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In the minimal supersymmetric standard model, assuming universal scalar masses at large en-
ergies, there are four intragenerational relations between the masses of the squarks and sleptons
for each light generation. In this paper we study the scalar mass relations which follow only from
the assumption that at large energies there is a grand unified theory which leads to a significant
prediction of the weak mixing angle. Two new intragenerational mass relations for each of the light
generations are derived. In addition, a third mass relation is found which relates the Higgs boson
masses, the masses of the third generation scalars, and the masses of the scalars of the lighter gen-
erations. Verification of a fourth mass relation, involving only the charged slepton masses, provides
a signal for SO(10) unification.

PACS number(s): 14.80.Ly, 12.10.Dm

I. INTRODUCTION

If supersymmetry is a symmetry of nature, broken only
at the weak scale, then future experiments will discover
many extra particles, in particular the superpartners of
all the quarks and leptons. The masses of these scalar
quarks and leptons will provide extra clues about a more
fundamental theory at higher energies. However, whereas
the quark and lepton masses provide information on how
chiral and fIavor symmetries are broken, the squark and
slepton masses will provide a window to the structure of
supersymmetry breaking.

It may be that the squark and slepton spectrum will
show no clear pattern or regularities, and the origin of
the spectrum will become a major puzzle, rather like the
present situation with quark and lepton masses. How-
ever, much attention has been focused on a single theory,
the minimal supersymmetric standard model (MSSM),
in which a very clear pattern emerges in the scalar spec-
trum. By the MSSM we will mean the supersymmetric
extension of the standard model with minimal field con-
tent, which has a boundary condition near the Planck
scale that the soft supersymmetry-breaking mass param-
eters for the scalars are all equal. In this model, the
physical masses of the 14 squarks and sleptons of the
lighter two generations are given in terms of just five un-
known parameters: the universal scalar masses at the
Planck scale, mo, the three gaugino masses, M, and the
ratio of electroweak breaking vacuum expectation values
(VEV's), tanP = v2/vi. Due to effects of large Yukawa
couplings, the physical squark and slepton masses of the
heaviest generation depend on one further parameter, A.
Although these efFects are well understood and can eas-
ily be added, for simplicity, we consider only the lightest
two generations. Thus the MSSM has many relations
among the scalar masses. However, the question as to
why all scalars are assumed degenerate at the Planck
scale becomes extremely important. If experiments are
dane to check the validity of the scalar mass relations of

the MSSM [1], what is the fundamental principle which
is being tested?

Flavor-changing processes provide considerable experi-
mental constraints on the form of the squark and slepton
mass matrices [2,3]. However, these constraints are inti-
mately connected with fIavor violation and provide con-
straints between the masses of scalars of different gener-
ations. For a given generation there are five indepen-
dent gauge-invariant squark and slepton masses: mg,
m~. , mD-, mL„and m@. , where Q and L represent
SU(2) doublet squarks and sleptons, while U, D, and
E are SU(2) singlet squarks and sleptons. Certainly the
fIavor-changing constraints do not constrain the ratios
mq. mU. mD..mr. .m@, and it is largely these ratios which
will be addressed in this paper.

The assumption of a universal scalar mass at high ener-
gies originated from studies of N = 1 supergravity theo-
ries in which supersymmetry is broken in a hidden sector.
The scalar mass was found to be universal in particu-
lar models [4,5] and also in a wide class of models [6].
However, the universal mass is not a general property of
supergravity models, and involves an assumption about
the form of the Kahler potential. If there are N fields
in the observable sector of the theory, an SU(N) invari-
ance of the Kahler potential guarantees the universality
of the scalar masses at the Planck scale [6]. However,
this symmetry is clearly broken elsewhere in the theory,
and so the universality of the scalar masses can only be
understood as a special property of certain supergravity
theories. If the scalar mass relations of the MSSM were
violated, it might simply mean that the Kahler potential
does not possess this SU(N) invariaiice.

In this paper we study squark and slepton mass re-
lations which follow Rom two assumptions, which have
nothing to do with supergravity.

(1) The standard model is unified into a grand-uiiified
theory (GUT). It is well known that a grand-unified sym-
metry, together with supersymmetry, has yielded a suc-
cessful relation amongst the gauge couplings of the stan-

0556-2821/95/51(9)/5289(11)/$06. 00 5289 1995 The American Physical Society



5290 H.-C. CHENG AND L. J. HALL

dard model [7]. Much attention has also been given to
quark and lepton mass relations which can follow from a
grand-unified symmetry. It therefore seems well worth-
while studying what squark and slepton mass relations
might follow purely &om grand unification.

(2) The generation-changing entries in the squark and
slepton masses (in a basis where the quark and lepton
masses are diagonal) are sufficiently small not to affect
the scalar mass eigenvalues at a level of accuracy to which
the mass relations will be experimentally tested.

In fact, the latter is hardly an assumption, such large
Havor-changing effects are almost certainly experimen-
tally excluded. Since the grand-unified symmetry acts
within a generation, we expect relations amongst squark
and slepton masses of the same generation, we do not ex-
pect any relations between masses of particles in different
generations.

We begin Sec. II by writing down the mass relations
between squarks and sleptons of a given generation which
occur in the MSSM. We then list the assumptions which a
supersymmetric grand-unified theory (SGUT) must sat-

isfyy

for a successful weak mixing angle prediction to oc-
cur at the 1% level. Finally, we show that, with these
assumptions, we are able to derive two intrageneration
scalar mass relations. The mass relation of the MSSM
which relates the masses of the two charged sleptons
within a generation may be violated. This is a partic-
ularly important mass relation since it is likely that the
squarks will be much heavier than the sleptons, and this
will be the first mass relation of the MSSM to be tested.
In Sec. III, we study the extent to which this mass rela-
tion is expected to follow if the GUT gauge groups in-
clude SO(10). While this slepton mass relation is generi-
cally expected as a consequence of the SO(10) gauge sym-
metry, we find that radiative corrections and additional
D-term contributions to the scalar masses, beyond those
of the MSSM, may lead to its violation. In Sec. IV we
show that even if the additional D-term contributions do
not arise at tree level, they could be generated by ra-
diative corrections. In Sec. V, we show that these extra
D2 interactions found in SO(10) could lead to an easing
of the fine-tuning problem which has been found when
the MSSM has large tanP and the universal scalar mass
boundary condition.

II. SCALAR MASS RELATIONS
IN A CLASS

OF GRAND-UNIFIED THEORIES

m,'(p) =, —8C, (R')g'(p)M'(p)
d in@ ' 16m2 (

+ ,'Y g-,'(p)S(IJ, ) + ) ~A;, g~'(m,'+ m,
'

+m'„+ X,',„) (2.1)

d bg

d i„„S(~)= 2
~i(~)S(~)

S(y,) = ) Y;m, (p),

(2 2)

(2.3)

m, (p) = me+) f,Mo

+(Ts, —Q, sin 0~)M&cos2P, (2.4)

where i runs over the seven types of squark and slepton:
U, D, U, D, E, N, and E, and it is understood that
the two light generations have identical scalar spectra.
The renormalization constants f; are

(2.5)

where b is the one-loop P-function coefficient, and p
should be taken equal to the scalar mass, m, .

Suppose that P is known, for example, f'rom a Higgs
boson mass measurement, then the seven values of m;
depend only on four unknown parameters, mp and Mp
yielding three intragenerational mass relations for the
MSSM [9]. Two further relations follow if Mo is in-
dependent of a. In the following the scalar masses are
scaled to the same renormalization point so that these
mass relations can be displayed in simpler forms.

Two of these relations have only to do with SU(2)
breaking and are

where a = 1, 2, 3 represents U(1)y, SU(2)1., and SU(3)„i
i represents the species of the scalar and Y, is the corre-
sponding hypercharge, A;~I, 's are the soft SUSY-breaking
trilinear scalar couplings, and A;~A, 's are the superpoten-
tial couplings. C2(R ) is the second Casimir invariant of
the gauge group a for the species i, C2 —(N —1)/2N
for the fundamental representation of SU(N), s

Y2 for
U(1)y. The S term is zero under the assumption of uni-
versal scalar masses and hence does not contribute. For
the lightest two generations, whose superpotential cou-
pling contributions are negligible, the mass splittings in-
volve only contributions &om the gauginos, which have
masses Mp at the Planck scale. Mass splittings also arise
from the D terms of the potential due to SU(2)L, xU(1)y
interactions. These are proportional to M& cos 2P. The
result is

Before studying grand-unified theories, we give the
well-known predictions for the scalar masses in the
MSSM, taken to have universal scalar masses mp at the
Planck scale. Mass splittings arise &om renormalization-
group scaling from Planck to weak scales [8], and the
renormalization-group equations are given by

mz —m~ = m~ —mz ——Mz cos2P cos Ogr . (2.6)
2 2 2 2

The SU(5) GUT normalization, gi = —g', is used for the
U(1) coupling.
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These splittings arise because of the diR'ering T3 quan-
tum numbers of the upper and lower components of the
doublets Q = (U, D) and I = (N, E). It is convenient
to de6ne m and m& as the average squared mass of
the doublet representation, thus m& ——

2 (mU + mD) and
m2& ——x(m2~ + m2&). In the rest of this paper it is the
masses m2&, I = 1, . . . , 5 of the five types of multiplet Q,
U, D, L, and E which will interest us. In the MSSM,
these are

~x ——mo + ) f xMo —Yx sin Owe cos 2P, (2.7)

where Yx is the hypercharge of xnultiplet I (Q = Ts+ Y).
The mass predictions of (2.7) are based on several

strong assumptions. The universal scalar mass is a spec-
ulative assumption about the form of the interactions in
supergravity, and has been questioned, particularly by
those working on string-inspired models [10]. The mass
formula of Eq. (2.4) assumes the minimal particle con-
tent beneath the Planck scale. If there are extra gauge
interactions then the index a = 1, 2, 3, 4, . . . , yields extra
terms. If there are extra chiral 6elds with gauge quan-
tum number then the b of Eq. (2.5) will change. Fur-
thermore, if these extra chiral fields allow further super-
potential interactions of strength A involving quark and
lepton 6elds, then additional terms proportional to A2

will contribute to m, (p).
In this paper we study the scalar mass relations which

follow Rom certain assumptions about grand unifica-
tion. The assumptions appear to us to be better mo-
tivated than those listed above for the MSSM, since they
are based on the successful supersymmetric GUT pre-
diction for sin Ogr [7], the weak mixing angle, which
we briefly summarize. The combined fit to the pre-
cision data &om the CERN e+e collider LEP gives
sin Oxv (LEP) = 0.2321+ 0.0005, which corresponds to
mq ——176+15 GeV (these results, and the results of other
fits to experimental data given below, are taken &om
[11]). The left-right asyxnmetry measurement at SLAC
gives sin exv (SLAC) = 0.2292 +0.0010 and mq ——255+24
GeV. The TV mass measurements &om the Collider De-
tector at Fermilab (CDF), DO, and UA2 Collaborations
correspond to sin 8~ ——0.2326 + 0.0008. These exper-
imental numbers should be compared with the super-
symxnetric GUT central prediction of sin 8~(SGUT) =
0.2342+0.0014, where the only uncertainty shown is that
due to a, (M~) = 0.120'0.005. In addition, simple mod-
els could have uncertainties of 0.0030 &om threshold cor-
rections at the GUT and weak scales. The weak mixing
angle therefore provides the only successful theoretical
prediction at the I'%%uo level of any parameter of the stan-
dard model. This suggests that we take the assumptions
which are suflxcient to get this prediction and use them
to make predictions for the squark and slepton masses.
These assumptions are (1) at some scale M~ the gauge
group is SU(5) x G, where SU(5) contains the entire stan-
dard model gauge group; (2) at xnass scales below M~ the
gauge group is SU(3), xSU(2)x, xU(j)x x G', (3) at mass
scales below M~ the only particles coupling to the stan-

dard model gauge interactions are those of the MSSM. 2

These assumptions are not a necessary requirement for
an acceptable value of sin 8~. Acceptable values can be
obtained in very many ways, for example, in nonsuper-
symmetric SU(5) theories with extra multiplets which are
not SU(5) degenerate [12]. However, it is these assump-
tions which uniquely produce a significant prediction. All
the other schemes have a &ee parameter which can be
chosen to 6t sin 0~.

What scalar mass relations follow from these assump-
tions'? The first assumption imposes the boundary con-
dition (which is taken to be at MG now) on scalar masses
within the same generation:

mq ——m@. ——mzJ. ——m]0 )0 0 0 (2 8)

mL, = mo =m5 (2.9)

S(MG) = ) Y;m;(Mt-)
'e

= mxx, (Ma) —mrs, (Ma) . (2.10)

Since H2 and Hx lie in difFerent representations of SU(5),
mrs (M~) and mH (MG) are not necessarily equal. From
(2.2) it follows that S scales as nx,

S(p)
S(p,o)

(2.11)

The contributions of the S term can be written as

hgm, '(p) = Y;T, (2.12)

In fact the prediction of sin 8~ is not altered if extra com-
plete, degenerate SU(5) multiplets occur beneath M~. We
assume these to be absent; it could be worth studying the
extent to which such representations afFect the scalar mass
relations.

In the MSSM the scale of supersymmetry breaking is not a
free parameter, it is determined to be of order the weak scale
by radiative electroweak symmetry breaking.

because Q, E', and U' all lie in a 10-dimensional rep-
resentation, and L and D lie in the 5. There is no
boundary condition relating masses of particles in difer-
ent generations, and hence no such mass relations will
result.

I et us study a particular generation, and suppose
that in the SU(5) xG theory it lies in representation
(10,Rx) + (5, R2). If Rx and R2 are nontrivial and if
G breaks to G' which is nontrivial, then the G' gauginos
can renormalize the squark and slepton masses. How-
ever, since all members of the 10 have the same G' quan-
tum numbers, this renormalization is common, and can
simply be absorbed into the unknown parameter myp.
An identical situation applies to the 5. Hence the com-
mon mass mo in formula (2.7) should be replaced by
mo m m& which take on the two possible values shown
in (2.8) and (2.9) according to whether I lies in a 10 or 5
representation. In addition, the S term, which vanishes
under the universal boundary condition assumption, is
now given by
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where

[~(M~) —~(» )j
3

561' S(M.) ~1 ~, (M~) &

~(») ~5bi E ~1(») ) (2.13)

Among the five masses (2.7) of each light generation,
there are three combinations independent of mr .'

where we have written fs; ——C3 for a color triplet, f2, ——

C2 for a weak doublet, and fi, ——Y; Ci, and the o. (M~)
in f, should be replaced by a (M~). By rearranging
the above equations, we arrive at the following two mass
relations independent of T:

2m& —m&. —m&. ——(C3+ 2C2 —isC1)Mp,
(2.15a)

m& + mL1. —mz. —mL, = (2C3 —'p Ci)Mp, (2.15b)

and also an expression for T:

m& —mU. ——(C2 —3QC1)Mp
2 2 15 2

—
s sin 0~Mz cos 2P + s T, (2.14a)

T = —(m& —2m&. + mD. + m&. —mL

+ 3 sill 8grMz cos 2p) (2.16)

mq mz —(C3 + C2 3S Ci)Mp

+ s s111 Oivv Mz cos 2P —
s T,

m2. —m = (C3 —C2 ——Ci)M
—

s siil 0~Mz cos 2p + sT,

(2.14b)

(2.14c)

Since S(M~) is only proportional to the difFerence
m~ (M~) —mH (M~) and bi —— 3, we have ~T~—~m~ (M~) —mrs (M~) ~. If the splitting between
m~ (M~) and m~ (M~) is not too large, then T is small
and these mass relations of (2.14), with T = 0, are ap-
proximately true. Alternatively, one can use (2.3), (2.13),
and (2.16) to get

I

(mq —2m&. + m&. + m&. —mL + 3 sin Hg MZ cos 2p)3,g s,„+(m~, —m&, ) = S(p) —
3 T
»~i(» )

(a 1 (M~) —ni (»1) )
f 20ni (M~) + 13ni (p, ) 'i

( 3o.i(MG, ) —3o.i(p) )
(2.17)

This combination does not suffer &om the renormalization effects of the large third-generation Yukawa couplings.
Using T f'rom (2.16) in (2.17) gives a third (intergeneration) mass relation:

2 2 2 2 2 10 ~ 2 2(m& —2mU. + mD. + m@. —ml + 3 slil 0WMZcos2p)1st or 2nd son

= —((m& —2m&. + mD. + m@. —ml + 3 sin 0~Mz cos2P)3, d s,„+(m&, —m&, )) x2 2 2 2 2 10 2 2 10o.i (M~) —10o'1(»i)
20o!1 M~ + 13o'1 p,

(2.18)

The MSSM provides four mass relations within each
generation: those of (2.14) with T = 0 together with

mi —m~. ——(C2 —4C1)Mp + 2 sin ggrMzcos2p,

(2.19)

and also predicts identical spectra for each of the light
generations.

In this section we have shown that two of these mass re-
lations follow &om a completely different boundary con-
dition assumption than the one of universal scalar masses
used for the MSSM. We have found that, in any GUT
where the successful prediction of the weak mixing an-
gle at the 1% accuracy level is preserved, two of the four
mass relations of the MSSM for each light generation
is preserved and a third one can be recovered provided
that the third-generation scalar masses and Higgs boson
masses are also measured.

III. AN EXTRA MASS RELATION IN SO(10)?

The mass relation (2.19) can be reformulated as a re-
lation between the two charged slepton masses of a given
generation:

mE —mE. ——(C2 —4C1)Mp

+(—
3 + 2 sin 8~)Mz cos2P . (3.1)

In the following we will not include the contributions
&om the 8 term, it is assumed to be small or can be
obtained &om (2.16) or (2.17), then be subtracted from
the scalar masses. This relation is particularly impor-
tant for the following reasons. (a) The supersymmet-
ric +CD interactions tend to increase the masses of the
squarks above the sleptons, hence we expect this to be
the 6rst scalar mass relation of the MSSM to be tested.
(b) We have shown that this relation is precisely the one
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which cannot be deduced &om SU(5) unification. This is
clearly because E and E' are in different representations
of SU(5).

If the gauge group is extended to include SO(10), such
that a single generation lies entirely in a 16-dimensional
spinor representation, then it is tempting to think that
this slepton mass relation will be recovered, perhaps one
can view this particular mass relation as a low energy
signature of SO(10). In this section, we explore in more
detail the extent to which this is true.

We will make the three assumptions, given in the last
section, necessary for the GUT to yield a significant
sin 0~ prediction. In addition we add a fourth assump-
tion: (4) At energy scales greater than Mip, which is
greater than or equal to MG, the gauge group contains a
factor which includes the usual SO(10) gauge group.

This assumption provides the extra boundary condi-
tion which sets mL, (p) and m~. (p) equal at p, ) Mip.
The crucial question now is: are there any additional
efFects which could split these masses other than those
of the SU(2) I, x U(l) y gaugino contributions and the
SU(2)L, xU(1)r. D interactions, shown in (2.19) and
(3.1)?

There are four such effects, which could break the slep-
ton mass relation in an important way [13—15]: (a) radia-
tive contributions &om the gauge couplings and gaugino
masses between Mip and MG. , (b) radiative contributions
from the superpotential couplings between Mqo and MG,
(c) tree-level D-term contributions, and (d) radiatively
generated D-term contributions.

Suppose that Mio is higher than MG. , and that beneath
Mip SO(10) breaks down to SU(5) [or SU(5) xU(1)x'].
The two charged sleptons of a given generation belong
to 5 and 10 representations of SU(5), respectively, and
therefore their masses receive different radiative correc-
tions. The radiative correction contributions from the
SU(5) gaugino mass is

relation, A has to be large, probably & 3, but such a
large superpotential coupling could also destroy the de-
generacy of scalar masses of different generations and in-
duce unacceptable flavor-changing effects unless there is
a horizontal symmetry above MG. which keeps the scalar
masses of the two lighter generations degenerate.

D-term contributions to scalar masses can arise when
the rank of the gauge group is reduced. To see this, con-
sider the following situation. Suppose the U(1)x. sub-
group of SO(10) [SO(l)DSU(5) x U(1)x] is broken by the
vacuum expectation values (VEV's) of N and N fields
which lie in 16 and 16 representations of SO(10). The
U(l)x. gauge interaction contains a piece

(3.4)

where X; is the X charge of the P; field. When the VEV's
of N and N fields are not equal, it gives extra contribu-
tions to the squared masses of scalar fields of nonzero X
charges. This happens if the soft SUSY-breaking masses
of N and N are difFerent [14,16,17]. The relevant part of
the scalar potential for these fields we take to be

where m~& and m& are the soft SUSY-breaking masses
of the N and N fields, and they are of the order of the
SUSY-breaking scale mg. The last term is to give large
VEV's ( p) to N and N fields. Defining Z—:~N~ +
JN2/, 6—:/N/ —/N /, mz = z(mz + m&), and m&—
2(m2iv —m&), we can rewrite V as

V = 2gx(Xivb) + mqZ+ m~6

+ (3.6)

V(N, N) = -gx(X~iNi —X~iN [)
+m2~[N['+ m2~[N'[+ A'[NN —p'(', (3.5)

n M
bm (R) = —C2(R) 1 —

2 M5 (M~), (3.2)
5 as2 Mg

mao 3
1 &

m5
(3.3)

and the violation should be small if gaugino mass is
found to be small unless the gauge coupling increases
very rapidly above MG. .

In addition to the radiative corrections from the gauge
couplings, if the sleptons have some superpotential cou-
pling of strength A with fields which acquire masses
O(M~), then there are radiative corrections to the slep-
ton masses between Mqo and MG. at order A . In or-
der to generate significant violations of the slepton mass

where C2(5) = s and C2(10) = s . Therefore we have
hm (10)jism (5) = —.If U(l)~ survives beneath Mip,
the U(1)x gaugino mass also contributes to the radiative
corrections arid reduces this ratio (Xip = —1, Xs = 3),
but in general its contributions are smaller.

If this is the only source which violates the slepton
mass relation, then we have

Minimizing the potential with respect to 4 we obtain

m2 3

XNgX
(3.7)

This shifts the mass of the scalar particle with charge X,.
by the amount

bm,. = g~X;XNL — m~ .2= 2 X;
N

(3.S)

Di8'erent ways of stabilizing the VEV's of N and N do
not change the basic result, they only give corrections to the
higher-order terms in Eq. (3.7).

Therefore, any scalar particle which carries U(l) x charge
will receive a tree-level D-term contribution which is pro-
portional to its U(1)x. charge and the difFerence of the
soft-breaking masses m~ and m~. Since N and N lie
in different representations of SO(10), SO(10) allows miv
to be very difFerent from m~, and also X~o and X5 are
different (Xip —— —1, Xg = 3), this provides a large
breaking of the slepton relation (2.19), (3.1).
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Prom the above discussion it follows that a significant
violation of the slepton mass relation by the D term re-
quires a large difFerence between miv and m2- (of the
same order of the slepton masses). lf some symmetry
of the Kahler potential guarantees that m~ and m~ are
equal at the tree level, a large difFerence between them
can still be generated by radiative corrections, especially
if U(1)x. is broken by the same radiative corrections at
some much lower energy. We consider such a model in
the next section.

IV. LARGE D-TERM CORRECTIONS
FROM RADIATIVE BREAKING

OF U(1)»

If the scalar masses are universal at the Planck scale
because of some symmetry of the Kahler potential, the
difFerence between m~2 and m~ can still be generated by
radiative corrections below the Planck scale if N and N
couple to other fields difFerently. An interesting case is
that U(1)x is also broken by the same radiative correc-
tions which modify m~ and m~, i.e. , N and N fields get
VEV's when m2& ——

2 (mz~ + m2~) is renormalized to neg-
ative. ln this case, m~& ——2(miv —m~) miv which is
presumably comparable to the masses of the squarks and
sleptons, then the D-term correction the particle spec-
trum can be quite large. In what follows we consider a
simple model which will demonstrate this case.

We assume, for simplicity, M&0 ——MG, , and beneath

M~, the particle contents are the usual ones in the MSSM
with three right-handed neutrinos, the additional U(l)x.
gauge field, N and N Gelds discussed above which break
the U(1)x when they get nonzero VEV's, and three gauge
singlets Sg„k = 1,2, 3. N and N belong to the 16 and
16 representations of SO(10) at the GUT scale with all
other components get superheavy masses and decouple
below the GUT scale. This can be achieved by a 45
representation of Higgs bosons with VEV's in the hy-
percharge direction (see the Appendix). The two low

energy Higgs doublets Hi and H2 are assumed to belong
to the 10 representations of SO(10) and their X charges
are —2 and 2, respectively. The X charges of all chiral
fields are shown in Table I. Note that we only add the
SU(3), xSU(2)L, xU(l)~ singlets to the MSSM so that
the successful prediction of sin 0~ in the SGUT s is re-
tained.

We consider a superpotential given by

W = QA~U'H2 + +ADD'Hi + LA@E'Hi + LA„u~H2
3

+pHiH2+ ).&xi a i Sac~
k=i

(4.1)

Other possible interactions, such as NSA, N, mSA, , and Sk,
could vanish either because SI, 's are embedded in some
nontrivial representations of SO(10), or because of some
discrete symmetry. (For example, a parity whose lepton
fields change sign and Si, and N are multiplied by i,.) The
scalar potential involving N and N Gelds is given by

2 3

& = -gx Xivf I'+ Xnrl&'I+). X*14*1' + ) A»R i &I

+ ) .I~i, Si,&I' + m2x I&l' + m2g I&'I + )
1, (= —g»~ Xivk+ ) X, lg;I + mqZ+ m~6

)
3 3 3

+).IA»R i~I'+ ).I&~Si&l'+ ).&~A»R i, S~&, (4 2)

M2
647r2 q p2 2) (4 8)

where 2, 4, m~&, and m~& are deGned as before.
When m& is driven negative by the Yukawa interactions

AkvR&Si, X at some intermediate mass scale MI, (Ag s
are assumed to be 1) N and iV fields will get nonzero
VEV's and break the U(1)x. The difFerence of the
squares of their VEV's E is given by 4 = —m2&/Xivgx.
by minimizing V with respect to L, and the sum Z is
fixed by the one-loop correction

I

to the scalar potential [18], Z MI2 where MI is the
scale at which m2&(MI) = mi2v(MI) + m~(MI) = 0
[16]. Figure 1 shows the evolutions of the soft break-
ing masses of N, N, SI„and vR A, Gelds. For simplic-
ity, we have assumed that the soft SUSY-breaking pa-
rameters are universal at MG. and the parameters are
chosen to be Aqp ——A~ p = 1.5, Agp ~p (( 1, AI, p = 1,
k = 1, 2, 3, and the universal soft breaking trilinear cou-
plings Ap ——3mp. The m- is also driven negative at
low energies because of the large A„, coupling. How-

Field:
X

TABLE I. The U(l)» charges of different fields.

qr, ~R ~Z &L, ~R
—1 —1 3 3 —1 —5 —2 2 —5 5 0

We use S and N to represent both the superfields and
their scalar components. It should be clear which one they
represent.
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2 2 2 2m~ = mx —mo+ f» Mo (4.6)

then we have

'
f»~ ~ Mo + (Ts; —q; sin OII )Mz cos 2p .

In this simple model, m& can also be expressed in terms
of mp and Mp,

FIG. 1. The evolutions of the soft breaking masses of N,
N, SI„and vR'I, fields from the GUT scale (2.7 x 10 GeV) to
the U(l)» breaking scale (30 TeV). A universal soft breaking
mass mo is assumed at the GUT scale and the parameters
are chosen to be A~a = & 0 = 1.5, &so, o (( 1, &@0

k = 1, 2, 3, and the universal soft breaking trilinear couplings
&0 = 3~O.

ever, the terms P& I ~AI, vR'I, N~2 in the scalar potential
V [Eq. (4.2)] prevent both N and vR' get nonzero VEV's.
After U(1)» is broken, the mass square of vR gets a large
positive contribution f'rom the N VEV and (vR ) remains
zero.

The present bounds on the mass of the U(l)» gauge
boson Z» are Mz ) 320 GeV (direct) and ) 670 GeV
(indirect) [1S]. The primordial nucleosynthesis may put
a more stringent limit on Mz„, taking N„( 3.5, Mz„
has to be greater than 1 TeV [20] because of the ex-
tra massless states present in our model. Cosmological
constraints also put an upper limit on MI. The Haton (a
linear combination of N and N which corresponds to the
quasiHat direction) decays into light particles through the
heavy intermediate states of O(MI) after the phase tran-
sition of U(1)» breaking. The decay rate must be fast
enough in order not to acct the primordial nucleosyn-
thesis or overdilute the baryon asymmetry. This gives an
upper bound on MI [21]. With these considerations, we
will take MI to be in the range of 10 to 10 GeV.

Compared with MSSM, the scalar masses contain two
extra contributions: the U(1)» gaugino contribution and
the U(l)» D term. For the first two generations where
the Yukawa couplings are negligible, the scalar masses
are given by

(4.7)

m@ —m@. ——(Cz —
4 Ci) Mo + 8C»Mo + E~m~

+(——+ 2 sin g~)M& cos 2P, (4.8)

350 . dR

325 dL,

tlL
dR
&R

&L

275-

m (GeV)
eL,

250-

The corrections —(X;/XIv)mo+ [f», —(X;/Xlv) f» ]Mo2
to the masses of squarks and sleptons compared to the
MSSM can be as large as 60%%uo for X; = 3 in the limit
mp )) Mp. Figure 2 shows the comparison of the scalar
spectra with and without the U(1)» D-term corrections
for a set of mp and Mp. We see that the corrections are
more significant for the sleptons than for the squarks be-
cause of the smaller gaugino mass contributions to the
sleptons than to the squarks. Now the slepton mass re-
lation (3.1) is modified to be

3

m; = mo + ).f«Mo + f», Mo
a=1

225-

200-

+(Ts; —Q; sill gvt )Mz cos 2/3 — ' m&, (4.4)+N eR

where mp and Mp are the scalar mass and gaugino mass
at M~, respectively, f;, a = 1,2, 3, are the same as
before and f», is given by.

175

MSSM With U(l)x D term

m0 ——200GeV, M0 ——100GeV, tan p = 2

2 X,.' (n2»(MI)
40 «x(M~) ) (4 5)

FIG. 2. Comparison of the scalar particle spectra with and
without the U(1)» D-term corrections for a set of mp, Mg,
and tan P.
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where fx, = X; Cx. In a more general SO(10) theory
there is no simple relation between m& and mo and m&
has to be treated as a parameter.

Before going to the next section, we have three com-
ments on this model.

(1) S-term contributions: When U(1)x is broken
at intermediate energy MI, S(MI) is also shifted by
hm2~ —gm20 ———m2&. Then Eqs. (2.13), (2.17), and
(2.18) are not valid. Therefore, if (2.15a) and (2.15b)
hold but (2.18) does not, it may be a hint of a U(1)x
breaking at intermediate energy scale and providing a
shift of the S term.

(2) Neutrino masses: In our simplest model, there are
three heavy Dirac neutrinos and three massless neutrinos
because of the three singlet states we introduced [22,23].
%'e can see them &om the mass terms of the neutrinos
(for simplicity, we only consider one family here and drop
the family indices)

ma vI, v~ + MD Sv~ (4.9)

where mii = A„(II2) = O(m„, |,) and MD = A(N)
O(MI). One linear combination of vl, and S, vr, sing+
S cos 0, where tang = mD/MLi, is married with vR and
gets a large mass gm2~ + MD ——O(MI), which is con-
sistent with experimental constraints [23], and the other
combination vL, cos 0 —S sino is left massless. However,
it is possible to give the three light neutrinos small ma-
jorana masses which are favored to solve the solar neu-
trino problem by just adding some extra interactions to
the superpotential of the model. For example, if we add
to the superpotential the nonrenormalizable interaction
(1/MG)S KK which gives a small majorana mass term
msS = (1/MG. )(X)(X)S to S, then the mass matrix
of the fields vL„v&, and S becomes

(o mi, o
mD 0 M

(o M ~) (4.1o)

The product of the three mass eigenvalues is given by
detM = —mDmg, and the two larger mass are approxi-
mately equal to MD, so the mass of the light neutrino is
approximate

mDms mD MI ma2 2 2 2

M2 M2 M MD
(4.11)

GB
dt

(4.12)

which is similar to that generated by the usual seesaw
mechanism.

(3) b rYukawa unifica-tion: Because the U(1)x is bro-
ken at low energy, there are extra interactions surviv-
ing at low energies compared with the MSSM. Espe-
cially the w-neutrino Yukawa coupling A which should
be about the same as Az at the GUT scale enters the
renormalization-group (RG) equations of many parame-
ters. The RG equation for the b-~ mass ratio B is modi-
fied to be

V. PINE-TUNING PROBLEM
IN THE YUKAWA UNIFICATION SCENARIO

Recently, the large tanp scenario in which the w lepton
and the bottom- and top-quark Yukawa couplings unify
at the grand-unification scale has drawn considerable in-
terest [25—27]. This happens in an SO(10) GUT if the two
light Higgs doublets lie predominantly in a single 10 rep-
resentation of the gauge group SO(10) and the t, b, and
w masses originate in the renormalizable Yukawa interac-
tions of the form 163 10 163. In this case, the top quark
mass can also be predicted and it was predicted to be
heavy [25]. In fact, such a heavy top quark is favored by
the recent CDF results, mq ——174+io+i2 GeV [28]. The
problem with this scenario is that radiative electroweak
symmetry breaking is hard to achieve although signif-
icant progress has already been made [27,29—31]. The
masses of the up- and down-type Higgs bosons are the
same at Mqo because they lie in the same representation
and run almost in parallel because of the boundary con-
dition Aq(Mio) = Ag(Mio). Usually one relies on heavy
gauginos to amplify the small hypercharge-induced dif-
ference in the running of mH and m~ . However, all
thege attempts require severe fine-tuning of the parame-
ters which we will explain below.

The relevant part of the Higgs potential is given by

pl llli I' + ~~ IH21' + &v (IIiH2 + H.c.)

Minimizing the Higgs potential we obtain the following
conditions:

p2i —tan Pp22 M&2

tan P —1 2
(5.2)

—pB 1
2

———sin2P .
Pi+P2 2

{5.3)

In the small tanP case where Ag and A can be ne-
glected, the unification of b and ~ Yukawa couplings in
SGUT requires a large top Yukawa coupling to compen-
sate the contribution from the SU(3) gauge coupling. In
our model the contribution of Aq is largely cancelled out
by A, making it difIicult to achieve the b-~ unification
for the top Yukawa coupling staying in the perturba-
tive regime at the GUT scale. However, since the b and
w Yukawa couplings are small, they do not necessarily
come &om a single renormalizable interaction of the form
16s 10 16s in SO(10) and therefore their unification is
not mandatory. In the large tanP case where Aq and A

are comparable to A| (which we will discuss in the next
section), the terms 3A& —3A in the RG equation for
B also contribute and make up the negative contribution
&om A (As ) A below the GUT scale). In addition, the
couplings between b and II2 through the bottom squark-
gluino loops and top squark-chargino loops [24,25] could
also give a significant contribution to R if tanP is large.
Therefore, the b-w unification is possible in this case.
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In the case of Ai(Mio) = Ai, (Mio) tan p = mi/ms
50 )) 1. We see that p22—Mg/2 for pi not too large,
then

2 2 2 ~ 2 2 2 2 2 2
A. I 1 + +2 (+1 P2) ™Z+ Pl P'2 —e&~S

(5.4)

fine tune of 1/tanP so is still required. However, it
should be generic since a large pure number tanP has to
be generated.

VI. CONCLUSIONS

where m~ is the CP-odd scalar mass, ms is the typical
supersymmetric particle mass scale, m~ max(mo, Mo),
and e represents the custodial symmetry-breaking ef-
fects. Equation (5.4) tells us that both m2& and M& are
smaller than e,m&, so there is an O(e, ) fine-tuning of the
Z mass. In addition, writing m~ Cm, s) 6 ( c~, (& 1, we
have

pB —1 . 1= —sin2P = m PB —= ms . (5.5)
em& 2 tan tan P

2~m.e ——mH, —mH, —~.ms (& ms . (5.6)

The parameter m& ——pi + p2 is now given by

2 2 2 2 2 2
A 11+12 (P'1 P2)+ 12

D+ bmH —M~,

where D = (——m~&) —(+5m&) = —sm~& ~ m~&. For
ms larger than Mz, m& is naturally of the order ms
and the problem of a light m& can be avoided. The
fine-tuning problem of pB is also relieved though not
totally eliminated as we can see from Eq. (5.5) that a

While p is typically of the order ms in order to satisfy
@22 = m2H + p —M&/2. The B paraineter which re-
ceives contributions &om the gaugino masses and the soft
SUSY-breaking trilinear scalar coupling A and therefore
is also naturally of the order ms has to be fine-tuned
to O[(e/tanP)mg]. The fine-tuning is at least one part
in 10 and is much worse than the naive expectation
1/ tan P.

The U(l)x D term which gives the opposite contribu-
tions to mH and mH provides the desired ingredient to
solve this problem [29,32]. One can either simply have
m2~ g m2& at tree level [29] or have the difFerence m2&

generated by radiative corrections as described in the last
section. However, the simple model discussed in the pre-
vious section gives a positive contribution to mH and a

2

negative contribution to mH which is incompatible with
the fact that pi ) pig We thus modify the model so
that it has interactions A&v&„S&N, A: = 1, 2, 3, instead
of Ai, v&„Si,N. The S&'s are still SU(3) xSU(2)l, xU(1)r.
singlets, but carry U(1)x charge +10 [they may belong
to the 126 of SO(10)]. We also have to add S&(X = —10)
to the model in order to cancel the anomaly and we as-
sume that they only have the U(1)x gauge interaction.
Then, the m~, instead of m~, is driven negative by the
Yukawa interactions. The m~& ——

2 (m2iv —m&~) becomes
negative in this case and therefore it gives the correct-
sign D-term contributions to m2H and m~~ . Let hm20

be the difFerence between m~ and m~~ generated by
the renormalization group &om MGUT to ms without
the D-term correction:

It is well known that quark and lepton mass and mix-
ing angle relations may provide evidence for grand uni-
fication. Although squarks and sleptons have yet to
be discovered, mass relations amongst scalars provide a
much more reliable test of unification than do the rela-
tions involving fermion masses. This is because chiral
and gauge symmetry-breaking efFects mask the grand-
unified symmetry relations for the fermions, but are not
present for the scalars. In this paper we have derived
several scalar mass relations which follow directly &om
the grand-unified symmetry, and we have studied the re-
liability of such relations as a probe of supersymmetric
unification.

The small size of Bavor-changing processes suggests
that in models with weak-scale supersymmetry the
squarks of a given charge should be approximately de-
generate. This has led to the speculation that squarks
and sleptons of difFerent charge might also be degenerate.
Although only a speculation, such a boundary condition
of universal scalar masses has become a ubiquitous fea-
ture of supersymmetric models and is incorporated in the
minimal supersymmetric standard model. Since there
are five types of quark and leptons, the quark and lepton
weak doublets q and L and the weak singlets U', D',
and E, such a boundary condition leads to four rela-
tions between the scalar masses. However, the origin of
these relations is more a matter of simplicity than of any
underlying fundamental principle.

In this paper we have derived mass relations, be-
tween scalars of a given generation, which result &om
the most general possible boundary condition that re-
spects a grand-unified symmetry. With SU(5) unifica-
tion, the five types of quarks and leptons are unified into
two irreducible representations (Q, U', E ) and (I, D'),
leading to the expectation of three mass relations, which
are given in Eq. (2.14). However, these three relations
involve a quantity T, which depends on the mass split-
ting of the Higgs scalars at the unification mass. It is
likely that this mass splitting is small enough that the
relations (2.14) with T = 0 will result. However, if the
mass splitting is very large there are only two mass re-
lations between the scalar mass parameters of each of
the light generations. These relations are given by elim-
inating T, and are given in Eq. (2.15). We believe that
these relations must be correct in any grand-unified the-
ory which incorporates the usual SU(5) group. If these
relations are found to be incorrect, then it is unlikely
that grand unification is correct. Although extra parti-
cles and interactions could be added to a grand-unified
theory to invalidate these mass relations, such particles
and interactions will lead to extra renormalizations of the
weak mixing angle, upsetting the outstanding agreement
between the theoretical prediction and the experimental
value.
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Even if the parameter T is large, a third mass relation
can be derived because T can be evaluated by measuring
the Higgs boson and third-generation scalar masses. This
mass relation is given in Eq. (2.18).

If the quark and leptons are further unified, so that
all five species of a generation are unified in a single rep-
resentation, as occurs in SO(10) theories, a fourth mass
relation is to be expected. This is written, ignoring T,
in Eq. (3.1), as a relation between the masses of the two
charged sleptons. This mass relation is likely to be the
first which is subject to precise experimental test. If it
were verified it would provide striking support for SO(10)
unification. However, unlike the two mass relations men-
tioned above, it is not a necessary consequence of SO(10)
unification. We have shown in this paper that it is pos-
sible to have large corrections to this mass relation &om
U(1)~ D2 interactions, either at tree level or by radiative
corrections.

Choosing

(S) =
~ 0 1 ~

13 diag (s, s, s, —ss, —ss),(1 01
qo 1)

(A) =
~ 1 0 ~

diag(a, a, a, b, b),
( o

and

(X) = c,
the above equations become

(my + Ags+ ggc)a = 0,
(my —

2 Ays + gyc)b = 0

2m2B+ -A, (b —a ) = 0,
2msc+ gg(6a + 4b ) = 0 .

(A4)
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APPENDIX

In this appendix we show that it is possible to
give superheavy masses to all components but the
SU (3),x SU(2) I.x U(1)Y singlet of a multiplet of SO (10).
This can be achieved by a 45 of SO(10), AY with a VEV
in the hypercharge direction. The interaction,

CAy C,
where C = 16 or 126, will give superheavy masses to
the components of t and C which have nonzero hyper-
charges, and leave the SU(3), xSU(2)l. xU(1)Y singlets
(N, K, S&, 8&) massless. Those singlets survive below
the GUT scale and serve to break the U(1)~ at low en-
ergy.

To generate a 45 VEV in the hypercharge direction, we
start with the following SO(10) invariant superpotential
[we denote 54 of SO(10) by S, 45 by A, and the singlet
by x]:

Wi = miA~ + m2S + ms' + AiA~S+ giA~y . (A2)

The equations for a supersymmetric minimum are

We are interested in the solution s = 0, a = b

[(ms/5gq)c] ~ g 0, c = —mq/gq, in which (Aq) is in the
SU(5) singlet (X-charge) direction. We have obtained
the breaking pattern SO(10)+SU(5)xU(1)~. We next
add to the theory in such a way that SU(5) breaks to the
gauge groups of the standard model, and the only light
states beneath the GUT scale are those of the MSSM
with some standard model singlets. We add the follow-
ing terms to the superpotential:

&1 0)
(~Y) =

I 0 1 ~II diag (sY, BY, SY, —2BY, —2BY),

& o
(AY) =

~ 1 0 ~
8 diag (oY)oY)oY)bY)bY) . (A7)

sy is determined by the equation

0 = IB = m4S'+ 2msSY + 3AB(SY —„TrSY) . (A8)

We obtain BY = 4m&/3As. The Ezl equation,

E„=AgAy = 0, (A9)

forces (AY) to be in the direction orthogonal to (Aj ) and
the F~ equation,

= &2(AY —
~~ TrAY) + m4+Y = 0, (Alo)

forces (AY) to be in the hypercharge direction. We have

bY = 2+Y= —3

and

W2 ——p2Z'A&Ay + A2S'Ay + m4S'Sy. + m5Sy. + A3Sy

+A4AAgAy + m6A (A6)

We assume that y' and S' have no VEV's so that the
minimization of Wq is not afFected, and Sy. and Ay have
nonzero VEV's of the following forms:

0 = +& = 2(my + &y&+ gyp)Ay,
0 = I"s = 2m2S+ Az(A~ ——TrA~),
0 = E„=2m3y+ ggTrA~ . (A3)

2m4sy.
Qy

A2

Rom these equations. Finally, we need the trilin-
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ear interaction A4AAqA~ to make sure that there are
no extra massless states which are not eaten by the
gauge bosons present to destroy the successful sin 0~
prediction. We have checked the mass matrices of
these fields and indeed there are only 32 massless
modes which are needed for the symmetry breaking

SO(10)-+SU(3),xSU(2)l, xU(1)y xU(1)~. Now we have
successfully constructed a superpotential which gener-
ates a 45 VEV in the hypercharge direction. The
SU(3) xSU(2)L, xU(1)~ singlet-nonsinglet splitting re-
quired in our model could be obtained &om the inter-
action (Al) consequently.
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