
PHYSICAL REVIEW D VOLUME 51, NUMBER 9 1 MAY 1995

Normalization of @CD effects in O(mt') electroweak corrections
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We point out that, contrary to some recent claims, there is no intrinsic long-distance uncertainty
in the perturbative calculation of the QCD effects in the tt and tb loops giving the electroweak
corrections proportional to m, . If these corrections are expressed in terms of the "on-shell" mass
m&, the only ambiguity arising is that associated with the definition of the "on-shell" mass of a
quark. The latter is entirely eliminated if the result is expressed in terms of m& de6ned at short
distances. Applying the Brodsky-Lepage-Mackenzie criterion for determining the natural scale for
normalization of cx„we find that using the "on-shell" mass makes this scale numerically small in
units of m&. Specifically, we find that by this criterion the first QCD correction to the O(m, )
terms is determined by n, (0.15mt, ). Naturally, a full calculation of three-loop graphs is needed
to completely quantify the scale.

PACS number(s): 12.15.Lk, 12.38.Bx, 14.65.Ha, 14.70.—e

The present remarkable statistics and accuracy of the
data from the CERN e+e collider I EP at the energy of
the Z peak calls for a significant theoretical precision of
calculation of the electroweak loop effects with the goal
of sensing the efFects of Higgs boson and/or new physics
once the top quark mass is known (for a recent review see,
e.g. , Ref. [1]).Because of the large mass of the top quark,
the efFects of the tt and tb loops, proportional to m~, have
to be calculated including the QCD corrections. Specif-
ically, the leading in the limit mt2/m~& )& 1 electroweak
corrections, related to the W and Z propagators, are uni-
versally determined [1] by the finite difFerence of the lon-
gitudinal parts of the Z boson and the R' boson vacuum
polarization insertions at q —+ 0. When expressed for
definiteness in terms of the correction to the electroweak
p parameter the effect of the heavy quark loop is given
by

3G„, ( 2n,Ap= "m, ~1 — '(vr +3)
~

in the lowest [2] and the first [3] orders in n, . The present
accuracy of the data already makes necessary a quanti-
tative understanding of the magnitude of the o., term as
well as of the higher QCD corrections.

Recently doubt was cast [4—6] on the calculability of
the higher QCD effects in expression (1) in terms of the
QCD coupling, normalized at distances of order m&

cr, (mt). The reason for this doubt arises in a calcula-
tion of the vacuum polarization at q 0, i.e. , far below
the tt and tb thresholds, using the dispersion relations,
which involve integrals over the spectral densities of the
physical states, containing tt and tb near and above the
corresponding thresholds. The resonances and the con-
tinuum states near the threshold are governed by the
perturbative and nonperturbative dynamics at long dis-

tances, which are much larger than m, , hence arises the
doubt about the calculability of the vacuum polarization
at q2 —i 0 in terms of n, (mt). Here we point out that this
doubt is ungrounded and that the solution of this prob-
lem was known long ago, at least since the development
of the QCD suin rules for charmonium [7]. Moreover,
this is exactly the central point of the QCD sum rules,
that though each individual hadronic state is governed
by long-distance dynamics, the dispersion integrals over
these states, which give the vacuum polarization far be-
low the threshold, are determined by the short-distance
QCD dynamics. This point, which was also emphasized
in a recent paper [8], is further discussed below in the
text.

The long-distance QCD effects however produce a cer-
tain efFect on expression (1) through the convention as-
sociated with it. Namely, the result in Eq. (1) is written
in terms of the on-shell mass mq, which, as discussed in
this paper, effectively lowers the appropriate normaliza-
tion point for n, in Eq. (1) through the contribution of
the near-mass-shell region to the evolution of the quark
mass from the mass shell to distances of order m~, which
are relevant in the loops. In connection with this ob-
servation it should be emphasized that this efFect by no
means makes the perturbative calculation uncontrollable:
the notion of the on-shell quark mass is consistent in any
finite order of perturbation theory in QCD and the dis-
cussed effect manifests itself in a numerical, rather than
parametrical reduction of the appropriate normalization
momentum scale for o., in units of mq. Equivalently, this
implies that if the QCD corrections to the O(mt2) elec-
troweak corrections are expressed in terms of o., (mt) the
coefficients of higher terms should be unnaturally large.
Beyond the perturbation theory there is the known prob-
lem of defining the on-shell quark mass, which amounts
to an uncertainty of the order of AqpD, which effectively
places the limit on the accuracy of definition of the quark
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mass. This is the well-known case for the 6 quark and
this particular uncertainty should be the same for the t
quark. For the latter the situation is somewhat addition-
ally complicated by the large width of the decay t m TVb.

Nevertheless, one can, quite probably, get to the accuracy
of defining the "on-shell" top mass better than 1 GeV.

One can notice however that the problem of properly
de6ning mt is somewhat artificial for the electroweak cor-
rections at the Z peak. This problem can be completely
eliminated by expressing those corrections through the
top mass, measured at short distances in some other
measurable quantity, determined by the short-distance
dynamics. As examples of such quantities one can pick
the mt entering the electroweak corrections to the Z ~ bb

decay rate through the ttlV triangle or the total width
of the decay t —+ R 6, either of which is determined by
distances of order mt, or any other measurable mt-
dependent quantity of the same nature. In other words,
the relation between the electroweak corrections of the
type in Eq. (1) and the quantities such as the total de-
cay rate of the top should not contain unnaturally large
or small numerical coeKcients in units of mt in the scale
of normalization of o,

Naturally, to completely fix the normalization point
for n, in Eq. (1) one needs a full three-loop calculation
in the order o.~, which has not been done yet. However
as pointed out some time ago by Brodsky, I epage, and

Mackenzie [9] (BLM) one gets an appropriate estimate
of the normalization point and thereby makes the coef-
6cient of the higher-order term reasonable by evaluating
the lower-order graphs with an explicitly running cou-
pling constant. Formally, this corresponds to tagging the
dependence of the higher loop term on the number of
light quark Havors nf and then shifting this dependence
in the combination bo = 11 —3nf into the definition of
the normalization point of o., in the lower term. Here
we apply this procedure to the calculation of the elec-
troweak correction in Eq. (1), and find that the BLM
criterion gives the normalization point of o., in the mod-
ified minimal subtraction scheme (MS) scheme as low as
0.15mt. The appearance of the small coeKcient 0.15 is
mainly due to the usage of the on-shell top quark mass.

For the practical calculation we use the simple fact
[10] that when calculating the correction in Eq. (1) in
the limit m&/m, « 1 one can neglect the masses of
gauge bosons altogether, which is equivalent to setting
the electroweak gauge couplings to zero [notice that the
expression in Eq. (1) contains as the overall factor only
the top quark Yukawa coupling bi]. Therefore the quan-
tity of interest can be expressed in terms of the dynamics
of only the scalar sector coupled to the t and 6 quarks.
In these terms the correction Lp is expressed through
the vacuum polarization by the quark density operators
coupled to the Goldstone bosons y and y+:

Po(q') = -2i {0!T([t(x)~,t(x)][t(x)~,t(x)])!0)e*~*d'x

P~(q ) =i {0]T([t(x)(1—ps)b(x)][b(x)(l + ps)t(x)]j!0)e'~ d x

(the mass of the b quark is entirely neglected throughout
this paper). The electroweak correction b,p is found as
[10]

Ap = ",[P~(0) —Po(0)],
2

terms in Eq. (3). Also at q 0 there is no obstruction
to the Wick rotation. Thus we 6nd in terms of integrals
over the Euclidean momentum of the gluon the expres-
sions for the first @CD corrections to the derivatives of
the vacuum polarization operators (2):

where P'(q2) = dP(q2)/dq2.
Consider now a calculation of the di8'erence of the

derivatives of the vacuum polarization operators in Eq.
(3) by the conventional Feynman diagram technique.
The one-loop graphs (no additional gluons) give loga-
rithmic divergence for each of the derivatives, but their
difference is Gnite and the result is the leading term in
Eq. (1). Originally the two-loop graphs, which led to the
0(n, ) correction in Eq. (1), were calculated [3] by using
the dispersion relations. Here we concentrate on the di-
rect calculation of these graphs by Feynman's technique,
which transparently reveals the structure of Euclidean
distances contributing to the first @CD correction. For
this purpose we first consider the integration over the
quark loop, which allows one to represent the result as an
integral over the gluon momentum. One can notice that
starting with the first-order @CD correction the integra-
tion over the quark loop is Gnite for each of the derivative

+
qm, y mt

dk2
ufo! ! n, d(k )k(mi) mt

(4)

Expressioiis {4}are gauge invariant, hence it is only the
transverse gluon propagator that is contributing.

with d(k ) = 1/k being the transverse gluon
propagator and the weight functions m~ and top, de-
termined from the quark loop integration, are given by

12 + 16x2 + 8x4 + x6
~~(x) = 2

!arctanh!xi/4+ x' pe+ x')
—2 ln(1 + x ) + x ln x —4

(1+*')'
2 4 2

X2
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and

2+ x
too(x) = 12 arctanh!

x 4+ x' '&'
& 4+')

6
4+ x'

P' (0) —P'(0) = n)! ! n, d(k )k
1 (kl dk

4ns i, mg) m2

with the resultant weight function

(7)

Correspondingly the difFerence, entering Eq. (3), can be
written in the form

~(x) = ~+(x) —~o(z)
36+ 70x' + 48x'+ 12x'+ x' x=2 arctanh

~z(4 + x2)3i2 q /4+ *2)
1+x2 s

4 2 5+2x—2 ln(1 + x ) + x ln x —2
x2 4+ x2

At large x the function tU(x) has the asymptotic be-
havior m(x) = 3x +O(x ), so that the integral in Eq.
(7) is logarithmically divergent. This divergence is regu-
larized, once the gluon propagator is regularized by any
standard procedure. Here we do not need to specify the
regularization procedure, since it can be easily noticed
that expression (3) for the measurable quantity Ap also
contains the factor m~ and the divergence in Eq. (7) is
the same as in the renormalization of m~. More specifi-
cally the o., correction to Lp in terms of the top quark
on-shell mass is determined by

b(m,'[P~ (0) —P,'(0)])

= m,
i

E(m) + 8(P~(0) —Po(0)) !, (9)
mt

where Z(p p) is the one-loop top quark self-energy. The
on-shell value of the self-energy can be written as an in-
tegral over the Euclidean k of the gluon in the loop as

2 1
Z(m) =

m~
si ! n, d(k )k

pm') mt
(10)

with the weight function

x +2x —8
s(z) =

2x+4 + z2

Therefore the final expression for the first 0,, correction
to Ap [Eq. (9)] in terms of the on-shell mass mq is pro-
portional to the finite integral

OO 7r2
[uj(z) + s(x)]dx = ———1,

3 (12)

which reproduces the known result [3] in Eq. (1).
However, the structure of the integral in Eq. (12) de-

serves a closer look. Indeed, as one can see from the plots
of the weight functions s(x) and to(z) shown in Fig. 1,
the integral is significantly contributed by the region of
small x due to the —2/x behavior of the function s(x) in
that region, i.e. , at k « mq. This behavior is clearly a
consequence of the fact that the on-shell mass mq is cho-
sen as the parameter in the electroweak loop. As to the
weight function of the electroweak loop itself, to(z), as
is clearly seen from the plot, it is completely dominated
by the region x & 1, i.e., A: ) m&, and thus it displays
practically no sensitivity to long distances.

The significance of the contribution of the region of
small Euclidean k can be quantified in this calculation
by applying the BLM criterion [9] for the normalization
point of 0, The BLM procedure amounts to replacing
the bare gluon propagator n, d(k ) = n, /k by the one
with the running coupling constant: n, (k)/k, where
n, (k) is the efFective coupling constant in the potential
between two infinitely heavy quarks. The running con-
stant nv(k) in the Coulomb gauge corresponds to includ-
ing the vacuum polarization insertions in the propagator
of the Coulomb gluon. In particular the BLM procedure
applied to the calculation in the first order in 0;, correctly
reproduces the dependence of the coeKcient of the next
term o., on the number nf of light quark fiavors, since
these enter only through the loop insertion in the gluon
propagator. However, this procedure additionally com-
bines the nf dependence into the factor bp = 11 —3nf,

0
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FIG. 1. The weight functions s(x) (left)
and m(x) (right) vs x = k/m~, in the inte-
grals over the Euclidean gluon momentum in
the top quark self-energy [Eq. (10)] and in
the heavy quark loop [Eq. (7)j. Note the
strongly di8erent scale of the vertical axis in
the plots.
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which is the first coeKcient of the QCD P function. In
numerous examples [9,11] applying this criterion to the
choice of the normalization point for the coupling con-
stant removes large coeKcients in the subsequent term.

To apply the BLM procedure to the calculation of Ap
we use in the integrals in Eqs. (7) and (10) the one-loop
effective coupling

n.d(k ) -+ —n. (m, ) ~

1 — ' )n(k/m, )) . (13)
~~(mi) bok'' l, 2

Then n, times the integral in Eq. (12) is replaced by

n~ m, b()n~(mi) 1 — ' in(x)
~

[v)(x) + s(&)]&&
2m )

= —~. (m, ) [

—+ 1
~

1+ 1.034 '
2m )

= —nv(0. 355m')
~

—+ 1 [,)
which fixes the normalization point in terms of n, [the
integral with the factor ln(x) was calculated numerically].
Furthermore, the normalization of the effective coupling
n+(k) is simply related [9] to that of the a.,

perturbative level, and are absent altogether in any finite
order of perturbation theory in QCD.

The reasoning in those papers is as follows. The dif-
ference of the derivatives of the vacuum polarization op-
erators in Eq. (3) can be written in the form of the
dispersion integral

P~(0) P()(0) = (15)

where p~(s) and po(s) are, respectively, the spectral den-
sities of the operators [t(l —ps) b] and i~2(tpst), and the
integral is running over all values of s, where the spectral
densities are nonzero. Consider now the region of s near
the tt threshold, where the integral is contributed by the
tt resonances and the very beginning of the continuum,
strongly distorted by long-distance interactions. Within
the perturbation theory the exchange of Coulomb gluons
between the quark and the antiquark with a small veloc-
ity v = gl —4m'/s makes the QCD effects depend on
the parameter cx, /v rather than ci, . Therefore at v of the
order of or less than o., these eÃects should be summed
up. The summation amounts to using the well-known
solution of the Coulomb problem, and the net eKect re-
duces to multiplying the bare spectral density po by the
Coulomb factor

~~(k) = ~M'(. '~sk-) = ~Ms(0.435k) .
4vra. ,/3v

1 —exp( —4am, /3v)
(16)

Therefore from Eq. (14) we find that within the HIM
scheme the effective coupling, entering the first QCD cor-
rection in Eq. (1) is a, (0.154m&). It is clear, however,
that to completely quantify the magnitude of the QCD
correction to Ap a full three-loop calculation of the terms
o., is needed.

It is clear that a similar calculation, operating only
with Euclidean-space integrations over the momenta of
the gluons, can in principle be performed in higher or-
ders of the QCD perturbation theory, thus making it free
from the long-distance uncertainties. Exactly this point
was discussed at length in connection with the QCD sum
rules in the papers [7] and also in a later review [12].
Here we would like to point out a specific loophole in
the reasoning of the recent papers [4—6], which state that
through the dispersion relations the contribution of the
near-threshold region to P'(0) makes the latter quantity
sensitive to the long-distance dynamics. We also disagree
with the argumentation of [13], where it is argued that
the threshold eKects are numerieatly small. We insist
here that the long-distance eKects are small parametri-
ca/ly, i.e. , suppressed by powers of AclcD/mi at the non-

At v o., the spectral density is of order of o., and
the size of this region of integration in Eq. (15) is
As 4m~ Lv m~ o, Therefore the contribution of
the Coulomb region above the threshold in Eq. (15) is
of order o, , which is the same as that of the under-
the-threshold resonances. The point of papers [4—6] is
that the o., in this eKect is normalized at long distances:
n, ( mv)mrna, ). Because of favorable numerical factors
of vr this O(n, ) effect is stated to be a sizable fraction
of the n, term in Eq. (1). To quantify this statement
the dispersion integral over the near-threshold region is
calculated [5,6] with the factor I", in Eq. (16) in which
the running of the coupling constant is parametrized as
o., mdiv .

The loophole in this argument is that in terms of
the running constant n, in Eq. (16) the normalization
point is not given by m&v. Rather, the proper normal-
ization point is related to m&v by a function f (o(, /v):
n, [m&v f(n, /v)] This phe. nomenon is clearly seen in the
QED calculation [14] of the excitation curve of the r+r
at the threshold, including the Uehling-Serber running
of the QED constant n. Namely, in the region v n
the formula, obtained by the simple substitution of o. by
a(m v), significantly deviates from the exact result. The

The only known cases where large numerical coeKcients are
not removed by this procedure are those associated with the
annihilation of heavy quarkonia in @CD [9,11], which par-
allels a similar behavior of the three-photon annihilation of
orthopositronium in QHD.

More precisely, in [5] a relativistic parametrization is used,
which however, does not change the main point of the
argument.
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contribution of the sum over resonances and of the inte-
gral over the continuum in Eq. (15) in higher orders in n,
contains delicate cancellations [7,13]: starting from order
o., the integration over the continuum partly compen-
sates the contribution of resonances. Moreover, in calcu-
lation of the dispersion integral the function E cannot be
expanded in powers of o;„since this expansion does not
converge at v ( n, [within such expansion the integrals
of individual terms would diverge at v = 0 starting from
the order (n, /v) ]. The result of the integration however
can be perfectly expanded as a series in a, [7]. Thus an
approximate parametrization is certainly prone to giving
misleading results by destroying the correct structure of
the spectral density at small v. Therefore we conclude
that clarifying this point by calculating the spectral den-
sity near the threshold is a far more complicated problem
than the initial one of calculating the vacuum polariza-
tion far below the threshold. On the other hand, those
detailed calculations of the near-threshold region are not
needed, since, as discussed before, the O(mtz) electroweak
corrections can be calculated by the Feynman diagrams
entirely in the Euclidean space, in which at no step the
long-distance uncertainty of the @CD dynamics shows
up at the perturbative level. In other words, though the
integrand in Eq. (15) is poorly calculable near the tt
threshold, the entire integral is well calculable within the
short-distance @CD.

As to the nonperturbative @CD effects, these can be
understood by adapting the results of the discussion of
the charmonium sum rules (Secs. 7.3—7.6 of the second
paper in [7]). The result is that any finite distortion

The objection [6] that these terms in the integral over the
continuum cannot be negative, since the quark and the anti-
quark are attracting each other, is obviously erroneous: these
are small negative corrections of order o; to the positive con-
tribution in the orders o., and o,

of the quark-antiquark interaction at a finite distance
ro )) mt produces only an eKect on the tt vacuum po-
larization at q 0, which is suppressed by exp( —2mtro).
For instance, one can cut ofF the Coulomb interaction at
a radius ro (& (mto;) (but still ro )) m, ), so that
the Coulomb-like bound states disappear, and the actual
spectral density po would look nothing like that deter-
mined by the factor I" in Eq. (16). Still, up to the
exponentially suppressed terms the vacuum polarization
at q —0 in this situation would be given by the disper-
sion integral in Eq. (15) with the perturbative spectral
density, i.e., the one containing Coulomb-like poles, and
the factor E above the threshold. Fully appreciating
the nontrivial character of this phenomenon, we point
out that this is a direct consequence of the analyticity of
quantum amplitudes. The only way in which the long-
distance efFects give a contribution to the vacuum polar-
ization at q = 0 is through the "tail" of the long-distance
efFects at distances of order m~ . In the potential models
with a powerlike nonperturbative potential of the form

V(r) = ar, the effect is proportional [7] to am, t
[which is the action I V(r)dt at distances r mt over
the time t mt ]. To evaluate this particular effect
in @CD there is however no need of invoking model po-
tentials, and the leading efFect is calculable in terms of
the vacuum gluon condensate and its relative magnitude
is given by (0[em, G„G [0)/m, 10 io. This would

be the only nonperturbative contribution to the O(mtz)
corrections if these corrections were expressed in terms
of the top mass, normalized at short distances. However
when the corrections are expressed through the on-shell
mass of top, the relative nonperturbative contribution is
that in the on-shell mass, i.e. , O(AclcD/mt).
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