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Electroweak sphaleron for efFective theory in the limit of large Higgs boson mass

X. Zhang, B.-L. Young, and S. K. Lee
Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011

(Received 20 June 1994)

Theoretical arguments suggest that the Higgs sector of the standard model is an effective theory.
We parametrize the new physics by means of an effective Lagrangian technique and study its effect
on the energy of the electroweak sphaleron. We find that in the presence of a certain class of higher
dimension operators the sphaleron energy becomes arbitrarily large as the Higgs boson mass m~
increases. The physical meaning of this result and its implications to electroweak baryogenesis in
the dynamical symmetry-breaking models are discussed.
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The energy of the sphaleron in the one-doublet Higgs
model, calculated first by Manton and Klinkhamer [1],
then improved in [2], is given by E'~" ' = B(A/g ),
where M~ is the W boson mass, n~ = g /4m, and g is
the SU(2) coupling constant; B is a function of the Higgs
boson mass m~ ——2Av with v being the Higgs vacuum
expectation value. Thus E'I'" will be fixed once the
Higgs boson mass is known. Experimentally, data from
the CERN e+e collider LEP put a lower limit on m~,
which is about 60 GeV [3]. There are also theoretical
arguments which give an upper bound on mH. For in-
stance, triviality arguments suggest that mH ( 600—800
GeV [4]. For this range of mIt, the factor B(—", ) does
not change very much. Actually, the numerical evalua-
tion gives 1.5 )) B )) 2.7 [1,2] when m~ varies from zero
to infinity [5]. Thus the weakly interacting theory with a
light Higgs boson is indistinguishable from the strongly
coupled theory in the infinite Higgs boson mass limit as
far as the E'I'" is concerned.

There are the theoretical arguments of "triviality" [4]
and "naturalness" [6] against the elementary scalar sec-
tor of the standard model (SM), and one believes that
the Higgs sector of the standard model is an effective
theory. In this paper we will study the properties of the
sphaleron solution in an effective theory and demonstrate
that E'~" will increase without bound as the Higgs bo-
son mass goes to infinity.

First of all, we consider the effective Lagrangian (EL)
with a linear realization of the SM gauge symmetry,
where the efFects of the new physics are parametrized by
a set of higher-dimension operators in addition to those
present in the SM. Within such an EL, we will look for the
sphaleron solution and calculate its energy. In Ref. [7],
it was shown that the dimension 6 operators have a very
small effect on the E'I'" . However, starting at dimen-
sion 8, there are operators which can make E'I'" diverge
in the heavy Higgs boson mass limit. The dimension 8
operator in question is

0 f(D„C )tD"4)

There are other operators with dimension greater than 8,
which may also give infinite contributions to the E'I'" '.
However, we will concentrate here on the operator 0 for

a detailed discussion.
First of all, let us write down explicitly the EL relevant

to our discussions:

(2a)

(2b)

where W„and B„are the gauge fields of SUI, (2) and
Ui. (1), respectively. In (2a), we have not included the
fermion fields since we consider the sphaleron solution in
the bosonic sector of the effective theory.

Klinkhamer and Manton [1] have shown that in the SM
there is a saddle-point solution, which is the sphaleron.
Since the higher-dimension operator 0 does not acct
the symmetry-breaking pattern of the minimal model,
nor change the topology of the field configuration space,
the sphaleron solution should exist in i" + (2a).

Following the usual procedure we consider the static
solution by setting the time components of the gauge
fields to zero. Also, as is generally done, we will set the
Weinberg angle to zero, so that the Uy (1) gauge field is
decoupled and may be consistently set to zero. Following
Ref. [1], we use the spherical syminetric ansatz for the
gauge field W„and the Higgs Geld 4'.

W; o. dx* = fg)dU (—U—)
g

4 = h(()U (3b)

where ( = gvr and

1 t' x+iy l
( —x+iy z

The energy functional is given by

where E„„are the SUL, (2) field strength, f„ the Uy (1)
field strength, and

V(e) = W(et@ —v /2)

0556-2821/95/51{9)/5327(4)/$06. 00 51 5327 1995 The American Physical Society



5328 BRIEF REPORTS
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where c—:(~4) &, . It is straightforward to derive the Euler-I agrange equation for this energy functional. They read

2

= 2f(l —f)(1 —2f) ——h (1 —f) —c ( h — (1 —f) + 2h (1 —f)
d2 , 4 (dh& 4 3

F2 4 &d&)
(5a)

(), l,
i
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(5b)

The boundary conditions for f(() and h(() are given by

f(() ~ ( and h(() -+ ( for ( ~ 0,
f(() and h(() -+ 1 for ( ~ oo .

(6a)

(6b)

Note that these are the same boundary conditions as
those [1] in the absence of the higher-dimension oper-
ator O. We numerically integrate Eq. (4) by minimiz-
ing E'P" for a given value of the parameter —", in the

range of zero to 10~o [8]. In Pig. 1 we plot the E'P" ~

of the present case together with that of the standard
model. One can see that for small ~ the new physics

efFect on E'P" ~ is negligible and the two energies are
practically indistinguishable. However, it becomes im-

(7a)

h(() Q I ( — I«0
1, (&0, (7b)

t

portant for larger —", . For instance, for —", ) 10,
the sphaleron energy has exceeded the maximal value
of the SM sphaleron. From our numerical results we
can extract the behavior of the sphaleron energy in the
larger Higgs boson mass limit. Approximately, we have
E'~"s' ~ (—", )

~~4 for —", ) 10s. This behavior can also be
understood by using a particularly simple ansatz, con-
sidered by Manton and Klinkhamer [1], for the radial
functions f(() and h(():

24-
where 0 and:- are two variational scale parameters.
With such an ansatz, the dominant terms in E'I'" for
very large —,are given by

20—
4vrv 1 ( A s 97 1

4 —iA + 210c——
g 210 (g2) 15 0 (8)

12

The scale parameter 0 that minimizes (8) goes like

(—", ) ~~4, which gives

1/4

—2 0 2 4 6 8 10

FIG. 1. Sphaleron energy as function of A jg . The vertical
axis is the sphaleron energy in units of TeV and the horizontal
axis is logqo(A/g ). The solid curve is for the present case
and the dash curve for the standard model. In our numerical
calculation we take A = 1 TeV. A di6'erent value of A will
change the absolute value of the E' " ', but will not modify
the behavior of the E"P" ' in the large Higgs boson mass limit.

One remark here is that the blowup of the sphaleron
energy is caused technically by the "frozen" Higgs field
h(() = 1. To see this clearly, let us rewrite E' " in
terms of O. We have E'&" ~ 1/A. Prom Eq. (7b),
0 ~ 0 means that h(() ~ 1. Because of the triviality
of the Higgs sector, however, the physical meaning of the
mH ~ oo limit is questionable. In the following we will
argue that our results indicate that the E'~" ' is infinity
in the nonlinear EL of the dynamical symmetry breaking
(DSB) models.

To proceed with the discussion of the sphaleron in the
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effective theory of a DSB model, let us consider a limit
A —+ oo in l'.,g. In this limit, the Higgs field 4 can be
parametrized as 4 = ~Z(i), where Z is a 2 x 2 matrix
for the Goldstone boson fields. Thus l:,ir in (2a) becomes

2
= -'F F " + —TrD ZtD&Zc7 4 p~ P

4
+ (TrD„KtD"2)42A4

with the boundary conditions f (0) = 0 and f (oo) = l.
The sphaleron energy functional is

EsPhal
2

4vrv ( df ~t 8
d( 4 — + —f (1 —f)

+(1 —f)'+ (4 )
(1-f)'

(12)

2 4
where c = ~4 A4. Klinkhamer and Boguta noticed that
the E'P" ' blows up [ll] because of the last term. Ac-
tually, the sphaleron energy density is singular and the
boundary condition is not satisfied by the differential
equation for f ((), which minimizes E'P"

We realize that the singularity in E'p" is removable
once the sphaleron solution of 8 is understood as the
sphaleron solution of l." (2a) in the limit —", + oo. In

fact, in the limit —", ~ oo, h(() + 1, then l."+ goes to
and E' " m E' " ~. Thus in the nonlinear EL 8

the sphaleron energy is indeed divergent. To illustrate
the physical meaning of this result, we consider a toy
DSB model. This is the one family standard model, but
no elementary Higgs Geld is introduced. In this model
the SM gauge symmetry is broken by the quark con-
densate driven by the QCD interaction, where both the
electroweak symmetry-breaking scale and the weak gauge
boson masses are, of course, very low.

It is well known that the strong interaction of a DSB
model can be described by an EL similar to 8, when
the heavy fermions, i.e., the quarks, are frozen out at an
energy below the DSB strong interaction scale. Below
the DSB strong interaction scale, there are only leptons
in the fermion sector, and the lepton number current is
violated by an SU(2) anomaly which involves two SU(2)
currents. However, its amplitude will vanish according
to our results since the sphaleron energy is infinity.

Is the above reasonable? What is its significance?
In the fundamental Lagrangian of quarks and leptons,
there are two kind of fermion number currents: one lep-

where we have neglected the Uy (1) field. The l: has
the form of the gauged nonlinear o models and will de-
scribe the low-energy physics of dynamical electroweak
symmetry-breaking models.

The sphaleron solution of l: [9] has been considered
by Klinkhamer and Boguta [10]. They use the following
spherical symmetric ansatz, which is a gauge transforma-
tion of that in Eq. (3):

Z=l, —W;= (r x~);,g 1 —f
2

' r2

ton number, and the other baryon number. Both have
an SU(2) anomaly; however, their difFerence is anomaly-
free, which means that the total change of the lepton
number must equal to that of the baryon number. Since
baryon Gelds do not exist in the low-energy Lagrangian
lepton number violations processes are forbidden. In
other words, the sphaleron energy should be infinity.

Our results have direct implications on the electroweak
baryogenesis. As argued in Ref. [12], to avoid the
washout of the baryon asymmetry, the following condi-
tion is needed:

Esphal(T ) & 45, (13)

Esphal(T) Esphal (T 0) ( )vtT&

v
(14)

where v(T) is the vacuum expectation value of the Higgs
field at the temperature T. With a cubic term in the Vz,
Eq. (14) has to be modified, but it remains a rather good
approximation [14]. The finite teinperature correction to
Dz in the standard model has been considered by Dine,
Huet, and Singleton in Ref. [15]. They estimated the
contribution of several typical Feynman diagrams and
argued that the correction to E'P" (T) is about 20%.

In the effective theory we consider in this paper, the
higher-dimension operators will contribute to Vz as well
as Dz. As a result, the SM Higgs boson mass limit re-
quired by electroweak baryogenesis will be changed. As-
suming the validity of Eq. (15), the higher-dimension op-
erators can alter this upper limit for the Higgs boson
mass in two ways: (1) it changes the usual relation be-
tween v(T) and the Higgs boson mass; (2) it changes
the dependence of the E'P" (T = 0) on the Higgs bo-
son mass. For small Higgs boson mass, the impact of the
higher-dimension operator on E'P" (T = 0) is negligible.
However, the relation between v(T) and m~ is changed
due to a dimension 6 operator in Vz [16]. As a result,
the Higgs mass limit can be relaxed to the experimental
allowed region. For a large Higgs boson mass, as dis-
cussed in this paper, the presence of higher-dimensional
operators will change E'P" i(T = 0) significantly, and
will relax the Higgs boson mass limit further. In partic-
ular, in the dynamical symmetry breaking theory, if the
physics in the true vacuum can be described by an EL

with temperature dependent v(T), which is now the
composite Goldstone boson decay constant, it will help

where Tt denotes the electroweak phase transition tem-
perature. In computing E'P" (Tq), one should use the
full effective action, which includes terms depending on
derivatives, denoted by D~, and terms independent of
derivatives, which are generally known as the effective po-
tential, denoted as V~. The V~ in the standard model and
its extensions has been studied in detail in recent years
[13]. And the sphaleron solution with a temperature-
dependent V~ has also been studied by Braibant, Bri-
haye, and Kunz in Ref. [14]. They concluded that for
the temperature dependent V~ in the absence of a cubic
term, the sphaleron energy as a function of the temper-
ature is given by
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to avoid the washout of the baryon asymmetry because of
the infinity sphaleron energy [17]. Certainly, to construct
a successful DSB model for the electroweak baryogenesis,
one must examine in detail the phase transition and the
source of CP violation.

In summary, we have taken the standard model Higgs
sector as an e8'ective theory, then studied its sphaleron
solution and calculated the sphaleron energy in the pres-
ence of a dimension 8 operator. We found that the

sphaleron energy diverges in the large Higgs boson mass
limit. This implies that the sphaleron in 2 of the DSB
models has an infinity energy and will be helpful in pre-
venting washout of the baryon number asymmetry.
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