„)o,I.„,—E„]

(3.90)

(3.91)

2. C'onditions in the L1VRF (~~ ~ e e+)

a. Specia/ parameters of the four momenta. Using the-
geometry defined by Eq. (3.3), i.e. , with the pole of the

for the covariant four-momenta.
The initial energies of the two colliding photons can

cover a wide range of values, as long as the threshold
conditions of Eq. (1.2) are satisfied. The energies E~i of
the incident photons will have a blackbody distribution,
or they will be monochromatic. The energy E~2 of the
orbiting photon is given by Eq. (A20) of Appendix A,
for a circular nonequatorially confined massless particle
orbiting at the photon orbit. This conserved energy E~2
depends on the Q value [cf. Eq. (2.27)] of the photon and
increases with increasing Q~2(= Q*h), as can be seen in
Fig. 1(a). Note, in general, and for all practical purposes,
for the orbiting photon, Q~2 must be ) 0, meaning that
the orbit cannot be confined to the equatorial plane [cf.
Eq. (2.6)].
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coordinate system positioned in the e@ direction, the
space momentum vectors for this pair production pro-
cess can be expressed by the following. The general LF
vector of the infalling photon is given by

peal pp1»n Opl COS p&le + p&I Sill 0&I SIIl p&I Bcl

+p~y cos O~ie@ ) (3.92)

where, 0&I and /~I are the polar and azimuthal angles of
the infalling photon, respectively. Similarly, the general
LF vector of the orbiting photon is expressed by

tion of the incident infalling photon [the (—e„) direction],
space momentum vectors for the positron, the negatron,
and the orbiting photon can be defined as follows. For
the positron,

p+ = —p+ cos 0+ &~ + p+ slI1 0+ sill Q+ B~

+p+ sin 0+ cos P~e@,

for the negatron,

p = —p . cosO e + p sin0 sing eo

p~z ——p~z sin 0~2 cos p~z e„+p~2 sin 0~2 sin $~2eI1

+@~2COS 0~2e@ (3.93)

+p sin0 cosg e@ .

Similarly, for the orbiting photon,

(3.95)

where, 0~2 and /~2 are the polar and azimuthal angles
of the orbiting photon, respectively. The general IF
space momentum vectors of the positron and negatron
are given by Eqs. (3.50) and (3.51), respectively.

From the geometry leading to Eq. (3.4), now with the
pole of the coordinate system positioned in the direc-

p~2 = —p~2 COS 0~~&„+p~2 Sill 0~~ Sill Q~~eSl

+p„sinO„cosy„e~ . (3.96)

The polar and azimuthal angles of Eqs. (3.94) through
(3.96) are defined below.

Specific angles defined in the pp ~ e e+ process are

0+, P+ = scattering polar, azimuthal angles between p~l and p+,
0,P—:polar, azimuthal angles between p~l and p

0~~, P~~—:polar, azimuthal angles between p~l and p~2 .

0~+ = spherical polar angle between p~2 and p+,
0& = spherical polar angle between p~2 and p

0, = spherical polar angle between p~ and p

(3.98)

From the transformation Eq. (2.8d), the radially in-
falling (or emitted) photon will arrive at the photon orbit
with initial energy given by

The angles of Eq. (3.97) comprise a coordinate system in
which p~i is the direction of the polar axis and azimuths
are measured relative to the azimuths of p~2. Additional
specific scattering angles are

cess is done in the center-of-momentum (c.m. ) frame,
which is related to the LF by a Lorentz transformation.
The sum of the space momentum vectors for a given event
is zero in the c.m. frame. In the c.m. frame, the kinemat-
ics of the pp ~ e e+ process become simpler; for this
reason, the scattering process is computed in this frame.
Note that parameters measured in the c.m. frame will
be indicated by the superscript c.

a. The center-of-momentum frame. Energy and mo-
mentum properties of the pp ~ e e+ process in the c.m.
frame are the following [30]. In the c.m. frame,

(3.99)
=P++P—=Ppi+Pg2 =0

~ (3.101)

as measured. by a LF observer, where E~i is the infalling
photon energy measured by a BLF observer. Similarly,
for the orbiting photon,

(3.100)

as measured by a LF observer, where E&2 and I&2 are
the conserved orbital energies and angular momentum,
respectively, of the orbiting photon measured by a BLF
observer [Eqs. (A20) and (A21) of Appendix A].

8. Scatteving pIoce88 in the INRF {pp —+ e e+)

As discussed earlier, a radially infalling photon pro-
duces an e e+ pair upon colliding with a target photon
orbiting along the photon orbit ~ In this section, the four-
momenta of the pairs are obtained. The scattering pro-

where P is the composite space momentum in this
frame. That is, for a given scattering the total space mo-
mentum vanishes in the c.m. frame, where p+, p', p i,
and p 2 are the space momentum vectors of the positron,
the negatron, the infalling photon, and the orbiting pho-
ton, respectively. Other properties characterizing the
c.m. frame are

E =c++e =e i+a 2,
C Cc i==8

C
C ~+

P+ =
E'+

(3.102a)

(3.102b)

(3.102c)

where E' is the composite energy in the c.m. frame;
+, or c equals the c.m. fram~ energy; and

P+ ——P defines the velocity of the positron or negatron
relative to the c.m. frame.

It follows that, from the relativistic energy-momentum
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equation for a particle of rest-mass-energy po in any in-
ertial fraIIlc)

2 2 2+Po ~ (3.1O3)

we have, for the positron in the c.m. frame,

X/2

P~ = E'g —P (3.104)

Equation (3.104) allows us to determine the magnitude
of t h c space IIlon1cntuIIl, p~ = p, Qf the 6 c palI's,
once the c.m. frame energy, say e+ of Eq. (3.102b), is

known.
The angles between the space momentum vectors be-

come, in the c.m. frame,

) I,'=) (Z„)', (3.109)

and solve for e+. Now, substitution of Eqs. (3.107) and
(3.108) into Eq. (3.109) yields

P~ ——P~

Kp;1+p, 2) i(e;i+e,'2)l = [(p++p ) i(ey+e )]
(3.108)

[o '(e;i+ ",.)] = [0 '(e+ +")]

respectively. To find the c.m. frame energy, say e+ [see
Eq. (3.102b)], in terms of the LF energies e&i and e~2 [see
Eqs. (3.99) and (3.100)], use the invariance of the scalar
product of a four-vector with itself,

0, =0
0 ~0~

0' g 0,~

(3.1O5a)

(3.1O5b)

(3.105c)

(3.105d)

(3.105e)

[(p»+»2) i(e»+e»)'] = [(p++p ), i(e +e )]

(p»+p»)' —(e»+e»)' = o —(e++e )';
it follows that

p» p»-"i"2 = —2(e+)c 2

[use Eqs. (3.97), (3.98), (3.50), and (3.51), for identifica-
tion of these angles, however, in the c.m. frame].

The connections between the c.m. frame and the LF
are obtainable by Lorentz transformations. The relative
fran1e velocity or the velocity that the c.m. frame moves

with respect to a LF observer is given by 2 'e&ie&2 (—1 —cos 0&&) (3.11O)

where Eqs. (3.102b) and (3.103) have been used. Since
the angle between p~i and p~2 is 0~~ [see Eq. (3.97)], we
obtain for the c.m. frame energy that

[35], or

with

Pp] + Pp2
&c.m. =

~»+ ~»

P»+ P,2
c.m.

C~y + e'~2

(3.1O6a)

(3.1o6b)

where according to Eq. (3.102b), e+ ——e'
Next we substitute Eq. (3.110) into (3.104) to deter-

mine the magnitude of the space momentum vectors of
the e e+ pairs (p+ ——p' ), where in the c.m. f'rame these
vectors are given by

p+ -——p+ sin0;+ cosP;+e + p+ sing;+ singP+ee

+p~ cos 0 i 6'@ (3.111a)

(3.1O6c)

where e~q and p~q are the energy and space momentum
vector of the radially infalling photon as measured by
a LF observer; siInilarly, a~2 and p~2 are these mea-

sured quantities for the orbiting photon: These four-

momentum components of the incident photons in the
LF are given by the transformations of Eq. (2.8).

We now determine the c.m. frame energy of
Eq. (3.102b), to be used in Eq. (3.104). From the defi-

nitions of the composite space momentum and the com-
posite energy of Eqs. (3.101) and (3.102a), respectively,
in the c.m. kame, conservation of four-momentum allows

us to write the composite four-momenta in the LF and.

the c.m. frame as

f

[(p,i + p»), '(e»+ e»)] = [(p++ p-) i(e++ e-)]
(3.1O7)

and

p' = p' sin 0; cosP; e„+p' sin0; sing; ee
+p' cos 0, ec, , (3.111b)

Application of the Lorentz transformations to Eq.
(3.111),once these vectors are known in the c.m. frame,
gives the space momentum vectors in the LF. How-

ever, we will come to this later, but Grst, we must
determine the angles of Eq. (3.111). These angles
(0'+, gP+, O', P' ) must be defined in terms of the scat-
tering angles (0+, P+, 0, P' ) in the c.m. frame [cf.
Eq. (3.97)]. The scattering angles are determined from
the cross section for the pp ~ e e+ process; and once the
scattering angles are known, relations can be found be-
tween them and the angles of Eq. (3.111),using the scalar
products of the space momentum vectors, as done in the
previous scattering processes (Secs. III A 3 and III B 3d):
These derivations are completed in the following subsec-
tions.

b The difj'erentia. l cross section The scatterin. g angle

0+ in the c.m. frame is obtained by applying the Monte
Carlo method to the differential cross section for this pair
production process:
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t' p, ) 1 —P+4 cos 0+ + 2()a, /e+) P+ sin 0+d~(0. ) =,'p+
~

'
~

+ +. . . sing+dg+
Ee+) 1 —P+«s 0+

(3.112)

0-(0+) = der(0+) . (3.113)

Upon performing the algebraic integration of Eq. (3.113),
it is simple to show that

[30], where P+ = P+ of Eq. (3.102c). Although the cross
section of Eq. (3.112) is written in terms of the positron it
can, however, refer to either the positron or the negatron.
Also, this pair production cross section by unpolarized
photons is symmetrical with respect to 0+ ——2. More-
over, at very high energies the e e+ pairs are produced
at very small angles with respect to the line of incidence.

The diff'erential cross section Eq. (3.112) is integrated
over the angle 0+, to get the integral form of the cross
section:

cos 0~+ ——cos 0» cos 0+ + sin 0» sin 0+ cos(P» —P+);
(3.118a)

from Eqs. (3.95) and (3.96), p p~2 gives

cos 0~ = cos 0» cos 0 + sin 0» sin 0 cos(P» —P );
(3.118b)

from Eqs. (3.94) and (3.95), p+ p gives

cos0, = cos0+ cos0 + sing+ sing cos(P+ —P );
(3.118c)

from Eqs. (3.50) and (3.94), p+ . p+ gives

(3.114a)

where

(g. ) ~„2(, p. ) 1(3 p4) l„(1+p+)(1 —~)
2 ' + 2 + (1 —P )(1+y)

P+(P+ —2)+x i+, „', ),(1 —P+)'

1 = —sing, + cos P,+ cos 8+ + sing, + sing, + sing+ sing+
+ cos 0,~ sin 0+ cos P+, (3.118d)

from Eqs. (3.51) and (3.95), p p gives

1 = —sin 0, cos P,+ cos 0 + sin 0,—sin P, —sin 0 sin P
+ cos0, sing cosP (3.118e)

X —= p+«sg+ (3.114b) from Eqs. (3.96) and (3.50), p~2 p+ gives

[36]. The relation that

(3.115)

cos 0&+ ———sin 0,+ cos P,~ cos 0~~

+ sin 0» sin P» sin 0,+ sin P,+

+ cos 0,+ sin 0» cos P»; (3.118f)

has been used; Eq. (3.115) can be derived from
Eqs. (3.102c) and (3.104). The total cross section oz
is obtained when the integrated cross section Eq. (3.114)
is evaluated at 0+ ——7t; thus,

from Eqs. (3.96) and (3.51), p~2 p gives

cos 0~ = —sin 0, cos P, cos 0»
+ sin 0» sin P» sin 0,—sin P,—

+ cos 0,—sing» cos P» . (3.118g)

o.z = —r.'(1 —P+) (3 —P+) ln
~

-2P+(2 —P+)

The angular relations of Eq. (3.118) are Lorentz invari-
ant. Therefore, by Eq. (3.105), they become, in the c.m.
frame,

Equation (3.116) is in agreement with the result of
Ref. [30]. Finally, the probability that the positron be
emitted at a particular angle 0+ is

cos 0'+ ———cos 0+9+

cos 0 = —cos 0

(3.119a)

(3.119b)

(3.117)

where G5 is a random number between 0 and 1. The
random choices of G5 give values of 0+ as desired, and
using Eq. (3.105b) gives 0' .

c. The four-momenta of the pairs. Now that we have
ways to determine 0+ and 0', we then proceed to find
the angles in Eq. (3.111). By taking the scalar vector
product of the space momentum vectors, the following is
obtained: from Eqs. (3.94) and (3.96), p+ p~2 gives

—1 = cos 0+ cos 0' + sing+ sing' cos(qP+ —gP ),
(3.119c)

1 = —sing, + cos P;+ cos 0+ + sing, + sing;+ sin 8+ sing+
+ cos 0;+ sin 0+ cos P+, (3.119d)

1 = —sin 0' cos P' cos 0' + sin 0' sin P; sin 0' sin P'
+ cos 0; sin 0 cos &P', (3.119e)
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cos 0'+ ——sin 0,+ cos 0,+,

cos 0' = sin0 cos 0

(3.119f)

(3.119g)

components of the e e+ pairs in the c.m. frame, to
get these parameters as measured. by a LF observer; this
is achieved by making the following replacements in the
transformations of Eq. (3.88):

The equations of (3.119) must be solved simultaneously
for the unknown angles 0,+, P,+, 0, , P, 0'+, and 0
in terms of the scattering angles 0+, 0, and P' . Recall
that the angles 0+ and 0' are found from Eqs. (3.117)
and (3.105b), respectively. The angle P+ is the scattering
azimuthal angle of the cross section Eq. (3.112), and it
too is obtained by application of the Monte Carlo method
[Eq. (3.122)]. But first, the equations of Eq. (3.119) are
solved (see Appendix D) yielding the polar and azimuthal
angles in the space momentum vectors [Eq. (3.111)]of the
e e+ pairs. For the positron

(3.123)

where p, ,„and P, = (P„,Pri, P@) are of Eq. (3.106);
similar equations can be written for the four-momentum
components of the negatron.

The Anal conditions in the BLF of the e e+ pairs are
computed in the same way as the final conditions in the
BLF for the previous PPP (pp —+ e e+p): I then refer the
reader to Sec. IIIB4, from which the four-momenta in
the BLF, and the distribution of the escaping pairs, can
be obtained, using the LF measurements of Eq. (3.123).

cos 0+ )
0;+ ———are sin

cosg'~ g
(3.120)

:B.I'ct ail
D2 + (D—2z

—4DiDS)'~~
2Di

(3.12la)

where

Dq = cos 0+ sin 0+,
D2 = 2 cos 0+ sli10+ slil p+(1 —cos 0+)
Ds = 1+ cos 0+(cos 0+ —2)

+ sin 0+ cos P+(cos 0+ —1) .

(3.121b)

(3.121c)

(3.121d)

Since by Eqs. (3.105d) and (3.105e),

0, =~ —0.. . (3.105d')

(3.105e')

the above angles for the positron, Eqs. (3.120) and
(3.121), are suflicient to give the polar and azimuthal
angles of the negatron.

The scattering azimuthal angle P+ [cf. Eq. (3.97)] of
Eqs. (3.12lc) and (3.121d) is now found below. Note
that this azimuthal angle has been integrated over from
0 to 2vr in the cross section of Eq. (3.112). Thus, the
probability that the positron be emitted at the angle P+
in the c.m. frame is given by

where Gs is a random number between 0 and 1 [cf.
Eq. (3.45)].

In summary, the energy of the positron in the c.m.
frame e+(= e' = e i = e'2) is given by Eq. (3.110),
and the magnitudes and space momentum vectors of the
e e+ pair in the c.m. frame are given by Eqs. (3.104)
and (3.111),respectively. The angles of the momenta in
Eq. (3.111) are given by Eqs. (3.120), (3.121), (3.105d'),
and (3.105e'). To conclude this section, perform a
Lorentz transformation on the above four-momentum

As results accumulated during this investigation of the
Penrose mechanism, to see if it is capable of producing
the observed radiation spectra of celestial objects we be-
lieve to be powered by black holes, in particular AGN,
certain trends became evident. The Compton processes,
consisting of scattering low energy UV ( 5 eV) incom-
ing photons, ranging to p-ray ( 1 MeV) photons, by
target orbiting electrons, reveal the following. First, we
find. that the factor by which the total incoming pho-
ton energy gets boosted (i.e., the relative energy gained
by the outgoing photons) is largest for the low energy
UV incoming photons; however, the eImiciencies defined
in Eqs. (2.28b), (2.30), and (2.31), as we shall see below,
suggest that this is not a favorable Penrose Compton
scattering (PCS). Nevertheless, these UV photons are
consistent with the characteristic "blue bump" seen in
the optical and UV spectra of AGN observations. This
blue bump is believed. to be a feature intrinsic to the
photon emission from the accretion disk. In my model,
these UV photons that fall into the ergosphere, undergo
Compton scattering events, and escape with x-ray ener-
gies as high as 218 keV. These UV photons probably
originate in the "outer" and "middle" regions of the clas-
sical thin accretion disk, as defined in Ref. [37]. Second,
for the distribution of moderate energy incoming photons

30 keV (soft x rays) to 150 keV (hard x rays), after
the scattering events, from about 75% up to 99% escape
with energies as high as 12 MeV, always with a rela-
tive energy gain. These moderate energy photons, ener-
gies consistent with the theoretical temperatures of thin
disk/ion corona accretion models (see Sec. IB), seem to
be favorable in extracting energy by way of PCS. Third,
for a distribution of high energy incoming photons
MeV (soft p rays) and equatorially orbiting target elec-
trons, about 70% of the scattered photons can escape
with energies as high as 4 MeV; however, the total dis-
tribution of these incoming p-ray photons gives up energy
to the KBH (i.e. , no relative energy is gained); PCS does
not favor such initial conditions. On the other hand, for
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the same distribution of incoming photons of energy 1
MeV and nonequatorially orbiting target electrons, up to

98% of the scattered photons can escape with energies
as high as 22 MeV, where relative energy is gained
by the outgoing photons, making this a favorable PCS.
Now, in the pp —+ e e+ processes, the incoming photons
are allowed to have energies ranging from 3.5 keV to 10
MeV, and they undergo scatterings with orbiting pho-
tons that are allowed to have energies ranging from 3.4
MeV to 2.146 GeV. In these cases, up to 50% of the
scattered pairs escape with energies as high as 2 GeV.
Note that such high energy orbiting photons are consis-
tent with those produced by processes in the accretion
disk [12], and then are blueshifted, as they follow null
geodesics through the ergosphere, by a factor 52 at
the photon orbit. Finally, in the pp ~ e e+p processes
the results were not very promising, as will be discussed
below: none of the pairs were allowed to escape. Never-
theless, in the PCS and PPP (pp -+ e e+), the results
were very promising, and they are sufIicient to explain
the mysterious energy source of quasars and other AGN.

Before presenting these results in details, it must be
mentioned here that, in the past, energy extracted due
to a Penrose process has been defined as the rotational
energy extracted from a KBH when the initially orbiting
target particle is put on a negative energy "captured"
plunge trajectory [3,21]. In these present scattering pro-
cesses, by comparing the sum of the energies of the in-
cident particles in the BI F, for a given event, with the
energy of the escaping particle, it is clear that the mea-
sured energy of the escaping particle above this sum is
classical Penrose rotational extracted energy. However,
what should one call the process when the target particle
recoils to give up some of its orbital energy to the escap-
ing particle, with the target particle (although not being
put on a negative energy captured plunge trajectory) be-
ing put on a positive energy captured plunge trajectory
[21]: as I have found in some of these Compton scattering
events? Or by what name should the process be called in
which the total energy of the target orbiting particle and
incident particle is given to the newly created, possibly,
escaping particles: as I have found in the pp ~ e e+
processes'? The answers to these questions are given in
the following. Due to the motion of a particle against
the How of spacetime, which creates frictional-like forces
(that arise because inside the ergosphere the angular mo-
mentum of the KBH and the curvature of spacetime,
force particles to rotate in the direction that the hole ro-
tates), the recoil of a target particle still however extracts
rotational energy, even though the target particle may
not be put on a negative energy orbit. In these cases, for
example in the Compton scattering events, the escaping
photon energy will be less than the sum of the energies of
the target electron and infalling photon, appearing as if
no Penrose rotational energy was extracted remember
that any energy above this sum is defined to be classical
Penrose extracted energy. But, in fact, due to the so-
called friction set up by the frame dragging and the recoil
of the target initially orbiting electron, rotational energy
was indeed extracted by (or transferred to) the escaping
photon. Thus, because an observer at infinity observes

in principle a low energy particle (say, infalling from an
accretion disk) participating in a scattering event with a
bound orbiting particle inside the ergosphere, and then
the scattered particle being allowed to escape to infinity
with considerably more mass-energy than the original in-
falling low energy particle, as in the PCS, I will classify
such scattering events as "quasi-Penrose" processes. Also
the PPP (pp M e e+), I classify such events as quasi-
Penrose processes: my reason for this will be discussed
fully in Sec. IV C 2. In support of the above classification,
it is important to note that, the extracted (or excess) en-
ergy, the scattered particle escapes with, may have been
forever trapped by the KBH, had the scattering event
not occurred [21]. Moreover, in the case of PCS, at rMn,
this excess energy is 70 times more than the scattered
photon energy, had the scattering occurred outside the
ergosphere or at infinity (flat spacetime). So in summary,
the two classifications, resulting in particles escaping to
infinity with extracted energy from the KBH, are the fol-
lowing: scattering events in which the target particle is
put on a negative energy captured plunge are classified
as classical Penrose processes, and all others as quasi-
Penrose processes. Thus, with the above preliminaries in
mind, I now proceed to present the results.

A. Inverse Compton scat tering

Energy and m, ovnentuna Spectra

The results presented here are for the scattering of 2000
radially infalling photons by orbiting electrons in the er-
gosphere. The mass of the KBH generally used in the
calculations is 10 Mo. Note that the Penrose mecha-
nism can operate for any size KBH irrespective of the
mass of the black hole. The target electrons are located
at rMs or rMB, having orbital energies of 0.349 MeV or
0.539 MeV, respectively, for Q, = 0, where Q, is the
Q value of the orbiting electron [Eq. (2.6)]; notice in
Fig. 1(b) that, as Q, (= Q,*) goes to zero the energies
go to the above given values, as would be expected for
equatorial orbits at constant radii. For nonequatorial or-
bits, as can be seen in Fig. 1(b), the orbital energy of the
particle increases with increasing Q, . For example, when

gQ, = 12.43Mm, (with G = c = 1), the target electrons
located at rMs and rMB have the increased orbital ener-
gies of 3.132 MeV and 5.927 MeV, respectively (cf. with
the above equatorial values). Now, the initial infalling
photon distributions are allowed to have monochromatic
energies ranging from 5 eV to 1 MeV. Moreover, when
not set equal to zero, the temperature of the blackbody
distribution of initial photons, Tpg, and the finite tem-
perature of the orbiting target electrons, T, are given
the values 3.5 x 10 K or 5.8 x 10 K. These above initial
energies and temperatures are compatible with the thin
disk/ion corona models (see Sec. I B).

The final energies of escaping scattered photons as
measured by an observer at infinity Eq. (3.47a) are put
into energy bins, and the spectra [the number of photons
K(E) per average energy interval versus the average en-
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ergy] are plotted as illustrated in Fig. 2. The vertical
error bars of such plots are the standard statistical ~N
errors, involved in a Monte Carlo calculation [4], and
the horizontal bars give the energy widths of the bins.
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FIG. 2. Compton scattering at rMs. (a) E~g = 0.03 MeV
and E, = 0.539 MeV; No. 3 of Tables I and II. (b) Us-
ing nonequatorial target electrons: E~h ——0.03 Mev and
E = 11.79 MeV; No. 10. (c) Using blackbody incoming
photons, thermal target electrons: T~h ——T = 5.8 x 10 K;
No. 19.
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FIG. 3. Compton scattering: scatter plots showing space
momenta of scattered escaping photons (each point repre-
sents a scattering event). (a) Radial momentum components:
(P'„)„vs E'h. (b) Azimuthal angular momentum compo-
nents: I'h vs E'h (c) Polar angular . momentum components

(= gQ'h): (P'z)o vs E'h Same as Fig. .2(a) and No. 3 of
Tables I and II.
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Specific cases (or computer runs) are given in Table I.
Table I gives a summary of the scattering events and the
resulting spectral distributions (I have indicated these by
numbers): Nos. 1—6 give the spectral distributions of the
photons, scattered by equatorial orbiting target electrons
at rMB, Nos. 7—12 give the distributions of escaping pho-
tons that have been scattered by nonequatorial orbiting
target electrons at rMB., Nos. 13—15 give the distributions
of escaping photons when the scattering occurs at rMs,
Nos. 16 and 17 give the photon distribution after scatter-
ing by orbiting electrons of a finite kinetic temperature
T, (g 0 K); Nos. 18 and 19 give the escaping distribu-
tions resulting &om scattering initial blackbody photons
of temperature Tph, by orbiting cold (T, = 0 K) electrons
in one case, and by hot electrons of a finite temperature in
the others, respectively; E~, k is the energy value where
most of the escaping photons are emitted, and E „is the
maximum energy carried by the escaping photons. The
Gnal space momentum components of the escaping pho-
tons in the BIF, &om scattering monochromatic photons
of initial energy E&h ——30 keV, oK cold target electrons
orbiting at rMB, are presented in Fig. 3; Fig. 4 gives these
space momenta after the same monochromatic photons
are scattered ofF nonequatorial target electrons. Both
Figs. 3 and 4 are scatter plots resulting from the applica-
tion of the Monte Carlo method, which yields individual
four-momentum components for the scattered particles.

Several types of eKciencies are established in Sec. II C:
the absolute efficiency of Eq. (2.28b), the W efficiencies of
Eq. (2.30), and the PS efficiency of Eq. (2.31). As we shall
see below, each of these eKciencies reveals an important
aspect of the scattering process. These efBciencies for
specific cases are presented in Table II, where the case
numbers correspond to those on Table I. Note that, cp
is evaluated at where most of the energy is emitted, and

„is evaluated at the maximum energy of the escaping
particles.

The results presented in Figs. 2—4, along with Tables I
and II, reveal the following:

a. rMs scattering compared to r~~ scattering. The
maximum energy attainable by the photons, the W efB-
ciencies, and the absolute eKciency increase as one scat-
ters closer to the horizon (cf. Nos. 3 [Fig. 2(a)], 9, and
10 to 13—15, respectively, on Tables I and II). More-
over, comparing the PS eKciencies for the cases men-
tioned above, one can see that classical Penrose energy
extraction is important at rMB, yet not at rMs.. here, only
quasi-Penrose energy extraction occurs, in which the tar-
get electrons, more than likely, recoil to captured plunge
orbits of, lesser, positive energies [21]. (The radii GAMB

and rMs are defined in Sec. III A 1.)
b. Change in energy of the initial photon Higher .en-

ergies of the infalling photons produce higher maximum
energies for the escaping photons. However, the relation

TABLE I. The Compton scattering processes: resultant spectra.

Case no.
1
2
3
4
5
6

N = 2000
Eph(Me V)

5.11x 10
0.0035
0.03
0.05
0.15
1.0

E, (MeV)
0.539
0.539
0.539
0.539
0.539
0.539

a/M = 0.998
P p(Mm )

0
0
0
0
0
0

r/M = 1.089
N, .' Ep, g(MeV)
1707 0.025
1635 0.128
1521 0.665
1496 0.459
1442 0.459
1390 0.510

E „(MeV)
0.053
0.261
0.759
0.960
1.563
3.956

7
8
9
10
11
12

0.0035
0.0035
0.03
0.03

5 eV
5 eV

5.927
11.79
5.927

11.79
5.927

11.79

12.43
24.79
12.43
24.79
12.43
24.79

1997
2000
1988
1995
1971
1995

5.070
10.77
5.948

11.86
0.016
0.022

5.250
11.07
6.253

12.21
0.016
0.218

13d
14
15

0.03
0.03
0.03

0.349
3.132
6.218

0
12.43
24.79

1527
1980
1991

0.155
2.968
5.950

0.325
3.114
6.195

16
17

0.03 0.539
0.539

3.5x10 K 1614
5.8 x 10 K 1589

0.559
0.307

1.272

2.494

18
19

5.8 x 10
5.8x10 K

0.539
0.539

0 1454
5.8 x 10 K' 1559

0.766
1.387

1.888
4.242

Number of infalling photons used in the scatterings.
Nonzero values indicate nonequatorial orbiting target electrons: P,o = gQ, .
Number of scattered photons escaping.
Scattering at rMs . r/M = 1.2.

'Maxwellian temperature of thermal target electrons.
Photon temperature of blackbody distribution.
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between the initial energy and the final maximum en-
ergy is not linear (cf. the second and last columns of
Table I). Notice that the corresponding W efficiencies of
Table II decrease with increasing initial photon energy,
suggesting that the Penrose mechanism has a favorable
energy range. Also it is found that, to a BLF observer,
as the initial photon energy is increased, more scattered
photons of negative energies arise (of course, these nega-
tive energy photons do not escape from the ergosphere).
In Nos. 4—6 on Table I, there is a noticeable peak that
occurs around 0.5 MeV at rMB for the initial photon en-
ergies in the range of 50 keV& E~h & 1 MeV. This peak
is also evident in the scattering at rMs, occurring around
0.3 MeV for incoming photons with initial energies in
the range of 50 keV& Eph & 1 MeV. The energy values
of these peaks are nearly equal to the orbital energies
of the target electrons at the scattering radii: at rMB,
E = 0.539 MeV and at rMS, E = 0.349 MeV; just how
near a peak is to the energy value of the target orbiting
electrons depends on the initial energies of the incident
photon distribution. Again, as mentioned earlier in this
section, the excess energy of the scattered photon, above
the sum of the energy of the target electron and the ini-
tial photon, is the classical Penrose extracted rotational
energy.

c. Orbiting electrons and incoming photons with finite
temperatures. A finite temperature given to the electrons
that scatter monochromatic photons (I) increases the W

20

10

s~

c
I

10
E (MeV)

Polar Momenta

15 20

Case no.
1
2
3
4
5
6

&BLF
45.7
30.7
10.2
7.34
3.46
0.98

b

23.8
22.1
17.0
15.3
11.4
5.51

PS c
~peak

—0.95
—0.76
0.17
—0.22
—0.33
—0.67

PS c
~max
—0.90
—0.52

0.33
0.63
1.27
1.57

abs d

0.04
0.20
0.54
0.62
0.75
0.64

TABLE II. The Compton scattering processes: eKciencies.
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7
8
9
10
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12

925
207x10

157
315

310x 10
211x10

22.0
22.2
21.4
21.9
22.1
22.2

—0.15
—0.09

—0.002
0.003

—0.997
—0.998

—0.12
—0.06

0.05
0.03

—0.997
—0.99

0.55
0.61
0.79
0.80
0.003
0.01

15

10
1

5

13
14
15

16
17

4.28
69.3
146

14.4
14.8

5.77
5.31
5.38

18.3
19.1

—0.59
—0.06
—0.05

—0.14
—0.02
—0.01
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1.21
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1.29

FIG. 4. Compton scattering: scatter plots showing space
momenta of escaping photons scattered by nonequatorial or-
biting target electrons (each point represents a scattering
event). Refer to Fig. 3, for further explanations of momentum
components: (a) radial, (b) azimuthal, and (c) polar. Same
as Fig. 2(b) and No. 10 of Tables I and II.

a ( total outgoing P oton energy ) as measured by a BLF observer( total incoming photon energy/
b W efficiency in the BLF

W efficiency in the LNRF )'"+"value indicates classical Penrose extraction of rotational
energy.
d total out going phot on ener gy

,
total input energy (electrons+photons)
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and absolute efficiencies of Table II, and (2) increases the
maximum energies of escaping photons (cf. Nos. 3 and
4 to 16 and 17, respectively on Table I; notice that the
PS eKciencies are not given for the thermal scattering
cases, Nos. 16—19, because, these eKciencies make sense
only for monochromatic initial energy distributions or
single scattering events [see Eq. (2.31)]). When the in-
coming photons, described by a blackbody distribution
of particles at a finite temperature, scatter oK cold tar-
get electrons, the resulting spectrum acquires a thermal-
like (as related to a Planck curve) appearance; cf. No.
18 to 4 (here the initial photons have a monochromatic
energy equivalent to the blackbody photon temperature
T~h = 5.8 x 10 K). When both the target electrons
and the incoming photons are given finite temperatures,
Fig. 2(c), the maximum energy of the escaping photons
increases by a factor of 4, from that of the equivalent
case with T~h = T, = 0 (cf. No. 19 to 4).

d. Nonequatorial orbiting target electrons. When the
nonequatorial orbiting trajectories are used for the target
electrons (Appendix A), the scattered photons can escape
with higher energies. These escaping energies increase
with increasing Q values of the target electron orbits.
Again, as in the cases of equatorial target electrons, the
escaping photon distribution tends to peak around the
target electron orbital energy [see Fig. 2(b) and Nos. 9,
10, 14, and 15 of Table I].

e. The efficiencies compared The effi.ciencies of Ta-
ble II, to be used. along with Table I in the comparisons
for the di8'erent cases mentioned below, are defined as fol-
lows. The W efficiencies, eBLF, of Eq. (2.30b), tells us the
energy gained/loss by the incoming distribution of scat-
tered photons in the BLF; and e, of Eq. (2.30c), relates
this energy gained/lass, to that which is measured by a
LNRF observer [Eq. (2.30a)]. The PS efficiencies, ePs

&

and e „, as given in Eq. (2.31), tell us whether or not
classical Penrose energy was extracted: a positive value
indicates classical Penrose energy extraction; a negative
value indicates quasi-Penrose extraction. These are eval-
uated at the peak and maximum energy values Ep
and E „, respectively (of Table I). On the other hand,
the absolute efficiency, e b' as given in Eq. (2.28b), tells
how effective the total input energy is converted into en-
ergy that can be radiated away.

For scattering at rMB, the radius of marginally bound.
orbits, the W eKciencies convey the following. Notice
that for equatorial target electrons, eBi F [Eq. (2.30b)]
is largest for the low energy initial photons (cf. Nos.
1—6), and as the total energy of the initial photons is
increased, eBIF decreases. This suggests that PCS works
more effective for infalling photons with energies 150
keV; that is, initial photon distributions with energies
above this value give up energy in the scattering process,
as measured by a BLF observer (cf. No. 6).

On the other hand, still at rMB, the absolute efBciency
and the PS efFiciencies convey the following. For the
equatorial target electrons of Axed orbital energies, as
the total energy of the initial photons is increased, 6

starts very low for the low initial energy (No. 1), reaches
a maximum for the moderate initial energy (No. 5), then
declines at higher initial energies (No. 6), as would be

expected, based on the above suggestion that the PCS
works best for moderate initial photon energy (Nos. 3—
5). Likewise, under the same initial conditions, both PS
efficiencies start negative in Nos. 1 and 2 (indicating
only quasi-Penrose energy extraction, in which the tar-
get electrons are put on plunging trajectories of positive
energy orbits); both become positive in No. 3 (indicat-
ing classical Penrose energy extraction becomes domi-
nant, in which the target electrons are put on negative
energy plunges); then in Nos. 4—6 only e „ is positive
(indicating that classical Penrose energy extraction may
no longer be dominant). For the nonequatorial target
electrons we find similar behaviors for the efficiencies (cf.
Nos. 7—12).

Now at the scattering radius rMs, the PS efficiencies
suggest that no energy is extracted by classical Penrose
processes; nevertheless, since the energy boosts and the
absolute efficiencies can get to be fairly large, as indi-
cated by eBLF and e ', respectively, such quasi-Penrose
processes are expected to contribute, some, to the overall
emitted photon spectrum (cf. Nos. 13—15).

Of the cases considered, for equatorial targets, the ef-
6ciencies of Table II seem to suggest that the PCS mech-
anism gives the most favorable results for the cases of
(Nos. 3—5): For favorable results we want both e&&F and

' as large as possible, and, as far as classical Penrose
extraction is concerned, we desire 6p k and 6 to have
large positive values. Now concerning the nonequatorial
target electrons, using a similar argument to that given
above, the most favorable results (out of the cases pre-
sented here) are given for the cases of Nos. 9 and 10.
Notice that in these favorable cases the incoming pho-
tons have moderate (soft x-ray) energies. In addition,
notice that the highest absolute efBciency is given for
the case of thermal initial photons and thermal target
electrons [see Fig. 2(c) and No. 19]. Unfortunately, in
the thermal cases, simple values for the PS efFiciencies
cannot be found; however, for the thermal cases pre-
sented here (Nos. 16—19), I presume that these efficien-
cies will not be too much di8'erent from the cases of Nos.
3 and 4.

2. A. typical scattering event (PCS)

In this section, we will follow the scattering process of
one Compton scattering event &om t'ie initial photon to
the final photon. This event is typical of the other scat-
tering events. The initial photon has energy Eph ——0.03
MeV, and the target equatorial orbiting electron at r =
rMB has energy E, = 0.539 MeV (marginally bounded),
in the BLF. In the LF the photon energy increases to

0.959 MeV [Eq. (3.12)] and in the ERF it in-
creases to e &

——1.427 MeV [Eq. (3.21a)]. Application of
the Monte Carlo method to the cross section [Eq. (3.41)]
gives the scattering angles b = 60.19 and n = 24.02
from Eqs. (3.44) and (3.45), respectively. The final en-

ergy of the photon is as follows: In the ERF Eph 0 594
MeV [Eq. (3.23)]; this transforms to e'

h
——0.991 MeV

[Eq. (3.46a)] in the LF; and a BLF observer measures
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this final energy to be E'h ——0.762 MeV [Eq. (3.47a)].
Upon comparing the final energy E'h and the initial en-

ergy E~h given above, notice the energy gained by the
final photon in the BLF (E'h ——25.4E~h) these energies
compared in the LF give that mph 1 033Eph Momen-
tum components resulting from the distribution of initial
monochromatic photons, in which the case just consid-
ered is represented by a point on the scatter plots, are
presented in Fig. 3; and these momenta belong to mem-
bers of the spectrum in Fig. 2(a). Notice in Figs. 3(a)
and 4(a) that a large number of particles with negative
radial momenta escapes (this may be important in as-
trophysical jet formation). Compare Fig. 3, scattering
by equatorial target electrons, with Fig. 4, scattering by
nonequatorial target electrons, and notice how the mag-
nitudes of the polar coordinate angular momenta (P'h)e
of the escaping photons increase for the nonequatorial
cases, as would be expected; also notice the one-sided
distribution in the polar direction (this too may be of
astrophysical significance as related to the jets; this will
be discussed in Sec. V).

B. p-ray —proton pair production

Energy and momentum 8pectra

In these pp ~ e e+p processes, for a distribution of
2000 initial radially infalling photons of monochromatic
energy E~ = 40 MeV in the BLF, none of the scattered
pairs are allowed to escape, and thus, there is no need
to present energy and momentum spectra here; never-
theless, detailed results are presented below, along with
suggestions to make this, if possible, a feasible PPP pro-
cess. Note that the energy value used for the infalling
p-ray photon is consistent with the theoretical suggested
value (Sec. IB). Because of the approximations that e~,

)) p, used in the integration of the cross section
[Eq. (3.58)], it is found that the following condition must
be satisfied: e~, e'+, e & 200 MeV in the LF (& 6 MeV
in the BLF). On the other hand, if the energy of the p
ray is too high (& 60 MeV in the BLF or & 1.918 GeV in
the LF), the assumption that the recoil energy given to
the proton is negligible [see Eq. (3.62)] cannot be main-
tained, since the energy of the photon in the LF will be
greater than the rest-mass-energy of the proton ( 938
MeV). Thus, it is found that a feasible range of initial
energies for the p ray in the BLF is 10 MeV& E~ & 60
MeV, using the cross section given by Eq. (3.60), and
if the scattering is done near the marginally bound ra-
dius GAMB ( 1.09M). However, for a radially infalling p
ray, with such high energy in this range, the radial mo-
mentum component is too high at the scattering event
for the azimuthally directed proton to scatter any of the
e e+ pairs into the positive radial direction, that which
is needed to escape (in particular at rMn, since pairs pen-
etrating this radius must plunge directly into the black
hole). It remains to be seen what happens when the
p ray is initially infalling with positive or negative az-
imuthal direction, at the scattering event. It is possible

that the electron pair may then be allowed to escape, but
with only the energy of the infalling p ray, i.e. , without
any energy being extracted from the KBH. This limita-
tion on the escaping energies of the pair can be expected
because of the assumption made that the recoil energy
given to the proton is negligible [Eq. (3.62)], therefore,
making any energy exchange between the p ray and or-
biting proton impossible. If this be the case, then, this
assumption must be taken out of the cross section (more
on this later in Sec. VB 2).

2. A typicat scattering event (pp -+ e e+p)

In order to shed some light on the above results, one
pair production event is followed and various parame-
ters are presented (as done for Compton scattering in
Sec. IV A 2), with this event being typical of the oth-
ers. The scattering occurs at the radius r = 1.09M
( rMii). The initial energy of the radially infalling p ray
is E~ = 40 MeV, and the energy of the orbiting proton is
E„=966.9 MeV, as measured by a BLF observer. A LF
observer measures this initial p-ray energy as e~ = 1.251
GeU [Eq. (3.56)], and in the PRF, this energy is mea-
sured as e = 1.837 GeV [Eq. (3.57a)]. Application of
the Monte Carlo method to the cross section [Eq. (3.60)],
and then using the root-mean-square angle of Eq. (3.66a)
to And the scattering angles that the pairs make with the
primary p ray in the PRF, one Ands the following. The
scatteI jng angles are 0 = 0.045 and 0+ ——0.158 for the
negatron and positron, respectively; the corresponding
maximum angles of Eq. (3.67) used in Eq. (3.66a) were
0 „=9.43 and 0+ „——12.97, respectively. These
angles were obtained by setting 0 „(or 0++ „) equal
to 8.594 plus Eq. (3.66e) for the negatron (or positron):
it turns out that the results depend very little on the
choice of these maximum angles. The energies of the
pairs in the LF are measured to be c = 1.05 GeV and
c+ ——201.0 MeV. To a BLF observer these energies are
measured as E = 33.76 MeV and E+ ——6.828 MeV;
thus, we see that the sum of the pair energies approxi-
mately equals E~ (= 40 MeV), indicating negligible en-
ergy gain for the pair by way of the Penrose process. This
e8'ect of getting back approximately only the energy of
the incident p rays, for the e e+ pair. , is found to occur
in all the pp —+ e e+p events. Again, the reason for this
is probably the assumption that negligible recoil energy
is given to the proton [Eq. (3.62) used in Eqs. (3.63) and
(3.77b)]. It may be worthwhile mentioning here that in
order to get an effective Penrose process, some recoil into
a retrograde and/or negative energy orbit of the proton
must be allowed.

C. p-ray~-ray pair production

Ence'gy and momentum, 8pectra

As in the above scattering processes, 2000 initial ra-
dially infalling photons participate in pair production
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events. In most cases, monochromatic photons of initial
energy in the range of 3.5 keV& E~i & 10 MeV, scatter
ofF photons orbiting at the photon orbit with energies in
the range 3.4 MeV& E~2 & 2.146 GeV, as measured by
a BLF observer; in the other cases, the infalling photons
are from a blackbody distribution of finite temperature
Tph However, the acceptable lower limits of E~i and
E~2 are dependent on the threshold energy requirement
of Eq. (1.2). The orbiting photon energy is given by
(A20) and is plotted in Fig. 1(a). It is assumed here
that these p rays of the photon orbit have been initially
blueshifted by the KBH to energies (E&2) in the range
as given above, and that they have the corresponding Q
values (Q~2) of the photon orbit [cf. Eq. (2.6)]. Note
that the high energy p rays of E~2 are consistent with
existing accretion disk models (see Sec. I C).

The energy spectra of the escaping e e+ pairs are
shown in Fig. 5; see also Table III (again, each scat-
tering case is represented by a number). Corresponding
efficiencies similar to those of Eqs. (2.28b) and (2.30) are
expressed in Table IV. Numbers 1—18 give the distribu-
tions of escaping pairs when the infalling photons have
monochromatic energies E~i in the range given above,
and the target photons have orbital energies E~2 in the
range also given above, with corresponding Q values in
the range of 0.099Mm, ( QQ~2 ( 62.28Mm, . Case No.
19 gives the distribution resulting from infalling photons

of blackbody temperature T~h ——5.8 x 10 K and target
photons having energy E~2 ——10.75 MeV. For comple-
tion, the space momentum components for case No. 8
of Tables III and IV, and Fig. 5(b), are presented in the
scatter plots of Fig. 6.

The eKciencies presented in Table IV are defined gen-
erally in Sec. IIC; however, here, brieHy we will review
their meaning, as they relate to the present scattering
process. The W efBciencies ~&&F and e&& give the ra-
tios of the total energy of the escaping pairs to the total
energy of the incoming photons in the BLF and I F, re-
spectively; and e reveals how these ratios are related
[see Eq. (2.30c)]. The absolute efficiency e ' expresses
the ratio of the total energy of the escaping pairs to the
total input energy: of the incident photons (E i + E 2)
used in the 2000 scattering events. The PS eKciencies,
which do not appear in Table IV, are all negative, in-
dicating that no classical Penrose energy is extracted in
this PPP; however, quasi-Penrose energy is extracted.

The results presented in Nos. 1—19 of Tables III and
IV, and Fig. 5 reveal the following:

a. Changing the energy of the infal/ing photon, E~i.
In most of the spectra a characteristic peak appears at an
energy approximately equal to 2 the orbital energy of the
photon (E~2). With a fixed orbital energy E~2()) E~i),
and an increasing E~i, the shapes of the spectra depend
very little on E~i [cf. Fig. 5(c) to 5(d)]. However, when

TABLE III. The pp —+ e e+ processes: resultant spectra.

Case no.
1
2
3
4

mph ——1.074M
E~i (MeV)

0.0035
0.03
1.0
10

E~g(MeV)
3.40
3.40
3.40
3.40

N = 2000
P~2o(Mm, )

0.099
0.099
0.099
0.099

N„'
1326
1382
644
324

a/M = 0.998
Ei„k(MeV)

1.782
1.289
1.231
0.767

E „(MeV)
2.209
3.163
3.181
3.158

0.0035
0.03
10

10.?5
10.75
10.75

0.312
0.312
0.312

1895
1812
845

5.370
4.653
1.303

9.840
10.44
10.34

0.0035
1.0

34.00
34.00

0.987
0.987

1964
1684

17.35
11.25

32.87
32.96

10
11

0.0035
0.03

206.7
206.7

6.0
6.0

1992
1984

97.48
106.0

197.8
199.9

12
13

0.0035
0.03

340.0
340.0

9.87
9.87

1995
1989

170.8
174.4

318.5
328.7

14
15
16

0.0035
0.03
1.0

854.1
854.1
854.1

24.79
24.79
24.79

1997
1992
1967

372.2
432.6
407.5

757.0
818.3
831.8

17
18

0.0035
0.03

2.146 GeV
2.146 GeV

62.28
62.28

2000
1997

906.3
1.068 GeV

1.713 GeV
2.026 GeV

19 3.5 x 10 10.75 0.312 1743 4.60 10.44

Number of infalling photons used in the scattering.
P&28 =—QQ~2, of the photon orbit.

'Number of escaping electrons (or positrons).
Photon temperature of blackbody distribution.
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the energies E~i and E~2 are comparable, and E~i is
allowed to increase there is a noticeable change in the
spectra: The distribution around the characteristic peak
(always at 2E~2) is Hatter for low E&q, and as E~q in-
creases, the peak becomes more pronounced and occurs
at a smaller energy than the characteristic peak (Nos.
1—4). In addition, the maximum energy of the escaping
pairs is ahvays E~2, depending little on increasing E~z
(cf. E~2 and E „on Table III). The number of escap-
ing particles decreases with increasing E~i, this feature is
more profound for lower energies of E~2 (cf. Nos. 1—3 to
14—16 of Table III). Also, with increasing E~r, the num-
ber of electrons (e e+ pairs) with negative energies as
measured by a BLF observer increases. Moreover, both
the W efficiencies and the absolute efficiencies presented
in Table IV decrease with increasing E~i, for a fixed value
of small E~2. this is not true for e ' when E~2 is large
(cf. corresponding case numbers on Tables III and IV).

b Cha. nging the energy of the orbiting photon, E~2.
First, the maximum energies of the escaping pairs, E
increase with increasing E~2, and is approximately equal

to E~2, as can be seen on Table III and in Fig. 5. Sec-
ond, as E~2 increases to values )) p, the spectra become
invariant and the distribution of the escaping electrons
has a more pronounced characteristic peak ( E~—2), as
can be seen in Fig. 5. Finally, we notice in Table IV,
the behavior of the efficiencies [Eqs. (2.28a), (2.30b),
and (2.30c)] with increasing E~2 are the following: eBLF,
which give the ratio of the total escaping energy (of the
e e+ pairs) to the total infalling photon energy in the
BLF, increase without bound; e reaches a maximum
value of 49.5, nearing the blueshift factor at the photon
orbit [e " 52; see Eqs. (2.8d) and (2.10a)], as would be
expected, since this efficiency is a measure of the relative
difference between the BLF and LF; and e ', which ex-
presses the ratio of the total escaping energy (E++E ) to
the total input energy (E ~+ET2), reaches a maximum of

0.5, as would also be expected, since in these PPP pro-
cesses, for radially infalling incident photons, one of the
pairs usually escapes, while the other becomes trapped
by the KBH.

c. Infalling blackbody photons At hi.gh energies for
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FIG. 5. Penrose pair production (pp ~ e e+): (a) E~z ——0.0035 MeV (infalling) and E~2 = 10.75 MeV (target); No. 5 of
Tabies III and IV. (b) E~r ——0.0035 MeV and E~2 = 34.0 MeV; No. 8. (c) E~r ——0.03 MeV and E~s ——854.1 MeV; No. 15.
(d) E~q ——0.03 MeV and E~s = 2.146 GeV; No. 18.
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I I I I I I I I I fABLE IV. The pp —+ e e+ processes: eKciencies.
90.
80.
70.

(a)
Case no.
1
2
3
4

W a
~BLF

311
37
0.41
0.02

W b

47.2
41.0
29.1
28.8

abs c

0.32
0.33
0.09
0.02

30.

5
6
7

145x10
154
0.11

48.8
45.3
20.4

0.47
0.43
0.05

20.

I ~ I I I I"I I l I'I I. I I I I, I I l~l I I I I I I I I I I'J I:I. I I I I I J
10. 20. 30. PO.

E(Me V)

8
9

10
11

478 x 10
10.2

290 x 10
42.2

49.3
33.1

49.5
40.3

0.49
0.29

0.49
0.39

I I I I I I I I I
I

I I I I I I I I I
I

I I I I I I I I I
I

I I I I I I I I I

472 x 10
562 x 10

111x10'
140x 10

404

49.5
49.3

49.5
49.5
47.5

0.49
0.50

0.46
0.49
0.47

1 OQ.

17
18

253x10
348 x 10

49.5
49.5

0.41
0.49

50.7 41.8 0.39

50.
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a total outgoing e e+ energy
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(c)

E~2 (the orbiting photon), there is no noticeable change
in the emitted spectra from that of the monochromatic
infalling photons; and at lower energies for E~2, there
is very little change in the spectra (cf. No. 6 to 19 of
Table III).

2. A typical ecattering event (pp —+ e e+)

(I)

gz

D.

r—2.

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I l~l I I I I J
'I 0. 20. 30. 40.

E(MeV)
FIG. 6. Penrose pair production (pp m e e+): scatter

plots showing space momenta of scattered escaping pairs
(each point or mark represents a scattering event). For
the infalling photons, E~q ——3.5 keV, and the target orbit-
ing photon, QQ~2 = 0.987Mrn, with corresponding energy
E~2 ——34.0 MeV. (a) Radial momentum components. (b) Az-
imuthal angle momentum components. (c) Polar angle mo-
mentum components (= v'q~). Same as Fig. 5(b) and No. 8
of Tables III and IV.

As it was done above for the other scattering processes,
we will follow one pp —+ e e+ scattering event. The
infalling photon has energy E~z ——3.5 keV; the target
photon of the photon orbit has energy E~2 ——34.0 MeV
(A20), defined by the Q value of the orbit, QQ~2
(P~2) o = 0.987Mm, [see Fig. 1(a)]. In the LF these ener-
gies become a~i ——182.9 keV [Eq. (3.99)] and a~2 ——35.87
MeV [Eq. (3.100)], respectively. The pair production
process is done in the center-of-momentum frame (c.m.
frame). The Monte Carlo method is applied to the cross
section [Eq. (3.112)]and the scattering angles of the pairs
are determined [see Eqs. (3.105b), (3.105c), (3.117), and
(3.122)]. Upon transforming back to the LF, the ener-
gies of the positron and the negatron are measured to be
e+ ——22.73 MeV and e = 13.2 MeV, respectively. The
BLF observer measures these energies as E+ ——12.5 MeV
and E = 12.39 MeV, respectively. Notice that the sum
of the pair energies in the LF, equals (approximately) the
sum of the primary photon energies in the I F, as would
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be expected, due to conservation of energy in this pseudo
flat spacetime. In Fig. 6, momentum components of the
escaping pairs, for the case under discussion, are pre-
sented; this particular scattering event is represented by
a point on the scatter plots, and is a member of the pairs
in the spectrum of Fig. 5(b). The space momentum com-
ponents in Fig. 6 reveal the following features of this PPP.
(1) Only positive radial e e+ pairs escape; this can be
expected, since the scattering takes place at the photon
orbit, beyond the last orbit (rMB) possible for any ma-
terial particle (Sec. IIIA 1); therefore, inward scattered
pairs would fall directly into the KBH [cf. Fig. 6(a)]. (2)
The azimuthal angular momenta and energies are linear,
and similar to the PCS [cf. Figs. 6(b), 3(b), and 4(b)].
(3) The polar angular momenta have a nearly syminetri-
cal distribution about the equatorial plane [cf. Fig. 6(c)];
note that this is found not to be the case in the scatter-
ings by the higher energy targets, as will be discussed
later.

In the above so-called quasi-Penrose process, one might
ask the question, was energy extracted from the KBH,
since the pairs can escape with only the energy of the
incident photons: the answer is yes, because of the fol-
lowing explanation, which includes my reason for classi-
fying this PPP as a quasi-Penrose process. Photons are
blueshifted to higher energies as they be"ome bound in
unstable orbits at the photon orbit. This newly acquired
energy is given to a photon by way of the gravitational
potential well (or the curvature of spacetime), and by
way of the kame dragging due to the KBH. Now, be-
fore going on, I must deviate briefly to explain how these
photon orbits, illustrated in Fig. 1(a), may be populated:
I am assuming that the criteria for a photon to become
bounded, depends on its polar angular momentum (i.e. ,
its Q value) and its blueshifted initial energy [and that
this blueshifted energy corresponds to the energy given
when this Q value is substituted into Eq. (A20)]; more-
over, since in the equatorial plane at the photon orbit
E~2 ——0 (or E&2/po = oo), I am led to believe that the
only photons that can possibly become bound to the pho-
ton orbit are the ones with Q~2 ) 0, and that no bound
orbits exist for Q~2 ——0 (orbits that would be confined
to the equatorial plane). Instead of depending on "nor-
mal" accretion processes, populating the photon orbit
will most likely depend on some prior Penrose scattering
processes to create the seed photons for these pp ~ e e+
reactions, especially true for the bound photons that have
large orbital energies with corresponding large Q values.
Such a task can possibly be accomplished by the PCS
photons; these photons can, under the right initial con-
ditions, be made to have the appropriate energies and Q
values needed, i.e. , to populate the photon orbit. In addi-
tion, as has been suggested [18], the p rays created in the
7r —+ pp decays (Sec. IB) can, also, populate the photon
orbit, i.e. , if the p rays are created with the appropriate Q
values; this is something worthwhile investigating. (Pos-
sible ways to populate the orbits of the target particles
will be looked at further in the following section. ) Now
continuing, assuming prior processes have populated the
photon orbit, when the low energy infalling photons and
the blueshifted orbiting photons collide, producing e e+

pairs, the electrons that are allowed to escape to infinity,
escape with the blueshifted energy imparted to the or-
biting photons by the KBH; thus, in part, the energies of
the escaping electrons come from the KBH, illustrating
that energy is extracted: for this reason, I have classified
such PPP events as quasi-Penrose processes.

D. Conclusions of the results

I conclude this section with the following comments.
Of all the scattering cases presented, it seems that the
incoming photon energies that give the most favorable
results are in the ranges of 30 keV to 150 keV for the
Compton scattering processes, and 3.5 keV to 30 keV for
the pp ~ e e+ processes, based on what has been said
above concerning the efliciencies [Eqs. (2.28b), (2.30),
and (2.31)]: Recall that, indeed it is important to have a
large factor by which the total input energy is increased
(eBrF —"Penrose boost" ); however, it is equally impor-
tant to have a large as possible absolute eKciency e
which gives the amount of the total input energy (of the
test particles participating in the scattering events) that
can be electively radiated away. To add to the impor-
tance of e ', this eKciency is largest for the PCS cases
when classical Penrose energy is extracted (cf. e, & and
ePs„of Table II). The above incoming photon energy
ranges are consistent with the thin disk/ion corona ac-
cretion models (Sec. IB). Note that the most favorable
results are defined as the ones with absolute eKciencies

' ) 0.42, where this lowest limit expresses the value
of the gravitational binding energy of a unit mass of gas
when it reaches the inner edge of an accretion disk about
a maximum rotating (a = M) KBH: the gravitational
binding energy equals the total energy radiated by a unit
mass of gas during its passage inward through the disk
(neglecting radiation due to viscous stresses) [37].

Overall, for the scattering cases presented here for a
10 Mo KBH, the PCS photons can escape with ener-
gies in the range 15 keV E'

& l2 MeV; and the PPP
pairs (pp ~ e e+) can escape with energies in the range
2 MeV& E+ & 2 GeV. Details of how well these cases
correlate with existing accretion disk models will be dis-
cussed in the next section. Moreover, these Penrose pro-
cesses can operator for any size mass rotating black hole.
However, the emitted spectra will depend on how well
the orbits of the target particles are populated by prior
Penrose processes and normal accretion disk processes.

V. DXSCUSSZON

A. Summary

In this paper, I have presented Monte Carlo computer
simulations of Compton scattering and e e+ pair pro-
duction processes (pp —+ e e+p and pp —+ e e+) in the
ergosphere of a KBH. Particles, compatible with a thin
disk/ion corona accretion surrounding the black hole, fall
into the ergosphere and scatter oK target particles that
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are in bound orbits. These orbits consist of equatorial
[Q = 0; see Eq. (2.6)] and nonequatorial (Q ) 0) orbits.
In this paper, the equations that govern the orbital tra-
jectory of a particle about a KBH are solved to determine
the conserved energy and angular momentum of material
and massless particles that have orbits not confined to
the equatorial plane (i.e., nonequatorial orbits; see Ap-
pendix A). The escape conditions to determine whether
or not a particle escapes &om the potential well of the
KBH are applied to the scattered particles. The Penrose
mechanism allows rotational energy of the KBH to be
extracted by scattered particles escaping &om the ergo-
sphere to large distances &om the black hole. The results
of these model calculations, as we shall see in this section
show that the Penrose mechanism is capable of producing
the astronomically observed high energy particles emit-
ted by quasars and other AGN. This mechanism, as ap-
plied in the models of this paper, can extract hard x-ray
and p-ray photons, &om the inverse Compton scatterings
of initially low energy UV and soft x-ray photons by tar-
get orbiting electrons inside the ergosphere. These model
calculations also allow relativistic e e+ pairs to escape
after being produced by infalling low energy photons, in-

teracting with target photons in bound orbits inside the
ergosphere, at the photon orbit. This process may be the
origin of the copious relativistic electrons inferred from
observations to emerge from the cores of AGN.

B. Observations and disk model correlations

Ineerse Compton scatterin

Putting these PCS results into an astrophysical con-
text, this process may play an important role in the up-
grading of UV photons 5 eV, say &om a classical thin
disk, to x-ray photons 15—218 keV; and in upgrading
soft x-ray and hard x-ray photons 0.511—150 keV, say
from the thin disk/ion corona accretion (Sec. I B), to hard
x-ray and p-ray photons 53 keV —12 MeV: contributing
to the high energy observed spectra of AGN. In addition,
because most of the escaping p rays have negative radial
momenta and nonzero polar coordinate angular momenta
[see Figs. 3(a), 3(c), 4(a), and 4(c)], these p rays could
possibly aid (along with magnetic fields and relativistic
electrons) in the formation of the observed astrophysical
jets commonly seen in AGN. Depicted in Fig. 7 are polar
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coordinate momentum components for various Penrose
scattering cases. Compare Figs. 3(c), 4(c), 7(a), and 7(c),
which are for PCS; notice the asymmetry in the polar di-
rections: the one-sided distribution favors the positive
eo direction. This feature could be extremely important
in jet formation. Moreover, concerning the observations
of these PCS photons, hard x-ray and p-ray AGN obser-
vations have detected energies consistent with the range
predicted by this model; d.etails are addressed in another
paper [38].

2. p-ray —proton pair production

Because of the high energy e e+ pairs predicted to be
produced in this PPP process, this process could possibly
be a somewhat fruitful way of extracting relativistic e e+
pairs from the KBH, if one would, perhaps, relax the
assumption that no recoil energy is given to the proton.
This assumption is used in the integration of the cross
section [Eq. (3.60)]. Relaxing this assumption has yet to
be done, but would. be one direction in which this research
could be extended. In addition, since high energy initial
photons are required by this pp ~ e e+p process, they
would have to infall from an azimuthal direction [e.g. ,
spiral: I g 0, in Eqs. (2.8c) and (2.8d)], so as not to have
extremely large negative radial momentum components,
which prevented, in these scattering cases, the pairs from
escaping.

8. p-ray~-ray pair production

In an astrophysical context, the results of this PPP
process clearly show that this is an important way, if
not the dominant way, to extract the relativistic e e+
pairs —contributing to the observed synchrotron radia-
tion of AGN, and the formation of jets. In essence, a
possible picture of what an observer at infinity (the BLF)
observes is the following: low energy unbound infalling
photons, with energies as low as 3.5 keV (soft x rays),
pair producing relativistic electrons at the photon orbit,
of which about 50% of these relativistic electrons are al-
lowed to escape from the potential well of the KBH, with
energies as high as 2 GeV. These copiously produced
relativistic escaping electrons can participate in astro-
physical processes inherent to observations of AGN, such
as, the production of the synchrotron radiation and the
formation of jets. It is important to note here that if
this pp —+ e e+ process had not occurred, photons in
the photon orbit would, most likely, not have had any
other way of escaping, and the energy released in this
PPP process would have been forever trapped by the
KBH. However, I cannot rule out the possibility of pair
production between the photons in the photon orbit, nor
the possibility that the photons in the unstable photon
orbit can be made, if perturbed slightly, to spiral inward
or escape outward.

Penrose processes and the classical thin disk

First note that, in these PCS and PPP (pp m e e+)
processes, the low energies used for the infalling pho-
tons are consistent with the surface temperature (T,
5.3 x 10s K—4 x 10~ K, at r = 1.43M, for M = 10sM~) of
the classical thin disk accretion model about a KBH [39].
Now, the scenario for a 10 Mo KBH, surrounded by a
classical thin disk (i.e. , before the Lightman instability
sets in, as discussed in Sec. IB), is the following. About
75% of the initially infalling soft x rays ( 3.5 keV),
that have undergone PCS by equatorial orbiting target
electrons, can escape with boosted energies as high as
hard x rays ( 0.26 MeV), while the others either fall
into the KBH, or become bound at the photon orbit
acquiring blueshifted energies as high as 13 MeV (cf.
No. 2 of Table I; recall that the blueshift parameter [of
Eq. (2.8d)] is 50 at the photon orbit). The scatter
plot of Fig. 7(a) illustrates that indeed such PCS pho-
tons can acquire the necessary Q values to populate the
photon orbit by the criteria discussed in Sec. IV C 2 [i.e.,
the energies and Q values must match those of the pho-
ton orbit; cf. Fig. 1(a)]. Subsequently, these blueshifted
photons, now assuming to have populated the photon
orbit, can undergo PPP (pp -+ e e+) processes with in-
falling soft x rays, producing e e+ pairs with energies
as high as 12 MeV [cf. Fig. 5(a) and No. 5 of Ta-
ble III]. About half of the produced pairs escape: these
pairs can subsequently radiate synchrotron radiation in
the presence of a magnetic field (as discussed in the fol-
lowing section). Thus, I conclude, that, due to PCS and
PPP (pp ~ e e+) processes, in a classical thin disk, the
highest particle energies attainable for the PCS photons
are 260 keV; and for the relativistic PPP electrons, the
highest energies attainable are 12 MeV. Yet, without
these Penrose processes, as can be seen above from the
surface temperature T„ the highest energy radiated by
a classical thin disk surrounding a supermassive KBH is

3.5 keV, and, of course, no pair production.

$. I'enr oae pr oce88e8
and the thin disk/ion corona

Since the disk can exist between two phases (thin
disk/ion corona; see Sec. I B), the occurrence of the Light-
man instability can act to enhance the Penrose process,
being responsible for the observed variabilities, and. par-
ticle energies up to GeV, as we shall see in the follow-
ing scenario, for a 10 Mo KBH, surrounded by a thin
disk/ion corona. In this scenario, x rays 0.03—0.15
MeV, after undergoing PCS by equatorial orbiting tar-
get electrons, can escape with boosted energies ranging
from 0.7 MeV up to 4 MeV (see Nos. 3—5 and 19
of Table I). Just as in the classical thin disk, about 75%
of the PCS photons escape, while the others either fall
into the KBH, or become bound at the photon orbit
acquiring blueshifted energies, however, in these cases,
ranging from 35 MeV to as high as 200 MeV. The
scatter plots of Figs. 3(c) and 7(c) illustrate that indeed
these PCS photons can acquire the necessary Q values to
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populate the photon orbit in the above blueshifted energy
range [cf. Fig. 1(a)]. Subsequently, the blueshifted pho-
tons, now assuming to have populated the photon orbit,
can undergo the PPP (pp -+ e e+) processes with in-
falling soft x rays, producing e e+ pairs that can escape
with energies as high as 200 MeV (cf. Nos. 8 and 10
of Table III). Moreover, such escaping relativistic e e+
pairs, in the presence a large strength magnetic Geld, as
we shall see below, can produce synchrotron radiation
spectra, with energies ranging up to GeV, consistent
with the observed spectra of AGN.

Now we assume that the photon orbit can be populated
by p rays from the pion decays (vro ~ pp), occurring in
Eilek's [12] thin disk/ion corona model in the Kerr inet-
ric (see Secs. IB and IC). To test the validity of this
assumption, these pion decays, as well as the resulting
pairs produced by these newly created p rays, should be
treated also as Penrose processes, since the inner region
of the accretion disk extends well inside the ergosphere
(to r~s = 1.2M). There is a strong possibility that
some of the resultant scattered Penrose particles will ac-
quire the necessary Q values to populate the orbits, since
this was found to be the case in the PCS events. Such
an investigation is under way by the author; the results
will be reported elsewhere. Nevertheless, these p rays are
created with energies narrowly peaked around E~ 75
MeV. Such p rays, say, of initial energies E~ 50 MeV
can be blueshifted to energies 2 GeV, as they become
bound at the photon orbit. Subsequently, infalling soft x
rays from the disk can undergo PPP (pp ~ e e+) with
these bound p rays, producing e e+ pairs that can es-
cape with energies up to 2 GeV [cf. Fig. 5(d) and Nos.
17, 18 of Table III]. Again, magnetic fields can harden
the observed energy spectra to energies & 2 GeV: we
next look at such secondary processes. But first, notice
in Figs. 6(c), 7(b), and 7(d) the increase in the asymme-
try of the pair distribution, as the orbital energy (or Q
value) of the target photon increases: such one-sidedness
could be, as in the PCS case, extremely important in jet
formation.

Moreover, if we assume that pairs produced in the
model of Ref. [12],mentioned above, with energies peaked
around E~ 35 MeV, can populate the nonequatorial
target electron orbits, at least in the range of 12 MeV:
provided that these electrons are created with appropri-
ate Q values [cf. Fig. 1(b)], then PCS, of infalling soft x
rays and UV photons from the disk, allows most of the
scattered photons to escape with boosted energies up to

12 MeV [cf. Nos. 7—12, 14, 15 of Table I and Figs. 2(b)
and 4]. These PCS p rays up to 12 MeV (or 35
MeV) could contribute somewhat to observed spectra in
this energy range. The importance of these PCS p rays
is that they would acquire and escape with large polar
coordinate momenta [cf. Fig. 4(c)]: thus supporting the
jet formation process.

Yet, still before going on to discuss secondary pro-
cesses, these energies of the escaping Penrose scattered
particles are to be compared with maximum energies
attainable for the popular "two-temperature" accretion
disk models [40] (such as thin disk/ion corona): in these
disk models, without Penrose processes occurring, the

4am c
&syn

pe+2
(5.la)

or

v y 4 x 10 p B (5.1b)

[41], where p, is the characteristic I orentz factor of
electrons radiating at synchrotron frequency vsyn For
B 10 gauss and scattered e e+ pairs with mean en-

ergy 1 MeV, p, 2, then v,„„10'Hz (radio);
and with the mean energy 200 MeV, p 391, then
v,~„6x 10 Hz (ir). On the other hand, for B 10
gauss and scattered e e+ pairs with mean energy 1
MeV, then v,~„10 Hz (hard x rays); and with mean
energy 200 MeV, then v,&„6x 10' Hz (hard p
rays), corresponding to energies 3 GeV being radi-
ated. Now the above synchrotron photons were radiated
without including Eilek's p rays to populate the pho-
ton orbits, serving as seeds particles, for these PPP pro-
cesses. If, however, Eilek's particles are included, then
from the PPP scattered pairs (of energies GeV), even
higher synchrotron frequencies can be achieved, in some
cases yielding synchrotron p-ray energies as high as 270
GeV. Note that B 10 gauss gives a typical range
of values of the magnetic Geld strength assumed for the
accretion disk of AGN [42—44]. However, the possibility
of a higher field strength (say 10i~ gauss), one associ-
ated with the black hole itself, should not be ruled out.
I propose that such a field, like that of a Kerr-Newman
black hole (with charge and rotation), could be impor-
tant in the jets of AGN [45]. Thus, so we see, that, for
appropriate ranges of an assumed magnetic field strength
and the Lorentz factors given by the PPP electrons, using
Eq. (5.1), synchrotron radiation can be radiated by the
e e+ pairs, &om the radio region up to the hard p-ray
region of the electromagnetic spectrum. I mentioned this
because it is a possibility that the observed x rays and p
rays of AGN may very well be synchrotron radiation, at
least in part (the other part being predominantly due to
PCS and secondary relativistic inverse Compton scatter-
ing by the escaping PPP relativistic e e+ pairs, yielding
p-ray energies of the order of the pairs).

VI. CONCLUSION AND FURTHER
INVESTIGATIONS

It has been shown through these Monte Carlo model
calculations, in the ergosphere of a KBH, that (1) higher

maximum particle energies attainable are 100 MeV
[12]. However, when the Penrose processes, PCS and
PPP (pp ~ e e+), are included, particles can escape
with energies as high as 2 GeV.

Now proceeding with the discussion of secondary pro-
cesses, it was mentioned above that the relativistic e e+
pairs can give rise to observed synchrotron radiation of
AGN. %e can gain some insight into this claim and pos-
sibly find a way to test its validity by estimating the
range of synchrotron frequencies generated by these PPP
electrons, for various values of assumed magnetic field
strengths, using
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energies are attainable than previously calculated [4,8,9]
when PCS processes are present; (2) relativistic e e+
pairs, agreeing with the observed spectra of AGN, can
be produced at the photon orbit by PPP (pp ~ e e+),
and that about 50% of these pairs can escape from the
potential well (leading to synchrotron radiation); and (3)
the momenta of the Penrose scattered particles naturally
aid in the production of one-sided and two-sided polar
jets. The occurrences of these Penrose processes do not
depend on instabilities that may or may not be present in
the accretion disk, but can operate in the rims of the clas-
sical thin disk accretion model surrounding a KBH [37].
Perhaps the instabilities that do occur in the disk should
be attributed to the variabilities observed in AGN, the
extremely high energy spectra, and responsible for the
different species (or morphologies) of these celestial ob-
jects. In addition, I want to make it clear that the model
presented in this paper does not rule out the physical
processes existing in other prominent AGN models, par-
ticular relativistic beaming models [46], but only gives
the possible role that can be played by the black hole,
and thus, should be included as an important source of
energy when modeling AGN.

Further investigations could include the PCS and PPP
(pp -+ e e ) of nonradially infalling photons, i.e. , pho-
tons that have azimuthal directions as well. The PPP
(pp m e e+p) should be investigated further, since the
escaping pairs are predicted to emerge with energies
GeV. However, the assumption that no recoil energy is
given to the proton should probably not be used in in-
tegrating the cross section; and the infalling photons of
this PPP process should have also azimuthal directions,
instead of just radial directions (as were used in these
present model calculations), so that the pairs may be
allowed to escape. In addition, the interaction of the
e e+ pairs, produced in the PPP (pp —+ e e+) pro-
cess, with the surrounding electromagnetic field, associ-
ated with the black hole and the plasma in an accretion
disk, requires immediate investigation, as this may shed
considerable light on the formation of the astrophysical
jets of AGN [45].

Before closing, I want to mention that the observed
energy spectra of AGN are very similar to the universal
predicted photon spectrum, produced by these Penrose
processes. In particular, the Gamma Ray Observatory
(GRO), which observes in the range from 30 keV to 30
GeV, has measured energies up to 4 GeV for quasar 3C
279 [47], consistent with the spectra predicted by these
Penrose processes. How well these Penrose spectra com-
pare with AGN observations are addressed in another
paper [38].

work was supported in part by the National Research
Council.

APPENDIX A: EQUATORIAL AND
NONEQUATORIAL ORBITS

From the Kerr metric of Eq. (2.1), the Lagrangian (Ig)
for geodesics [48],

~ a ~ pLg g~px x
2

(Al)

can be found for a test particle in the field of a KBH,
where x = dx /dA = P (the contravariant four-
momentum); A is related to the proper time of the par-
ticle, 7. (A = 7/mo); and it is the affine parameter for
massless particles, where mp =rest mass=0. The scalar
product of the four-momentum with itself gives the rela-
tion

P P = —mp ——g pP PP (A2)

(c = 1); then, from (Al),

Lg ———2fA p (A3)

Using Eqs. (2.1)—(2.3), (2.6), (Al) —(A3), and the Euler-
Lagrange equations of motion, the P 's (the covariant
four-momentum components) and the P 's can be solved
for, obtaining equations governing the orbital trajectory
of a test particle in the field of a KBH:

Zdr/dA = +(V„) i (A4)

ZdO/dA = +(V~) ~ (A5)
ZdC /d A = (aE —L/ sin—0) + aT/b, , (A6)
Zdt/dA = —a(aE sin 8 —L) + (r + a )T/4, (A7)

where

T—:E(r +a) —Ia,
V„=T —E[mor + (L —aE) + Q],
Ve =—Q —cos 8[a (mo —E ) + L /sin 0

(A8)

(A9)
(A10)

[21], in geometric units (G = c = 1). V„and Vo are the
effective potentials governing particle motions in r and
0 directions, respectively. For a circular orbit at some
radius r, dr/dA must vanish both instantaneously and at
all subsequent times (orbit at a perpetual turning paint).
Equation (A4) then gives the conditions for circular or-
bits:
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From Eq. (A9) and its derivative, I obtain the equations

V = [(r + a ) —a A]E —4MarLE —(b, —a )L
—AQ —r bpo ——0, (A12)

and
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V~' = 2(2r + ra + Ma )E —4MaLE+ 2(M —r)L2

+2(M —r)Q+ 2[ypr(Mr —r —Z)] = 0, (A13)

A —= [(r' + a')' —a'A],
8 =—4Mar,
C:—4 —a
D—:(3r —4Mr + a r )pp,
Z —= (r' —a')Q,

3&4+ +2 2

(A14)

(A15)
(A16)
(A17)
(A18)
(A19)

then

("L'+D+ Zi "
(A20)

and

-J —(Z'-4IZ)'i' "
= L*

) (A21)

where mo has been replaced with po, the rest-mass-
energy of a particle. The above equations can be solved
simultaneously, yielding the conserved energy E and the
conserved angular momentum I (as measured by an ob-
server at infinity), for orbits of constant r not confined
to the equatorial plane (Q g 0). If we define

A„= ) (L„) 'A'„= ) (I„)'A' (82)

where the last equality arises from a property of an or-
thogonal matrix L„;that is, the inverse (L„„) i of L„„
is equal to the transpose (L„„) of L„„.Upon evaluation
of Eq. (Bl), using the general form of the I~ matrix
[49], the following Lorentz transformations are obtained
for the vector A'„relative to the moving system in terms
of the vector A~ measured in the rest system:

2

Ai =
l 1+Pi'~+1)

2

+PiPs Asp+ 1

A2 = p2pi Ai +p+ 1

+p.p. p+1
As = PsPi Ai +p+ 1

Ai + pip2 A27+1
—iPi pA4,

2

l1+P,' ~
~+1)

—iPspA4,

2

ps p2 7+1

(83a)

(83b)

where the primes represent the inertial coordinate system
moving with uniform velocity v relative to the unprimed
coordinate system. The inverse to this Lorentz transfor-
mation is

where E* and L* are the conserved energy and az-
imuthal angular momentum of nonequatorial particle or-
bits (geodesics) in the curved spacetime of a KBH, and

( ~2
+

l
1+p,' l

A. —'p»A, ,~+1)
A4 ——ipipAi + xp2pA2 + xpspAs + QA4

(83c)

A2 4 2I:— ——(2A|."+ Bs) + ~2,
G2 G

(A22)

(D + I') 2A'r'
G G

Ar2
+2K(r pp + Q) C— (A23)

APPENDIX B: THE GENERAL LORENTZ
TRANSFORMATIONS

The Lorentz transformation for any four-vector Ap ——

(A, A4) is

, (D+ +)' — (r'~p + Q)(D+ F)
+&'( 'y,'+ Q)'; (A24)

see Eqs. (A14)—(A19). Note that when Q = 0, Eqs. (A20)
and (A21) reduce to the forms of (2.16) and (2.17), re-
spectively. The energy expressed by Eq. (A20) versus
~Q(—:Po) is plotted in Fig. 1(a) for the photon orbit,
and it is plotted in Fig. 1(b) for the electron orbits at
&MB and ~MS-

+ pl l
Ai + pip& '42

( I

&+ 1) 7+1
+PiP, A', + iP, pA'4,

p+ 1

A2 = p.pi Ai+ l
1+p,p+1 i p+ ly

2

+P,Ps A', + i P2pA4,7+1
As = PsPi Ai + PsPs7+1 + 1

+ I
1+Ps l

As+ &P»A4
t'

~+1)
A4 — iP»AIi —iP.~A', —iPs~A', + ~Ai4 .

(84a)

(84b)

(84d)

Now we write these transformations in the coordinate
directions of the orthonormal tetrad used to derive the
vector of Eq. (3.3). The corresponding space unit vectors
at an instant of time are

where pi, p2, and ps are the space velocity components.
Similarly, we evaluate Eq. (82) to get the inverse Lorentz
transformation, that is, the vector in the coordinate sys-
tem at rest in terms of the vector moving with relative
velocity v. It is found that

4

A'„= ) L„„A
v=1

(81)

A Ae =e1=e
A

ey =e2
e3 = e@ .

(85)
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Thus, the following substitutions are to be made in
Eqs. (B3) and (B4) to derive the Lorentz transformation
used in the text:

terms of the known angles of Eq. (3.80b).
From Eqs. (3.79c) to (3.79e) we find that

Ag =p„,
A2 =po,
A3 =p@,

0R 0&
'YP (Cl)

(C2)

A4 ——i —,
C

Pi —= P Ps—= Pc .
0R 0R (C3)

APPENDIX C: U'NKNOVfN ANGLES
IN THE pp —+ e e+p PB,OCESS

In this appendix, the equations of Eq. (3.79) are solved
simultaneously for the unknown angles of Eq. (3.80a), in

where 0+ is given by Eq. (3.81). Next substitute
Eqs. (Cl) and (C2) into (3.79g) to get 0 +, and simi-
larly, substitute Eqs. (Cl) and (C3) into Eq. (3.79h) to
get 0+ . Thus we find that

0,+ ——arccos[cos 0 cos 0+ + sin 0 sin 0+ cos(P+ —PRi)],
0 = arccos[cos 0 cos 0 + sin 0 sin 0 cos(P „—Pg)],

(C4)

(C5)

(cos 0+ —cos 0 cos 0,+ )
sin0+ sin 0 + )

(C7)

where P = 0 (see text). Now solve Eq. (3.79f) for P2
of Eq. (C5), yielding

cos 0, —cos 0+ cos 0—arccos
sin 0++ sin 0

Finally, solve Eq. (3.79a) for P + and Eq. (3.79b) for P,
thus Eq. (3.79a) gives

I

in terms of the scattering angles 0+, 0', and P+ [see
Eq. (3.105)]. Substitute Eq. (3.119a) into (3.119f) and
solve for 0 + to get

(—cos 0+ )
0;+ ——arcsin

] cos

Next, we solve for P'+. Upon substituting Eq. (Dl) into
(3.119d), applying some algebraic manipulation, and us-
ing the trigonometric identity sec P;+ ——1 + tan P'+,
I obtain a quadratic equation in tan P,+, which has the
solution

and Eq. (3.79b) gives

—ar ccos
f cos0 —cos0 cos0,

l sin 0R sin 0+
Y

D2 6 (D2 ——4DiDs)'l
P +

——arctane 2Dg

where

where P is given by Eq. (3.81). Equations (Cl) to
(C8) completely solve Eq. (3.79) for the unknown angles
Eq. (3.80a); Eqs. (C4), (C5), (C7), and (C8) give the
polar and azimuthal angles of the scattered e e+ pairs.

Dq = cos 0+ sin 0+,

D2 = 2 cos 0+ sin 0+ sin gP+ (1 —cos2 0+),

(D2b)

(D2c)

APPENDIX D: U N KNOWN ANC LES
IN THE pg —+ e e+ PB,&CESS

Ds = 1+ cos 0+(cos 0+ —2)

+ sin 0+ cos P+(cos 0+ —1) .

In this appendix. , the unknown space momentum an-
gles of Eq. (3.119) for the e e+ pairs are solved for

Equations (Dl) and (D2) completely solve Eq. (3.119)
for the unknown angles.
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