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CP violation in the two-Higgs-doublet model: An example

L. Lavoura*
Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213

(Received 1 September 1994)

In a general two-scalar-doublet model without ferxnions, there is a unique source of CP violation,
Jz, in the gauge interactions of the scalars. It arises in the mixing of the three neutral physical scalars
Xz, X2, and X3. CP violation may be observed via different decay rates for X& -+ 0 W and
Xq ~ H W+ (or, alternatively, for H+ -+ XqW+ and H -+ XzW, depending on which decays
are kinematically allowed). I compute the part of those CP-violating decay-rate differences which
is proportional to Jz. The CP-invariant phase is provided by the absorptive parts of the one-loop
diagrams. I check the gauge invariance of the whole calculation.

PACS number(s): 11.30.Er, 12.60.Fr

I. INTRODUCTION

There are general reasons for the interest in the possi-
bility of CP violation in the scalar sector. CP violation
is a necessary ingredient for the generation of the baryon
asymmetry of the Universe [1]. It is believed that CP
violation in the Kobayashi-Maskawa matrix is not large
enough to explain that asymmetry [2]. It has been specu-
lated [3] that the scalar sector might provide the missing
CP violation.

There have been studies of possible signatures of CP
violation in the scalar sector. It has been remarked [4]
that the simultaneous presence of the three couplings
Z Sg S2 ) Z S]S3 and Z S2S3, where S~, S~, and Ss are
three neutral scalar fields in any model, implies CP vio-
lation. Similarly, the simultaneous presence of the three
couplings SqZ Z, S2Z Z, and SqSqZ, represents CP
violation. This is because the C quantum number of the
Z is —l. Another work [5] has considered various CP
violating Lagrangians including scalars, fermions, and
vector bosons, and has suggested looking for CP viola-
tion in the decay mode S ~ Z R'+TV, occurring when,
in the rest frame of the decaying neutral scalar S, the
momentum distribution of the TV+ is not the same as
the momentum distribution of the TV, or, in a simi-
lar fashion, in S —+ Z H+H . The first of these CP-
violating asymmetries has later been computed [6] in the
context of the two-Higgs-doublet model. However, the
decay mode S + Z R'+W is phase-space disfavored
as compared to the simpler decay modes S —+ TV+TV
and S ~ Z Zo. Other studies [7] have concentrated on
CP-violating phenomena originating in the interplay of
scalars and fermions, in particular the effects of top-quark
physics.

The aim of this work is the computation of a CP-
violating asymmetry in the two-Higgs-doublet model

without any fermions. The model has gauge symmetry
SU(2) U(l), which is spontaneously broken to the U(1)
of electromagnetism by the vacuum expectation values
(VEV's) of the two Higgs doublets. I look for CP viola-
tion involving solely the gauge interactions of the scalars.
For simplicity, I do not consider the presence of fermions,
which would lead to extra sources of CP violation, both
in the fermion sector, and in the interplay of the fermion
and the scalar sectors. I also omit possible sources of
CP violation in the cubic and quartic interactions of the
physical scalars. Those scalars are two charged parti-
cles H+, with mass mH, and three neutral particles Xq,
X2, and X3, with masses mq, m2, and m3, respectively.
In addition, the spectrum of the model includes the mas-
sive intermediate vector bosons TV+ and Z, with masses
m~ ——80 GeV, and mz ——91 GeV, respectively, and the
massless photon. For a fairly large range of the masses
of the scalars, either the two decays Xq —+ H+R' and
X~ M H B +, or the two decays H+ —+ X~M+ and
H + XqW, are kinematically allowed (the neutral
scalars may be numbered so that Xq is the scalar for
which one of these couples of decays is allowed). Then,
the possibility of a CP-violating difference between the
rate of one decay and the rate of its CP-conjugated decay
exists. It is my purpose to calculate that di8'erence.

It has recently been observed [8] that the two-Higgs-
doublet model has one and only one source of CP viola-
tion in the gauge interactions of the scalars. I describe
it briefly. Because the U(1) of electromagnetism is pre-
served in the symmetry breaking, we can, without loss
of generality, choose a basis for the two scalar doublets
in which only one of them, Hq, has a VEV v, while the
second one, H2, does not have a VEV. The two doublets
in that basis can be written

H=' G' ' H-'
I, v+ (H+ iGo)/~2)~ ' ( (R+iI)/~2)
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+ and G are the Goldstone bosons, which become the
longitudinal components of the lV+ and Z, respectively.
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H, R, and I are linear combinations of the three neutral
scalar fields X~, X2, and X3, which are the eigenstates
of mass. Those linear combinations are given by an or-
thogonal matrix T,

(H) (X, )
R =T X2

kI) &Xs)

Without loss of generality, I set T to have determinant
+1. There is CP violation in the gauge interactions of the
scalars [8] if and only if mq, m2, and ms are all different,
and

Ji = TiiTx2Ti3

is nonzero. The quantity Jz has in the two-Higgs-doublet
model a role analogous to the one of Jarlskog's [9] J in the
three-generation standard model. Notice however that,
here, there are in principle other sources of CP violation,
in the cubic and quartic interactions of the scalars. I will
neglect those extra sources of CP violation throughout
this work.

It is important to remark that, though Jq represents
CP violation in the mixing of the three neutral scalars,
this source of CP violation has nothing to do with the
fermions and with the identi6cation of, say, H and R as
being scalars, and I as being a pseudoscalar. That iden-
ti6cation can only be done when a specific Yukawa La-
grangian, coupling the two scalar doublets to the fermion
sector, is considered, which I do not do here. Speci6cally,
as is clear from Eq. (3), B and I play a completely equiv-
alent role in Jq —indeed, as long as there are no Yukawa
couplings, R and I may rotate into each other by a sim-
ple U(1) rephasing of H2. Also, Jq cannot be the source
of, say, CP violation in the kaon system. If fermions are
introduced in the model, the mixing of the neutral scalars
will in principle lead to more CP violation than simply
Jq, because of the Yukawa interactions of the scalars with
the fermions [10].

or

B(Xg -+ W+H ) —B(Xg +W H+)-
B(Xg m W+H ) + B(Xg -+ W H+)

real part of (—i)(T2q + iTsg)i TqqTq2(T22 —iTs2)i'
TilTi2(T1&T&2 + its)Ig. The T-matrix factor has an
imaginary part equal to Jq. Therefore, if the momentum
integral has an absorptive (i.e., imaginary) part, then
the interference term will include Jq times that absorp-
tive part. This is CP violating. The absorptive part
of the integral plays in the calculation the role of a CP-
invariant final-state-interaction phase, which allows Jq to
manifest itself.

We find in a similar fashion that the absorptive parts
of all other nine one-loop diagrams in Fig. 1 lead, when
one considers the interference of those diagrams with the
tree-level one, to CP violation. Indeed, a careful study of
the model and all its vertices shows that the ten diagrams
in Fig. 1 are the only ones which lead to CP violation
proportional to Jq in this process. The CP violation
manifests itself in a difference of the decay rates of Xq —+
W+H and Xq —+ W H+, or of H+ + XqW+ and
H + XqW, whichever pair of decays is kinematically
allowed.

At tree level, the amplitude for the decay Xz
W+H, or for the decay H+ ~ Xq W+, is
(e„PH)ig(T2q —iTsq), from the tree-level vertex. Here,
e„ is the polarization vector of the outgoing W+, and
PH is the incoming momentum of the H+. At the
the one-loop level, each diagram in Fig. 1 contributes
Mg = (e PH)g CI,iII, . Here, C~ are the various i fac-
tors and T-matrix factors &om the vertices and propaga-
tors in the diagram, and i' is the momentum integral,
with the i coming &om the Wick rotation. The ampli-
tudes for the CP-conjugated decays are, at the tree level,
(e„P~)(—i)g(T2q + iTsq), and, at the one-loop level from
Fig. 1, (e„PH)gs( C&)iII, . N—otice that, while the mo-
mentum integral is the same, the vertex factors are com-
plex conjugated. Then, the CP-violating asymmetries
are

II. GENERAL FEATURES OF THE
CALCULATION

B(H+ + XgW+) —B(H -+ XyW )
B(H+ m XgW+) + B(H m XgW )

Let us consider how CP violation proportional to J~
arises in the decay modes that I consider here. The
tree-level diagram with incoming particles W, H+, and
Xq is proportional to i(T2q —iTqq), while the diagram
with incoming particles W+, H, and Xq is propor-
tional to —i(T2q + iTsq). Now take a look at Fig. 1,
in which all the one-loop diagrams which lead to CP
violation when interfering with the tree-level diagram
are collected. Consider for instance the 6rst diagram,
with a loop of W+W, and then X~, as an intermedi-
ate state. That diagram is equal to i TqqTq2(T22 —iTs2),
times a certain momentum integral i'. The seven fac-
tors of i come, three &om the vertices, three &om the
propagators, and one &om the Wick rotation in the
momentum integral. Therefore, the interference of this
diagram with the tree-level one is proportional to the

. Im[(T2q + iTsq) Cg] Re(i')
2g

1 —T2 )

k=1 11

where I used the orthogonality of T to write T2& + Tzz ——

1 —T~~. The imaginary part of (T2q + iTsq)CI, is simply

There are other diagrams which may also lead to CP vio-
lation in this process, but which include other sources of CP
violation, in the cubic scalar interactions. I neglect those ex-
tra sources of CP violation, just as I neglect fermionic sources
of CP violation.
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Jl times a number, typically +1 or +2. The momen-
tum integral iII, (the i is from the Wick rotation) has
a real part if cuts in the corresponding diagram lead to
absorptive parts. Notice that in Eq. (4) I have used the
approximation of taking, in the denominator, only the
square of the modulus of the tree-level contribution to
the amplitude.

It is clear &om Eq. 4 that the asymmetry will be of
the form

where A represents the sum of the absorptive parts
of all the diagrams in Fig. 1, weighted by appropriate
numbers +1 or +2 (see the preceding paragraph). As
one is interested in how large the asymmetry can be, I
now consider the mixing-matrix factor in Eq. (5). Be-
cause one is constrained by the orthogonality condition
T21 +Tgl: 1 —Tll, it is obvious that that factor will be
maximal when ~T2q~ = ~Tsq~, and we will then have

2 2T11T12T13 A,
ll

(5)
2T11T12T131T' T

11

W H Z H

X23 1X
X23

W Diagram 1 Z Diagram 2

W .H+ X1

1X

Diagram 3
X23

W
X2,3

Diagram 4

Z H

Z Hr

1X
X23

Diagram 5
X

Diagram 6
X23 X32

W

W

X1
X1

Diagram
W Diagram

W

1X

X1

Diagram 9

Diagram 1

FIG. 1. The one-loop diagrams with external incoming particles W, H, and Xq, which lead to CP violation upon

interfering with the tree-level diagram, if the integrals have absorptive parts. In each case, the W and the Z in internal lines

may be substituted by the corresponding Goldstone bosons G+ and G, respectively; in the first two diagrams, they may be

substituted by ghost loops as well.
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Clearly, the order of magnitude of this quantity Tll is l.
It is at this point important to remark that, in this spe-
cific example, the CP-violating asymmetry approaches
its maximum when the decay rate decreases. Indeed, as
Tqq m 1, the asymmetry becomes potentially larger (as
long as ~T2q~ remains equal to ~Tsq)), but the decay rate,
which is proportional to 1 —Tll approaches zero. Simi-
larly, the decay rate becomes larger if Tll ~ 0, but then
Jl ~ 0 and the CP asymmetry also vanishes. This situ-
ation is reminiscent of the case of CP violation in decay
modes of the B mesons, which is generally predicted to
be larger when the branching ratios are smaller, and vice
versa.

(3) one considers, from each one-loop diagram, only the
part which is proportional to J» upon interference with
the tree-level amplitude, and (4) one only considers the
absorptive part of each one-loop diagram. One has also
to take into consideration that the gauge-dependent ab-
sorptive parts sometimes cancel between two similar di-
agrams with intermediate virtual particle X3 instead of
X2, whenever those absorptive parts do not depend on
the mass of that intermediate particle (ms or m2); while
other absorptive parts cancel among difTerent-looking di-
agrams.

III. GAUGE INVARIANCE IV. CONTRIBUTION OF EACH DIAGRAM

A way to check that the diagrams in Fig. 1 are all
the relevant ones is to check whether their computation
yields a gauge-invariant result. Because I just want to
compute the absorptive parts of the diagrams, which are
finite, it is sufficient to compute the diagrams in the uni-
tary gauge, in which no Goldstone bosons and no ghosts
are present. However, in a general 't Hooft gauge, in
each of the diagrams in Fig. 1, a G+ can be used instead
of the W+, or a G can be used instead of the Z . In
the two diagrams which have a loop only of W+ or of
Z (diagrams 1 and 2), ghost loops must also be con-
sidered in a 't Hooft gauge. Now, in a 't Hooft gauge,
the W+ propagator contains an extra piece (relative to
the unitary gauge) in which the W+ has an unphysi-
cal squared mass W. Similarly, the charged Goldstone
bosons G+ and the charged ghosts c+ have unphysical
squared mass W in a 't Hooft gauge. When W is not
infinite as in the unitary gauge, each diagram by itself
contains a W-dependent absorptive part. However, all
those unphysical absorptive parts must cancel out when
one considers the whole set of diagrams. The same thing
can be said about the propagators of the Z, which has a
piece with unphysical squared mass Z, and of the Gold-
stone boson G and ghost c, which have squared mass
Z. (In principle, Z g W.) The sum over all diagrams of
all the absorptive parts must be independent of both W
and Z. I have checked that independence.

To be sure, gauge independence only applies to an
observable quantity. Thus, gauge-independence in this
case only occurs when (1) the three external particles
are all on mass shell, that is, PH ——mH, Pw = mw,
and Pl ——m», where P~, Pw, and Pl are the incoming
momenta of the external H+, W, and X», respectively,
(2) one suppresses &om the amplitude all terms propor-
tional to Pw~, because the amplitude must be multiplied
by the polarization vector e„of the TV+, and e„Pw ——0,

For each diagram, I have taken separately the factors
with T-matrix elements, and all the i factors &om both
the vertices and the propagators, multiplied that by the
factor (T2q + iTsq) arising in the interference with the
tree-level diagram, and taken the imaginary part of the
result. That imaginary part is always a multiple of Jl.
As a consequence, each momentum integral presented be-
low should be looked upon as being an iIA, in the nota-
tion of Sec. II (the i arising when the Wick rotation is
performed), and only the absorptive parts of each such
momentum integral are meaningful in this context.

I first define the various combinations of the integra-
tion momentum k and of the incoming momenta, and
of the masses, which appear in the denominators of the
momentum integrals. They are

Dl = k —mw~2 2

D2 —= k + 2k. Pl+ m» —mw)2 2 2

D3=k +2k P»+m» —mH,2 2 2

4 = k —2k PH+m~ —m2,2 2 2

D5 —= k +2k Pw+mw —mz,

Ds—:k + 2k. Pg —2k. PH —mq + 2mL. + m~. (12)

It is convenient to define the "triangular function" A:

A(A, B,C)—:A + B + C —2(AB+ AC+ BC) . (13)

This function is negative if and only if one can form a
triangle with sides of length ~A, ~B, and ~C.

I now present the results for the first three diagrams.
Diagram 1:

Diagram 2:

3 3 m2 m1 + 4mlmw —12mw d k 1
4m~~ (2~) D)D2

(14)

P~ 3 m3 —mz —m» + 4m»mz —12mz d k

m» —m2 ml —m3 8m2Z (2x) Dq(mph' w mz)D2(mph —+ mz)



5260 L. LAVOURA

Diagram 3:

(m2, —m22)(m2, —ms2) 2m2~ (2m)4 DgDs

The results for each of these three diagrams are separately gauge invariant. This is because the gauge-dependent piece
in each of them (the piece depending on either W or Z) is the same, for each case, in the diagram with an interxnediate
X2, and in the diagram with an intermediate X3. As the sign of the J» factor is opposite, the gauge-dependent piece
cancels out between the diagrams with intermediate X2 and those with intermediate X3. The same phenomenon
partially occurs in all other diagrams but, in each of them individually, some gauge dependence always remains, as is
seen in the following.

Diagram 4:

d k P~(m~ ™2) k" (m~ + m& —m2)
(27r)4 4m~D4(k2 —W) 2D&D4(mH2 —m~~)

A(m2, m~, mH) + 4m~ —(m2 W m3)4DiD4m~ (m& —m~)

Diagram 5:

Diagram 6:

mz m~ d k „m2 —m»2 2 4 2 2

m~ (2vr)4 4m2zD4[(k + P~)2 —Z]
Pv m' —m'+ m'

D4D5 ( 2 4

M — P" J 1 d ~ m2» 1 &(mz, m'„m', )

Diagram 7:

d4A. m2 m2

mw (2~) mzD4[(k + Pg )' —Z]
2 2 21 m2 —m» —mz 1 2 2 2 2 2 1+ + 2 D + (2m' + mz 2 H y m2) -(-.--.))4 6 mz 4 5 D4D, D, (2O)

Diagram 8:

M, =e„g'J, , (k P~)
2m~ 2vr 4

mQ m22 2

D4(k2 —W)
2 2 2 2m2 m JI m+7 m+7 1 4 4 2 2 2 2(™gl™Jr+ ] mH m) m2

» 4 4» 3 4

+ Hm2 mlmw —m2m~ —2m~m&) —(m2 ++ ms)
2 2 2 2 2 2 2 2

(21)

Diagram 9:

m~ —m2 (k —P~)"
D4[(k + Pg) 2 —W'] 4m2~

(k —P~)" m2~ —m', ( 1

4 m2~ (,D2D4

m» „4m~ —2m2 —m»2 2 2 2

H+ 4

d4k (k —P~)"
(2x)4 4m 2~

(k —PH)" f 1 1+
4 (D2D4 D) D4)

+
—6m~+ 2mH +

D»D2D4 4

(k —PH) —(m, ++ m, )) .
m» mH m2

4m2~

2 2mH m2
D4(k2 —W)

(22)
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Diagram 10:

1 d4k 1 . m2
4 (2vr)4 (k2 —W)[(k+ P~)2 —Z] m~

1+ (A, 2P )v 1 2 v 0

+k"„(m2 —m~) (mi —m2) 1

m gf DiD4D5 m2~DgD5

3m2 + 2m~ —mz —2m& mz —m2 12 2 2 2 2 2

+ 2PH- +
DiD4D5 mz2 D4D5

mB m2 ( 1 mz+ 2 ~

+
I (m2-em~)).

mw i i 4 i 4 s) (23)

It is simple to check now that most terms depending on
either of the unphysical squared-masses W or Z cancel
among M4 through Myp. The only two exceptions are
the erst terms in the curly brackets in the expressions
for M9 and for Mip. However, it is easily found that the
absorptive parts of both these integrals are proportional
to P~, and therefore give a vanishing contribution to
the amplitude. This ensures the gauge invariance of the
whole computation. In each of Eqs. (17)—(23), therefore,
one only has to consider the terms independent of W and
of Z. Those terms are the ones that would have been
obtained had the computation been performed directly
in the unitary gauge. Some of those terms, however, still
yield zero absorptive contributions.

I

appears and Ji loses its meaning when the masses of any
two of the three neutral scalars become equal. A proper
treatment of these divergences at mi ——m2 or mi ——m3
would lead me far astray, and therefore I simply avoided,
in general, considering the region of the parameter space
in which either m2 or m3 are close to mi.

Avoiding those regions in which the present approx-
imation loses its validity, I And that the sum A of all
absorptive parts is typically of order of magnitude 10
or 10 2. A few examples are presented in Table I.

It is worth remarking that the total absorptive part
A is always the Anal result of substantial cancellations
among the absorptive parts, with different signs, of the
various individual diagrams.

V. RESULTS
VI. CONCLUSIONS

TABLE I. A few examples of the sum A.

m~ (GeV)
300
200
200
250
300

mg (GeV)
150
100
500
500
100

m2 (GeV)
250
70
100
250
200

m3 (GeV)
60

450
150
80

400

A
—5.23 x 10-'
1.08 x 10
-1.90 x 10
5.61 x 10
5.28 x 10

The asymmetry is equal to g = 0.43 times a mixing-
matrix factor, studied in Sec. II, which should be of order
0.1 to 1, times the sum A of all absorptive parts, which
itself includes a suppression factor 1/(16m).

Now, one should note that the absorptive parts of dia-
grams 1, 2, 3, and 6 all diverge when m2 (or ms) approach
mi. This is simply because in those diagrams one has a
scalar X2 (or Xs) propagating with momentum Pi such
that P& ——m&. Those divergences do not cancel in the
absorptive parts, because the specific values of those ab-
sorptive parts depend on different parameters. Of course,
we know that these divergences are not genuine, they
would be eliminated by a proper treatment in which one
would take into account the finite width of the propagat-
ing X2 or X3, and, in addition, &om a different line of
reasoning [8], one knows anyway that CP violation dis-

In this paper I have presented a model calculation
of a CP-violating asymmetry in the two-scalar-doublet
model. The asymmetry chosen has been the different de-
cay rates for Xz —+ H+R' and for Xi —+ H W+. I
believe this to be a quite interesting place to look for
CP violation in the scalar sector, even if the present cal-
culation turns out not to be very relevant. This might
happen mainly because I have taken into account only
one source of CP violation, Ji in the gauge interactions
of the scalars, while I neglected. further sources of CP vio-
lation, in the cubic scalar interactions and in the Yukawa
interactions with the fermions. Those further sources of
CP violation will in principle lead to extra contributions
to the total asymmetry.

My interest here has been to ilustrate the specific way
in which Jq arises in the computation of a CP asymme-
try. I observed that there is a kind of balance between the
CP asymmetry and the decay rate in this specific case,
but only if the only source of CP violation is taken to be
Ji, with a large asymmetry being possible only when the
decay rate is small, and vice versa.

I found that the asymmetry can attain values of or-
der 10 . These values would increase or decrease if the
interference with other sources of CP violation in this
mode were constructive or destructive.
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Because of the presence of gauge bosons in the internal
lines of the one-loop diagrams that I had to compute, I
found it convenient to check the gauge invariance of the
whole calculation. I checked that the fictitious masses
that appear in the propagators of the TV+ and of the Z,
and of the corresponding Goldstone bosons and ghosts,
in a general 't Hooft gauge, lead to gauge-dependent ab-
sorptive parts for the individual diagrams, which however
cancel out when all the diagrams which lead to CP viola-
tion proportional to Jq are considered. This constitutes
a good check that one did not omit any diagram.
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