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Observing long color flux tubes in SU(2) lattice gauge theory

Gunnar S. Bali, ' Christoph Schlichter, t and Klaus Schilling~
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We present results of a high statistics study of the chromofield distribution between static quarks
in SU(2) gauge theory on lattices of volumes 16, 32, and 48 x 64, with a physical extent ranging
from 1.3 fm up to 2.7 fm at P = 2.5, 2.635, and 2.74. We establish string formation over physical
distances as large as 2 fm. The results are tested against Michael s suln rules. A detailed investigation
of the transverse action and energy Hux tube pro61es is provided. As a by-product, we obtain the
static lattice potential to unprecedented accuracy.

PACS number(s): 11.15.Ha, 12.38.Aw, 12.38.Gc

I. INTRODUCTION

The issue of verifying the confinement mechanism in
quantum chromodynamics has been a great challenge
ever since the phenomenon of string formation between
a static QQ pair was conceived by 't Hooft and Mandel-
stain [1] to be a dual Meissner effect in the scenario of
a type II superconducting vacuum. Early lattice gauge
theory attempts to compute the color Geld distribution,
without recourse to modeling, were necessarily limited
by the available compute power and lattice methods of
the period. They rendered qualitative rather than quan-
titative results, with lattice resolutions, a, and quark-
antiquark separations, r, restrained to a ) 0.15 fm and
r = aR ( 1 fm, respectively [2—5].

In recent high precision studies of SU(2) and SU(3)
gauge theories [6,7] the static quark-antiquark potential
has been found to be consistent with a linearly rising
part and a subleading —vr/(12B) correction as predicted
by the bosonic string picture [8,9] for separations above
rq —0.5 fm. Moreover, there are numerical indications
for hybrid potentials, with gluonic excitations separated
by energy gaps n7r/B [10,11], as expected from efFective
string theories [8].

Compelling evidence about the nature of the confining
string from lattice gauge theory (LGT) is still lacking.
It would require measurements of Geld distributions at
quark separations well beyond rz. To study the geometry
of the color ffux tube between Q and Q sources, one needs
an increase both in resolution of the underlying lattice
and in the linear extent, r, of the string.

These requirements are not so easily met, since (a)
the energy density carries dimension a and therefore
imposes a lower limit onto the lattice spacing due to sta-
tistical noise and (b) one is forced to work with very
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large lattices to attain large quark-antiquark separations
r = Ra. On top of this, one is of course faced with the
ubiquitous problem of filtering ground-state signals out
of an excited-state background.

Thus, in order to really determine the structure of
strings in the heavy quark-antiquark interaction, one can-
not avoid a systematic high precision study, ensuring (a)
good scaling behavior as well as (b) sufficient control on
finite-size efFects (FSE's), and (c) reliable signals for the
ground state.

The superconducting picture for QCD has been mod-
eled in terms of a dual effective Lagrangian some time
ago by Baker and collaborators and worked out subse-
quently [12]. Lattice gauge theory in principle provides
the laboratory for testing such confinement models, as
it allows for ab initio studies from the QCD Lagrangian.
Within the lattice community, there has recently been
revived interest to study the role of monopole condensa-
tion in the confinement mechanism, by recourse to the
maximal Abelian gauge projection, in SU(2) gauge the-
ory [13—15]. Encouraging evidence for the dual Meissner
effect has been reported in Ref. [16]. Nevertheless, all
this pioneering lattice work on the confinement mecha-
nism has been carried out either at rather smallish quark-
antiquark separations, where the Aux tube is not yet re-
ally developed, or at rather large lattice spacing.

In fact, there definitely remains a gap: so far, Aux

tubes of sufBcient physical lengths have never been ob-
served on the lattice. In this paper we intend to bridge
this gap: exploiting state-of-the-art lattice techniques,
for noise reduction and ground-state enhancement, as
well as the compute power (and memory) of "small" con-
nection machines CM-2 and CM-5, we will be able to
demonstrate unambiguously that quenched SU(2) gauge
theory does imply Aux tube formation over distances well
above the vr Compton wavelength.

Reliable lattice calculations can only be based on trust-
worthy error estimates. For this reason we will expose
the underlying lattice techniques in quite some detail
(Sec. II). There is a shorter Sec. III, augmented by three
appendixes, on (a) weak coupling, (b) string model issues
that are helpful to appreciate certain qualitative features
of the field distributions, and (c) sum rules for energy and
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action densities that provide an important cross check of
the lattice results. The numerical results are presented
in Sec. IV, which includes very precise potential data, de-
termination of the Symanzik P function, and many pic-
tures of the fIux tubes. Detailed checks on finite-size ef-
fects, discretization efFects, and ground-state dominance
are provided, substantiating the interpretation of lattice
correlators in terms of continuum fields. Sec. V contains
a discussion of the shape of the fIux tube and the status
of Michael's sum rules.

II. LATTICE TECHNIQUES

The numerical calculations are performed on lattices
with hypercubic geometry and periodic boundary condi-
tions in all four directions with volumes L& x LT ranging
&om 16 up to 48 x 64. Throughout the simulation the
standard Wilson action

Siv = —P ) U„„(n)

with

U„(n) = —Tr U„(n)U„(n + jc)Ut (n + v) Ut (n), (2)

and P = 4/g2 has been used.
For the updating of the gauge fields a hybrid of heat-

bath and over-relaxation algorithms has been imple-
mented [17]. The Fabricius-Haan heatbath sweeps [18j
have been randomly mixed with the over-relaxation step
with probability ranging from 1/8 at P = 2.5 up to 1/14
at P = 2.74. The links have been visited in lexicographi-
cal ordering within 2 hypercubes, i.e., within each such
hypercube, Erst all links pointing into direction 1 are vis-
ited site by site, then all links in direction 2, etc.

A. Prerequisites

In order to substantiate continuum results &om lattice
calculations it is of utmost importance to investigate the
impact of the Rnite lattice volume as well as the scaling
behavior with the lattice spacing a. This requires simu-
lations both at (a) fixed lattice coupling P (i.e., spacing
a) with a varying number of lattice sites and (b) (ap-
proximately) fixed physical volume but difFerent lattice
resolutions.

Of course one wants to work, within the computational
means, as close as possible to the continuum limit, i.e. , at
as large P values as possible. The bottleneck is set by the
memory requirements due to the increase of the number

We regret being unable to expose the color Hux: tube in color
in this medium. A database of colar images can be accessed
via anonymous ftp fram wptsO. physik. uni-wuppertal. de. The
(compressed) .rgb and .ps 6les are deposited in the directory
pub/color8ux.

of lattice sites (needed to compensate for a smaller a) as
well as by the computer time required to suppress the
statistical noise. Since the operators under investigation
scale with the fourth power of the lattice resolution (up
to in a terms from anomalous dimensions; see below),
the latter limitation is the more serious one, restricting
all preceding lattice studies to P ( 2.5.

Although simulations at small P values allow for rather
large physical volumes, lattice artifacts are expected to
spoil results at physically interesting scales. Moreover,
we should mention that our smearing procedure provides
inferior ground-state overlaps at large lattice spacings.
There is more reason to stay away from too coarse lat-
tices: one needs a sufEciently large T range for veri6ca-
tion of T plateaus in the bona fide physical quantities.
In addition, at smaller values of P, the lower limit T & 3,
implied by the minimal temporal extent of the (0)vv op-
erator, amounts to overly large physical separations and
leads to small signals of the Wilson loops.

In short, one has to compromise between the shortcom-
ings of both small and large lattice spacings a. We have
chosen to simulate at P = 2.5, 2.635, and 2.74 at various
lattice volumes, ranging up to the unprecedented volume
48 x 64. Our simulation parameters are summarized in
Table I.

As a by-product we compute the static potential and
obtain the most precise set of SU(2) string tension values
that has ever been computed on the lattice. Details of
the 6tting procedure are explained in Sec. IV A 2. The
(lattice) string tension K relates the lattice spacing n to
a physical scale: ~ = Ka . We ascribe the "canonical"
value ~i@ = 440 MeV to the square root of the string
tension. Needless to say, this scale, taken &om real world
QCD Regge trajectories, only serves as an orientation for
its poor man's quenched two-color version: SU(2) gauge
theory. Nonetheless, the quantitative agreement between
the SU(2) and SU(3) potentials is remarkable. We also
point out that the efI'ective string model with which we
are going to compare our results does not depend on the
underlying gauge group.

From the string tension measurement we And the fol-
lowing (approximate) relation between the present lattice
spacings: a2 5: a2 6» .. a2 „'4 = 1:1.5: 2. Thus, the 16
lattice at P = 2.5 has approximately the same physical
volume as the 32 lattice at P = 2.74. The same holds
true for the 32 lattice at P = 2.5 and the 48 x 64 lat-
tice at P = 2.635. These pairs of lattices can be used to
investigate the a (in)dependence of the results. In order
to reveal possible volume eKects, the 16 and. 32 lattice
outcomes at P = 2.5 will be compared with each other.

As a prerequisite to the present investigation, let us
consider the static QQ potential which can be computed
from Wilson loops, W(R, T). A Wilson loop, i.e., an or-
dered product of link variables along a closed rectangular
path with spatial separation B and temporal extent T,
can be interpreted as a world sheet of a QQ pair: at
Euclidean time w = 0 a creation operator

I'„=q(0) U(0 -+ a)qt(R)

with a gauge covariant transporter U(0 —+ B) is applied
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TABLE I. Simulation parameters. The physical scales have been computed from the value
v K a = 440 MeV.

L~ x IT
K

a(fm)
a '(GeV)
aLs(fm)

MC sweeps
Thermahzation sweeps

Meas. , sweeps between meas.
Wilson loops

Color Qux distribution
Plaquet te

P = 2.50
16'

o.o35o(4)
0.0826(5)
2.35 (1)
1.32(1)
870000

2000

8680, 100
8680, 100
86800, 10

P = 2 50
32'

0.0350(12)
0.0826(14)

2.35(4)
2.64(4)
255600
51000

2046, 100
2046, 100
20460, 10

P = 2.635
48 x 64

0.01458(8)
0.0541(2)
3.64(1)
2.60(1)
53800
4200

248, 200
248, 200
992, 50

P = 2.74
32'

0.00830(6)
0.0408(2)
4.83(2)
1.31(l)
152000
4000

1480, 100
670, 100
14800, 10

to the vacuum state ~0). The QQ pair is then propagated to r = T by static Wilson lines in the presence of the gauge
Geld background, and Anally annihilated by application of I ~. A spectral decomposition of the Wilson loop exhibits
the following behavior (7 = e + denotes the transfer matrix, 7 ~n) = e @"~n)):

(W(R, T)) =

(4)

where d (R) = (0~1 ~~n, R) ~n, R) is the nth eigen-
state in the charged sector of the Hilbert space with non-
vanishing overlap to the creation operator I' t&, while ~n)
is the nth eigenstate of the zero charge sector. V (R)
denotes the nth excitation of the QQ potential and the
vacuum energy Eo has been set to zero. Eq is the mass
gap, i.e. , the mass of the A& glueball.

Actually, we are not restricted to on-axis QQ separa-
tions, R = (R, O, O). Planar Wilson loops can be easily
generalized to ofI'-axis separations by connecting sources
that do not share a common lattice axis. In the present
investigation, the following ofI'-axis directions have been
realized:

di ——(1,0, 0),
d3 = (2, 1, 0),
ds ——(2, 1, 1),

d, = (1, 1,0),
d, = (1, 1, 1),
ds ——(2, 2, 1),

B. Noise reduction

In this section we will shortly discuss the implications
of noise reduction that we achieved by integrating out
the temporal links in the Wilson loops analytically [19].

The link integration amounts to the substitution

with separations m;d; up to mi, m2, m4 ( L&j2 and
m3 ms, ms ( Ls/4. For the largest lattice, Ls = 48,
this amounts to a measurement over a set of 108 difFer-
ent separations. All paths have been chosen as close to
the shortest linear connection between the sources as the
lattice permitted.

U4(n)

with

S„„(U)= ——Tr UE~t (n)
1

E„(n) = ) U (n) U„(n +& )Ut (n + p). (8)

where f~(n) = gdet (E~(n)). I denote the modified
Bessel functions.

The statistical error AO of an observable (0), calcu-
lated without link integration, is related by a constant
8 ( 1 to the corresponding error with link integration,
AO~; ——8AO. In order to discuss the impact of link
integration on noise reduction, we start &om the naive

V4(n) is in general not an SU(2) element anymore.
In this way, timelike links are replaced by the mean

field value they take in the neighborhood of (strobo-
scopically &ozen) links that interact through the staples
E„(n). Only those links that do not share a common
plaquett;e, can be int;egrated independently. This holds
in particular for all temporal links within our spatially
smeared Wilson loops, ifI' B & 1.

In case of SU(2) gauge theory, V4(n) can be calculated
analytically:

I2(&&~(n) )
&~(n) Ii(p&~(n))
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expectation that each integrated link contributes equally
to s, i.e. , we assume s = x with 2T being the number
of integrated links used within the construction of (0).

In order to estimate the value of s, let us consider on-
axis Wilson loops with integrated temporal links. On
symmetric lattices (Lz ——I') we expect, from the rela-
tion (W(R, T)) = (W(T, R)),

b, W(B)T),(z R)
bW(T, R)

no means unique. One can exploit this &eedom to maxi-
mize the ground-state overlap by a suitable superposition
of such paths, aiining at Co(R) = 1. At any given value
of R, the final deviation of Co(R) Rom 1 can serve as a
monitor for the suppression of excited state contributions
actually achieved in this way.

In the present simulation an iterative procedure (with
n;q„ iteration steps) has been applied [20,21]: each spatial
link U, (n), occurring in the transporter, is substituted by
a "fat" link,

This leads to the estimate for x:
1 (AW(B, T) &-' T-R'~ ~W(T, R)

Our data (with bootstrapped errors of the errors) are
consistent with a factor x = 0.889+0.001 (x = 0.890+
0.001) for P = 2.5 (P = 2.635). Thus, application of link
integration at time T = 6 (the largest temporal extent,
used in the computation of the color field operators; see
below) amounts to a reduction of computer time by a
factor x 24 = 16.8+ 0.4.

The improvement achieved by link integration tends
to be smaller at smaller lattice spacings. This is due to
the fact that the physical extent of the neighborhood to
be integrated out becomes smaller. On the other hand,
the error of a nonlink integrated operator, measured on
lattices with constant physical volumes but difFerent cou-
plings, also decreases with the lattice spacing (temper-
ature P ). At the bottom line, the two effects almost
cancel each other and the relative errors of link integrated
Wilson loops appear to remain rather independent of the
lattice resolution, provided that the physical lattice vol-
umes and the number of measurements are kept constant.

C. Ground-state enhancement

U, (n) -+ N nU(n)+) U~(n)U;(n+j)U~(n+i)

(14)

( )
(W(B T))

g(W(B, T+ 1))y

=V(B)+ ' t(R, T)+
0

(W(R, T)) +'
'( ' ) =(W(B,T+1))&

= Cp(R) + Ci(B)h(R, T) +

(15)

(16)

with the appropriate normalization constant N and &ee
parameter o.'. One such iteration step is visualized in
Fig. 1. For this smearing, the links are visited in the
lexicographical ordering of the updating sweep. We And
satisfactory ground-state enhancement with the parame-
ter choice n;t„——150 and n = 2.

One can define approximants to the asymptotic po-
tential values and overlaps, V(B,T) ~ V(R) and
Cp(R, T) ~ Cp(R) (T ~ oo). Because of the positiv-
ity of the transfer inatrix 7, these quantities decrease
monotonically (in T) to their asymptotic limits:

The physically interesting ground-state potential,
V(R) = Vo(R), can be retrieved in the limit of large
+R

with

gy Z) ' RVIR)R(~ —
~ RV)R))— (17)

(W(R, T))=) C„(B)e "i l - Co(R)e

(12)

The overlaps. C„(R) = ~d„(B)~2 & 0 obey the following
normalization condition:

) C„(B)=i.

and AV(R) = Vi(B) —V(R). In our analysis, we follow
these approximants until they reach a plateau.

As we wish to maximize Co(B), we would like to
acquire a qualitative understanding of the underlying
physics. For this purpose, we consider unsmeared
on-axis Wilson loops. Combining Eq. (12) with the
R Tsymmetry -(W(R, T)) = (W(T, R)) and the

The path of the transporter U(0-+ R) used for the con-
struction of the QQ creation operator [Eq. (3)] does not
affect the eigenvalues of the transfer matrix and is by

+„+g

FIG. 1. Visualization of a smearing iteration.

For small B and T where the statistical errors have reached
the same magnitude as the numerical machine accuracy,
we performed additional computations of AO and AO~; on
smaller subsamples to ensure that the errors still follow the
statistical 1/gN-, expectation.

This symmetry is only exact on lattices with Lz ——Lz.
However, within statistical accuracy, it also holds true on the
48 x 64 lattice.
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parametrization of the potential V(R) = Vo —e/R+ KR,
we obtain

T
ln(W(R T)) ln Cp(R T) —VpT + e——KRT (18)

(R Ti= lnD —V, (R+T) + e
~

—+ —
~

—KRT
qT R)

for large R and T and arrive at the estimate (with con-
stants Vo and t obtained Rom the potential analysis be-
low)

Co(R, T) = De ( ' ' or Co(R) = De ' . (19)

This parametrization of the unsmeared overlaps turns out
to describe the oK-axis data too if we allow for a smaller
(direction dependent) constant Vp.

The self-energy term Vo/a diverges in the continuum
limit, a ~ 0. Thus, the overlaps at fixed physical
separation, r = Ro, , decrease with increasing P. This
feature is in accord with the following consideration: in
the scaling region the transverse size of the QQ wave
function is expected to remain constant in physical units,
while the transverse extent of the stringlike creation oper-
ator remains on the scale of the lattice resolution. Thus,
the ground-state overlap of this operator decreases with
increasing correlation length.

The ground-state overlaps of smeared Wilson loops at
P = 2.635 are shown in Fig. 2, together with on-axis
approximants to the unsmeared overlaps and the asymp-
totic (large R) estimate of Eq. (19) (dashed curve), where
the coeKcient D 2.3 was obtained by fitting the large
T data to Eq. (19). The improvement &om using of an
extended creation operator is dramatic. In the case of
the smeared links, the (unsmeared) self-energy contribu-
tion Vo appears to be reduced to a number f « Vp that
is suKciently small to allow for an expansion of the ex-

ponential factor Co(R) = D exp( —fR) = D(1 —fR): the
ground-state overlaps of smeared Wilson loops exhibit a
linear R dependence throughout the observed R region.
Moreover, rotational invariance in terms of the overlaps
is restored for all on- and oK-axis separations.

For P = 2.5 the overlaps vary between Co(~2a)
0.95 and Co(r ) = 0.73 on the 32 lattice and &om
Co(a) = 0.98 to Co(r ) = 0.81 on the 16 lattice.
Within the same physical region the P = 2.635 over-
laps range from Co(~2a) = 0.98 to Co(r ) = 0.81. At
P = 2.74 we have used an inferior set of smearing pa-
rameters (n;t„——40 and cx = 0); yet we achieve overlaps
of Co(a) = 0.96 and C(r ) = 0.84. We have chosen
r 1.2 fm for the comparison. This scale corresponds
to r a = 8~3, 12~3, 16~3 for the three P values, re-
spectively. Even at fixed physical r the overlaps tend to
increase with P, unlike in the situation with unsmeared
operators: the wave function becomes smoother at in-
creased correlation length and can be better modeled by
the iterative smearing procedure. For the largest distance
realized (2.25 fm at P = 2.635) we still obtain the value
C, (24~3&) = 0.72.

The success of smearing is twofold: (a) for rather small
values of T, extraction of the ground-state potential be-
comes possible and (b) the signal-to-noise ratio is greatly
improved as Co(R) (and the signal) increases, especially
for large values of R.

D. Lattice determinatien ef color 6elds

The central observables in our present investigation are
the action and energy densities in the presence of two
static quark sources (with separation R) in the ground
state of the binding problem:

0.8

+ e~~ ~I

ee 4+44
1

1

0.6—

0.4

0.2

+\

1+

smeared
T=3

T= 8

T =10
D exp( —Vp R)

FIG. 2. The ground-state overlaps Co(R)
versus R at P = 2.635. In addition to over-
laps of smeared operators (diamonds), finite
T approximants, Co(R, T), to the overlaps of
unsmeared (on axis) Wilson loops are plot-
ted. The dashed line denotes the extrapo-
lated large T limit for the unsmeared over-
laps and should be a valid approximation to
the large R behavior.

10
I

15 20

At fixed (lattice) R, a (slight) increase is observed and expected.
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1
eR(n) = —[~R(xx) + 8R(n)]

1
o xx(n) = —[Zxx(n) —8xx(n)],

(20)

(21)

ative) Euclidean action, i.e. , Sxs = —P 2(E —B ) ~p).
We shall extract these observables &om the correla-

tions between sxneared Wilson loops, M/ = W(R, T), and
(unsxneared) plaquettes Q(v) = U„„(xx,w) [Eq. (2)]:

with

ZR(n) = (E (n)) ~o, xxl —~p)

8xx(xx) = (B'(xx)) ~o,R) —~o) (22)

1 (W( (T/2+ S) + (T/2 —S)))
2 (W)

(24)

and

(O)(o Rl —~pl
= (o RIOIo, R) —(OI&IO). (23)

The sign convention corresponds to the Minkowski no-
tation with metric xi = diag(l, —1, —1, —1), in which
Bxx(n) & 0, fxx(n) & 0. We point out that the Minkowski
action density carries a different sign relative to the (neg-

l

S denotes the distance of the plaquette &om the central
time slice of the Wilson loop and takes the values S =
0, 1, . . . (S = 1/2, 3/2, . . .) for even (odd) T.

The plaquette insertion acts as the chromodynamical
analogue of a Hall detector in electrodynamics. For
0 & S ( T/2, (Q(S))~ can be decomposed into mass
eigenstates as

(Q(S))
P {~/2+s Q ~/2 —s + ~/2 —s Q ~/2+s) PtT'L~ T-

2Tr (I'7 TI't7 &T T)—
= (O, RI Q IO, R) —(Ol Q IO)+2Re

I

—(1,RI Q IO, R)
I

e cosh(b, VS)id' l av'z 2

dx+ '
((1,RI II, R) —(O, RI Q IO, R)) e-

0

+2Re
I

—(2, RI Q IO, R)
I

e ( ' ) / cosh[(V2 —V)S]+O(e ( )). (25)

LV denotes the gap between the ground state and the
first excitation. In principle, Id I

= C„(R) and V„(R)
can be determined from smeared Wilson loops. The
nondiagonal O(e (+" ) &+/2 s) ) coeKcients can only
be obtained &om a Gt to the time dependence of the
above operator. As we shall see in the next paragraph,
(V2 —V)/2 = AV. Thus, a measurement of the excited
state color field distribution ( )~x xx) ~p) appears to be
infeasible with the present method.

In string model calculations the separations between
ground- and excited-state potentials without gluonic an-
gular momentum, i.e. , within the Aq~ representation of
the cubic symmetry group, are found to be multiples of
2m/R [8,10]. This feature is in accord with numerical
simulations of SU(2) and SU(3) gauge theories [10,11].
Therefore, as a net result, we expect the following asymp-
totic behavior:

( (S))M = (Q))o,xx)-(o)

+cie / cosh(2vrS/R)

+c2e / [1+cs cosh(4~S/R)] +
(26)

with c, being &ee parameters. They are, contrary to the
coefBcients of the spectral decomposition of the Wilson
loop [Eq. (12)], not necessarily positive. Be aware that c;
varies with the qQ separation as well as with the spatial
position n of the plaquette insertion.

The deviations &om the asymptotic values are gov-
erned by O(e +v(+/2 &) terms, compared to order
e corrections in case of the potential [Eqs. (15),
(17)]. So, the issue of optimization for ground-state dom-

I

inance is certainly more critical for Geld measurements.
While the reduction of systematic errors would ask for
large T values, the suppression of statistical uncertainties
would lead one to the contrary. Obviously, the reason-
able strategy is to ensure that systematic and statistical
errors are kept in balance.

A weak coupling expansion of the plaquette yields
the square of the Maxwell Geld strength tensor T„„=
F„'„o,/2:.

a4
U„„=1 — P„'„E„'„+O(a ).P

We do not follow the authors of Ref. [4] who, in or-
der to reduce statistical Quctuations, advocate subtracting
(M/ (n))/(M/) with the reference point, n, taken far away
from the sources rather than the vacuum plaquette expecta-
tion ( ). In this way, we avoid possible shifts of the normal-
ization relative to the vacuum energy and action densities.
We would like to point out that we found no reduction in
statistical errors for smeared Wilson loop operators by using
the above suggestion. However, we have been able to confirm
this observation of Ref. [4] for unsmeared Wilson loops.

We note in passing that the authors of Ref. [22] have chosen
to connect the plaquette to the Wilson loop via two Wilson
lines and take one overall trace instead of two separate ones,
as this leads to an improved signal-to-noise ratio. However,
a proof that this observable indeed can be interpreted as a
color field density in presence of a static QQ pair is missing.
Moreover, the constraint through sum rules is lost.



OBSERVING LONG COLOR FLUX TUBES IN SU(2) LATTICE. . . 5171

Thus, by an appropriate choice of Cl = U,4 (Cl = Uz&)
expectation values of squared chromoelectric (magnetic)
field components can be obtained, in the limit of large
T:

2 2(U' (~)): (&'( ))~o, ) —
~ )

2P, (&'~( ))vv T: (&;(n))~o,~)-~o)

(28)

E. Implementation of color field operators

with ~e;~y~ = 1. The finite T corrections to these re-
lations have been elaborated in Eq. (26). Note that

EcEc = 2TrE

re8ection symmetry of the problem. All this amounts to
9576 (26244) difFerent combinations of R, T, and n on
the 324 (48s x 64) lattices, on which both (U~A,, )vv and
(U;4)~ have been computed.

The temporal parts of the Wilson loops, appearing
in the color 6eld correlator, have been link integrated.
Therefore, the electric components have only been deter-
mined at distances larger than one lattice spacing away
from the sources. For the case of the 32 lattice at P = 2.5
we have substituted the missing values by the correspond-
ing entries, computed on a 16 lattice without link inte-
gration. Distances so close to the sources are not relevant
to continuum physics anyway, due to contamination &om
the heavy quark self-energy and lattice artifacts.

1
U,4(ri) + —[U;4(n —e;) + U;4(n)] . (30)

For measurement of the color field distributions, the
appropriate plaquette operators are suitably averaged in
order to obtain chromomagnetic or electric insertions in
symmetric position to a given lattice site, n. For the
electric insertions two plaquettes are averaged:

III. THEORETICAL EXPECTATIONS

A. Perturbative scenario

A perturbative order g computation of the lattice po-
tential can be found in Ref. [23]. Here, we recall the
one-gluon exchange result only:

For the magnetic fields four adjacent plaquettes are com-
bined:

1
U'i, (n) i —[U~i, (n —e, —ei, ) + U, g(n —e, )

+U, „(n —e, ) + U, ,(n)]. (31)

Notice that while B, is measured at integer values of
v, E,- is measured between two time slices. To minimize
contaminations from excited states [Eq. (26)], ~ is chosen
as close as possible to T/2. For even temporal extent of
the Wilson loop, this means S = 0 for the magnetic field
operator and S = 1/2 for the electric field insertion, while
for odd T, 8 = 0(1/2) for electric (magnetic) fields.

For measurement of the color field distributions we
have restricted ourselves to on-axis separations of the
two sources. All even distances R = 2, 4, . . . , R
with R = 8, 24, 36 for I s ——16, 32, 48, respectively,
have been realized. In order to identify the asymp-
totic plateau, T was varied up to T = 6. The color
field distributions have been measured up to a trans-
verse distance n~ = 2 along the entire QQ axis. In
between the two sources and up to two lattice spac-
ings outside the sources, the transverse distance was in-
creased to n~ ——6, 10, 15 for the three lattice extents
Lg ——16, 32, 48, respectively. In addition to "on-axis"
positions, ii = (ni, n2, 0), we chose plane-diagonal points
n = (ni, n2, n2) with n2 ( n~ ~a„/+2. We averaged
over various coordinates n, exploiting the cylindrical and

Remember that we do not obtain any information on the
components of E and B themselves since (0 ) g (0), in
general.

On our small lattice volumes (16 at P = 2.5 and 32 at
P = 2.74) only the odd values T = 1, 3, 5, 7 have been realized.

g2C 1 R2
a' (47r) ' (R2/4 +

(33)

for the energy density distribution in the central trans-
verse plane. In Figs. 3 and 4 we present a comparison
of the dipole fields on finite (Ls = 32) and infinite lat-
tices with their continuum forms, for separations R = 12
and R = 4, respectively. The Geld positions are chosen

The finite volume continuum formula is elaborated in Ap-
pendix D.

V(K) = Cy g [GL—, (H.) —Gl.(0)]; —C~g 4~R'

(32)

where we have dropped the (divergent) self-energy in
the continuum expression. The lattice gluon propagator
GL, (K) [Eqs. (A6), (A4)] can be computed numerically on
finite lattices. For SU(2) one has C~ = (N2 —1)/(2N) =
3/4. For completeness, this expression is derived in Ap-
pendix A. A renormalization of the bare lattice coupling
g = 2K/P turns out to be the main effect of the loop
diagrams that occur in the next order.

In order to investigate the nature of lattice artifacts,
we have performed a weak coupling expansion of the ac-
tion and energy densities. The lowest order term is a
two-gluon exchange. To this order the action and en-

ergy densities turn out to be identical, both receiving
just contributions &om electric plaquettes. Details of
the calculation are contained in Appendix A. The lat-
tice integrals of the result [Eqs. (All), (A12)] have been
computed numerically.

In the limit of vanishing lattice spacing and in6nite
volume one finds the expression [from Eq. (A18)]
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FIG. 3. Comparison between continuum
and lattice dipole fields in the center plane
between two sources, separated by R = 12.
The ordinate, n~, is the distance from the
QQ axis. Crosses and the solid line corre-
spond to the infinite volume results. Squares
and the dashed line are obtained at finite vol-
ume, R/Ls = 12/32.
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both along a transverse lattice axis and a plane-diagonal
(multiples of ~2).

Up to order g corrections, perturbative lattice and
continuum calculations equally lead to

60~Ii 6 E~Xl
V(B)

(34)

B. Nonperturbative expectation

In the limit of large QQ separations, i.e., if the width
of the flux tube becomes small relative to its length, an

As argued in Appendix A, perturbation theory is ex-
pected to describe the energy density better than the
action density.

efFective relativistic string model is expected to describe
the in&ared aspects of the interaction. Classical solutions
of such string Lagrangians predict, in agreement with
the strong coupling expectation of pure gauge theory, an
area law of Wilson loops, and thus a linearly rising long
range contribution to the potential. However, in reality, a
quantum mechanical string will fluctuate. An ultraviolet
cutofF has to be imposed on the wavelength of such fluctu-
ations, beyond which longitudinal degrees of freedom be-
come important and the (nonrenormalizable) string the-
ory looses its applicability. For a huge class of string mod-
els the string fluctuations lead to a universal subleading
Coulomb-type contribution [8], —(d —2)m/(24B), to the
potential in the Gaussian approximation (d denotes the
number of space-time dimensions). For large R, excita-
tions are expected to be separated &om the ground state

(4~)2
C g2AE

0.6

0.5

0.4

0.3-

0.2

FIG. 4. Same as Fig. 3 for R = 4. DiKer-
ences between finite and infinite volume ex-
pectations are invisible on this scale.

0.1

0 ~ ma ~ am

!
-10 -5

ss 87I I(1 m n n ss
!

10

To obtain the continuum expression, g a simply has to be replaced by jd z.
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(WU) —(R') (Cl) oc exp [—KA(WV, cICl)], (35)

where A(oIW, BCI) is the minimal area of a surface with
boundary NV U BCI and K is the string tension. Approx-
imating the Wilson loop and the plaquette by circles, the
authors of Ref. [24] obtained, in the limit n~ (( R,

(Ei) oc exp2 ( K~
lnR (36)

by multiples of 7r/R [8].
The leading order expectation of string models for cor-

relators of smooth, large Wilson loops, W and CI with
boundaries OW and 00 is

ao~n 1 BV(R)

n
(40)

[Vpi, (R) + RVi'h(R)]

Vo

8 1nP
(41)

will shortly recall these sum rules. More details and com-
ments related to contaminations &om excited states can
be found in Appendixes B and C.

The action sum rule relates the action to the derivative
of the potential with respect to the inverse coupling~

Thus, the central width of the fiuctuating string,

fdna n~eR(0) n L)—Px)~a- jdng ngeR(0 ng)
(37)

is expected to diverge logarithmically with the quark sep-
aration

h,„=holn
0

(38)

where Bo is an ultraviolet cutofF parameter. In a quan-
tum mechanical calculation, this relation has been con-
6rmed in the Gaussian approximation for the probabil-
ity of the fiuctuating string, crossing the central trans-
verse plane ni ——0 at the position n~ [24]. A value

ho ——1/(m K) is expected in four space-time dimensions.
For small distances, the perturbative result of Eq. (33)

suggests a linearly diverging width:

B2
~a 4

(39)

For n~ && R (and large r) where the string picture is
applicable a Gaussian transverse pro6le of the fiux tube
is expected. At large n~, however, correlators of (un-
smeared) Wilson loops with plaquettes can be viewed
as glueball correlation functions in rotated space-time.
Thus, for n~ && B,T an exponential form, governed by
the mass gap, might be expected.

C. Sum rules

However, the wave function of the QQ pair created at r =
0 has to be decayed into its ground state before the color fields
are measured at r = T/2. Because of the structure of the
action, a Hamiltonian evolution in the strong coupling limit
only allows hopping between neighboring sites. Thus, in this
limit, communication occurs only between sites within the
"light cone" n~ & T/2 and the limit n~ )) T is not justified.
As illustrated by the above example, the exponential decay
prediction for large n~ has to b'e taken with care.

Some important consistency conditions, relating the
local chromofield operators to the global QQ potential
have been derived by Michael [25]. In the following we

where we have decomposed the potential V(R)
V~h(R)+Vo into a physical part, v(aR) = V~h(R)/a, that
remains constant as a ~ 0, and a diverging self-energy
contribution, Vo/a. The action sum rule is an exact re-
lation. It is in accord with the perturbative expectation
equation (34), which follows by inserting the leading or-
der expression for V(R) [Eq. (32)] into Eq. (40).

The energy sum rule involves derivatives with respect
to anisotropic spatial and temporal couplings. After re-
lating the latter to the isotropic lattice coupling, P, via
a weak coupling series, one ends up with an approximate
sum rule. Thus, unlike the action sum rule, the energy
sum rule is not exact on the lattice. Here, we just state
the leading order expectation

) a eR(n) = —V(R) 1+O(P ) (42)

We have corrected a mistake found by H. G. Dosch in the
original derivation of the sum rules that has been communi-
cated to us by C. Michael.

The correction to this energy conserving rule reQects
the fact that the local plaquette operator undergoes a
renormalization. However, mean field arguments (Ap-
pendix A) suggest only small corrections. The energy
sum rule is also in accord with Eq. (34).

The leading order contribution to the self-energy Vo,
C~GL, (0)gz, merely changes sign when difFerentiated
with respect to lnP. As a consequence, this contribu-
tion to both the action and the energy sums diverges like
1/(alna). Because of the localization of the self-energy
to the vicinity of the two sources, the peaks of the distri-
butions diverge like 1/(a ln a) in physical units (or like

1/ ln a when measured in lattice units). The physical part
V~h(R) + RV'&(R) on the right-hand side (RHS) of the
action sum rule is accompanied by an anomalous dimen-
sion oIlna/DlnP oc lna. For this reason, the measured
lattice action density oa is expected to scale like a4lna
outside the peaks while the energy density vanishes like
a4 (in lattice units). E' and 8 mix under renormalization
group transformations since the sum of both densities
carries dimension a while its difFerence is accompanied
by a lna. Thus, only the energy density and the com-
bination (0 in P/ct ln a) o are relevant to the continuum
limit.
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FIG. 5. V(R, T) as a function of T for se-

lected source separations at P = 2.635. The
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IV. RESULTS

A. Static potential

In preparation of the color Aux investigations, the
static QQ potential has been computed. By extracting
the string tension from this potential the physical scale
will be fixed and results obtained at different P values
will be related to each other.

The potential data has been obtained by the method
described in Sec. IIC. Finite T approxirnants V(B, T)
and Co(B, T) to the ground-state potential values and
overlaps are computed according to Eqs. (15) and (16).
These are traced until a plateau (in T) is reached. The
numerical situation is illustrated in Fig. 5 for a few typ-
ical quark separations at P = 2.635. For the 16 lattice
at P = 2.5 the T;„=3 approximant has been found to
agree with the plateau values, while for the 32 lattices
at P = 2.5 and P = 2.74, T;„=4 had to be taken and
at P = 2.635 we went as far as T;„=5. To exclude any
remaining systematic bias on the fitted parameters, all
fits have been performed for T = T;„and T = T;„+1.
Within statistical errors and fixed B range, the fit param-
eters remained stable. For larger P values, the reduced
physical t = Ta separations appear to be partly compen-
sated by better ground-state overlaps.

We note that the actual value of 7;„is not only af-

fected by the ground. -state overlaps but also influenced
by statistical errors that depend on the particular num-
ber of measurements, physical volume, and method (link
integration).

In Tables II—IV we have collected results on the poten-
tial values, V(B), and overlaps, Co(B), up to a physical
distance of about 0.7 fm. This scale has been obtained
&om the relation ~r = v K a = 440 MeV. For larger
separations we refer to the parametrizations presented
below, since no systematic deviations are observed &om
the interpolating curve (that is dominated by the linear
part of the potential). Remember that all estimates for
the potential and overlaps constitute strict upper limits
to their asymptotic (T ~ oo) values. The paths, dis-
played in the second column, are numbered according to
Eq. (5).

In Fig. 6 we show the familiar scaling plot for the po-
tential in form of the combination tV(B~K) —Vo]/~K
with Vo and K as obtained ft. om the four-parameter fits,
described below. Notice that we can trace the potential
up to the impressively large separation of 2.3 fm. The
curve represents the string picture prediction B-
The nice scaling between the potentials illustrates the
restoration of continuum rotational invariance at remark-
ably small lattice separations.

2. Potential fits

Our potential values have been fitted to the
parametrizations

TABLE II. Potential and overlap values at P = 2.5.

R
1.00
1.41
1.73
2.00
2.24
2.45
2.83
3.00
3.00
3.46
4.00
4.24
4.47

Path
1
2
4
1
3
5
2
1
6
4
1
2
3

V(R)
0.3356(2)
0.4292 (4)
0.4735(5)
0.4844(4)
0.5137(4)
0.5330(5)
0.5585(7)
0.5660(6)
0.5698(5)
0.5969(10)
0.6229(6)
0.6379(10)
0.6479 (8)

cp (R)
0.979(l)
0.O75(1)
0.970(2)
0.963(1)
o.o6s(2)
0.960(2)
0.954(2)
0.956(2)
0.952(2)
o.o45(s)
0.939(2)
o.o42(3)
0.934(3)

R
4.90
5.00
5.20
5.66
6.00
6.00
6.71
6.93
7.00
7.07
7.35
8.00

Path
5
1

2
1
6
3

1
2
5
1

V(R)
O.6671(1O)
o.67o6(o)
0.6817(15)
o.7o12(14)
O.7137{11)
0.7157(13)
0.7418(13)
O.7532(2S)
0.7537(12)
0.7586(17)
0.7701(14)
0.7931(16)

Cp(R)
0.927(3)
0.930(3)
0.928(5)
o.o21(4)
0.915(3)
0.916(4)
0.902(4)
0.904(6)
0.904(4)
o.oo4(5)
0.901(4)
o.8oo(5)
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TABLE III. Potential and overlap values at P = 2.635.

R Path
1.41 2
1.73 4
2.00 1
2.24 3
2.45 5
2.83 2
3.00 1
3.00 6
3.46 4
4.00 1
4.24 2
4.47 3
4.90 5
5.00 1
5.20 4
5.66 2
6.00 1
6.00 6
6.71 3

V(R)
0.37719(4)
0.41154(7)
0.41873(6)
0.44040 (8)
O.45445(9)
0.47163(12)
0.47604(11)
0.47937(15)
0.49685(16)
0.51239(14)
0.52051(24)
0.52678(18)
0.53802(24)
0.54008(20)
0.54525(33)
O.5559S(29)
0.56349(26)
0.56369(34)
0.57818(36)

C.(R)
o.9799(1)
0.9754(3)
0.9694(2)
0.9694(3)
0.9674(4)
0.9627(5)
0.9620(4)
0.9610(6)
0.9563(7)
0.9508(6)
0.9512(10)
O.9465(7)
0.9421(10)
0.9435(8)
0.9403(14)
0.9342(12)
0.9326(13)
0.9303(14)
0.9248(16)

R Path
6.93 4
7.00 1
707 2
7.35 5
8.00 1
8.49 2
8.66 4
8.94 3
9.00 1
9.00 6
9.80 5
9.90 2
10.00 1
10.39 4
11.00 1
11.18 3
11.31 2
12.00 1
12.00 6

V(R)
0.5826(5)
0.5839(4)
0.5853(5)
0.5909(4)
0.6033(4)
O.6123(7)
0.6154(7)
0.6202(7)
0.6211(5)
0.6215(7)
O.6352(7)
0.6367(8)
o.63ss(7)
0.6453(10)
0.6556(6)
0.6580(10)
0.6608(ll)
0.6726(10)
0.6717(12)

Cp(R)
0.921(2)
0.923(2)
0.922(2)
0.919(2)
0.913(2)
0.908(3)
0.907(3)
0.902(3)
o.9o4(2)
0.902(3)
0.894(3)
0.895(4)
0.895(3)
0.888(5)
0.887(3)
0.881(4)
0.881(5)
0.880(4)
0.872(5)

V(R) = Vp+ KR ——
B (43)

with

e /'1 1
V(R) = Vp+ KR ——+ f i

——
R iB R) (44)

Q = n. (46)
DF, max

of the fit has been computed &om the confidence level,
n(g, NDF). The largest quality corresponds to the
"best" fit range. As a systematic error we have taken
the scatter between the 6t parameters &om 6ts with
q + 4Qmsx ~

1 = 4~GL, (R), (45)

where Gr, (R) is the lattice gluon propagator [Eqs. (A6),
(A4)], computed on an infinite lattice. Vp, K, e, and f
are the fit parameters.

In the analysis we followed the 6tting procedure, de-
scribed in Ref. [26]. Four different fit algorithms have
been applied to the data: uncorrelated fits with the er-
rors of potential values obtained on the original sample
(UN); uncorrelated fits with errors calculated for each
bootstrap separately with a subbootstrap (UB); corre-
lated its with the covariance matrix computed on the
original sample (CN); correlated fits with covariance ma-
trices calculated on each bootstrap separately (CB).

The fit range has been adapted automatically. For each
range, a quality parameter,

In Tables V and VI the results are listed for three- and
four-parameter fits, respectively, together with their sta-
tistical and systematic uncertainties. In addition, the
"best" fit ranges and corresponding y values are in-
cluded. Correlated and uncorrelated fits show little dif-
ference in y values, which gives evidence that correla-
tions between potential data at diferent R values are
small. In the further analysis we use the results of the
CN four-parameter fits for the string tension K and self-
energy Vo.

As expected &om perturbation theory the self-energy
Vp decreases slightly with P from Vp ——0.547 at P = 2.5
down to Vp ——0.483 at P = 2.74. On the two large lat-
tice volumes, the Coulomb coeKcients e are in agreement
with the value vr/12 = 0.262, as expected in the string
picture. On the smaller lattice volumes they come out
somewhat smaller. This might be a result of the diferent
fit ranges: on the large lattices the fit result is dominated
by the potential values &om separations where the string
picture is expected to be applicable. The parameter f,
used to account for the lattice symmetry, turns out to be
of approximately the same size as e in all cases, indicating
that violations of rotational symmetry can be understood
in terms of the lattice one-gluon exchange, contrary to
SU(3) where values f —0.6e have been found [7].

8. Determination of the P function

From Eq. (40) it is evident that the action density di-
verges like

The lat tice sums have been computed numerically on
1024, 2048, and 4096 lattices and extrapolated in 1/Is
to their infinite volume limits.

as a function of a [see Eq. (40)], where

&(~) = —
~1 (48)
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R
1.00
1.41
1.73
2.00
2.24
2.45
2.83
3.00
3.00
3.46
4.00
4.24
4.47
4.90
5.00
5.20
5.66
6.00
6.00
6.71
6.93
7.00
7.07
7.35
8.00
8.49
8.66

Path
1
2
4
1
3
5
2
1
6
4
1
2
3
5
1
4
2
1
6
3
4
1
2
5
'1

2

Cp (R)
0.959(4)
0.963(4)
0.953(4)
0.941(4)
0.945(4)
0.943(4)
0.933(4)
0.941(4)
0.937(4)
o.oso(4)
0.927(4)
0.943(4)
0.926(4)
0.924(4)
0.932(4)
0.935(4)
0.922(4)
0.921(4)
0.919(4)
0.927(4)
0.919(4)
0.925(4)
0.933(4)
0.926(5)
0.916(4)
0.915(4)
0.923(4)

V(R)
0.2786(l)
0.3480(2)
0.3780(2)
o.s8s7(2)
0.4021(2)
0.4137(2)
0.4273(3)
0.4308(2)
0.4340(3)
0.4483(4)
0.4588(3)
0.4654(3)
0.4698(3)
0.4780(3)
0.4788(3)
0.4831(4)
O.49O4(4)
o.495o(s)
0.4955(4)
0.5055(4)
0.5089(5)
0.5085(3)
0.5104(4)
0.5135(5)
0.5214(5)
0.5273(5)
0.5284(7)

R
8.94
9.00
9.00
9.80
9.90
10.00
10.39
11.00
11.18
11.31
12.00
12.00
12.12
12.25
12.73
13.00
13.42
13.86
14.00
14.14
14.70
15.00
15.00
15.56
15.59
15.65
16.00

TABLE IV. Potential and overlap values at ~ =t ~ = 2.74.

Path
3
1
6
5
2
1
4
1
3
2
1
6
4
5
2
1
3
4
1
2
5
1
6
2
4
3
1

V(R)
0.5325(5)
0.5327(5)
0.5329(5)
0.5413(5)
0.5430(6)
0.5434(6)
O.5474(7)
0.5533(6)
0.5550(6)
O.5571(6)
0.5635(6)
0.5633(6)
O.5653(9)
0.5663(8)
0.5711(8)
0.5730(7)
0.5771(7)
0.5811(9)
0.5825(9)
0.5842(10)
0.5888(9)
0.5920(9)
0.5916(9)
0.5980(10)
0.5973(10)
0.5987(9)
0.6014(8)

Co (R)
0.913(4)
0.921(4)
0.S17(4)
0.909(4)
0.926(4)
0.910(4)
0.907(4)
0.913(4)
0.912(4)
o.So6(4)
0.904(4)
0.901(4)
0.915(5)
0.911(4)
0.917(4)
0.908(4)
0.898(4)
0.895(4)
0.898(4)
0.897(5)
0.892(5)
0.903(5)
0.896(4)
o.9o8(5)
0.902(5)
0.900(5)
0.891(4)

denotes the Callan-Symanzik P function. For this reason,
we shall set out in this section to determine the P function
within the g = 2N/P region covered by our simulations.

The P function can be expanded in terms of the cou-
pling:

B(g) = —bpg —big

'
h bp ——11N/(48vr ) and bi ——34N /[3(16m ) ]. From

Eqs. (48) and (49) one finds the familiar formula

tion AMs(a) = 11.51A@(a). As can be seen, the slope
is substantially reduced but asymptotic scaling remains
violated.

theThe difFerence between the A i(a) sets indicates e
size of higher order (perturbative and nonperturbative)
contributions to the P function. Within the present P
range we find the points to fall quite well on straight lines

with

a = Ai f(P) 1+O(P )

f (p) p/4Nbo (p/2Nb )bg/2bo

(50)

(51)

In Table VII, results for the square root of the string
tension, i/K, and the plaquette expectation value are
collected for various P. The results are taken &om t e
present simulation and Refs. [27—29,6]. From Eq. (50)
we obtain f(P)i/K = ~icA& (a) by using a2 = K/K
In Fig. 7 the a dependence of AMs(a) = 19.82AL, (a)
is shown, where MS denotes the modified minimal sub-
traction scheme. As can be seen &om the nonvanishing
slope, within the P region accessible by present comput-

h' h der contributions to the asymptotic formu a
Eq. (50) are important. A cutofF parameter AE(a) &om
the efFective coupling Pa = 4(1 —(H))Or~ x introduced
in Ref. [30], has also been computed. This cutofF pa-
rameter is translated into the MS scheme by the rela-

0—

-2

P=25, L,
P =25, L,
P = 2, 635, L,
P=2.74, L,

16
32

32

-3
0.5 2.5

FIG. 6. The potential, measured on the four lattices, scaled
in u t of the string tension. The solid line refers to the string
picture expectation V(R) = KR —m/(12R).



OBSERVING LONG COLOR FLUX TUBES IN SU{2) LATTICE. . . 5177

TABLE V. Three-parameter fits according to Eq. (43). The first column labels the fit algorithm. In the last two columns,
the "best" 6t range and corresponding reduced y values are stated. The 6rst errors are statistical only; the second errors
include systematic uncertainties.

UN
UB
CN
CB

UN
UB
CN
CB

UN
UB
CN
CB

UN
UB
CN
CB

Vp

0.545(3)(4)
0.547(3)(8)
0.547(3)(8)
0.546(4)(14)

Vp

0.542(3)(12)
0.553(4)(20)
o.s53(4)(3o)
0.560(7)(20)

Vp

0.523(1)(6)
0.519(1)(3)
0.519(1)(2)
0.518(7)(8)

Vp

0.4816(12)(10)
0.4816(9)(27)
0.4816(9)(31)
0.4817(14)(55)

p=2.5, LsxLT =16
K
0.0348(3)(4)
0.0346(3)(7)
0.0346(3)(7)
0.0348(4)(9)

p=25, IsxLT =32
K
0.0354(3)(12)
0.0345(3)(14)
0.0345 (4) (14)
0.0340(5) (18)

P=2.635, Lz xLT =48 x64
K
0.01451(4)(14)
0.01466(5)(15)
0.01466(5)(14)
0.01467(25)(31)

P=274, Ls x LT =32
K
0.00834(6)(5)
0.00834(4) (12)
0.00834(4) (13)
0.00834(6)(37)

0.240 (9)(32)
O.244(S)(21)
0.244(8)(20)
0.241(9)(44)

O.24(1)(3)
0.27(l )(5)
0.27(1)(7)
o.29(2)(s)

0.269(2) (15)
0.250(10)(15)
0.251(12)(16)
0.242(48) (62)

O.217(3)(S)
0.217(4)(14)
0.217(4)(17)
0.218(6)(89)

&min q &max
3.00,13.86
3.00,13.86
3.00,13.86
3.00,13.86

+min q +max
3.00,24.25
4.24,24.25
4.24,24.25
4.00,17.32

&min y &max
4.00,41.57
4.00,41.57
4.00,41.5?
4.00,41.57

+min q +max
6.00,27.71
6.00,27.71
6.00,27.71
6.00,27.71

X /~DF
17/26
19/26
20/26
19/26

y'/~DF
50/59
34/56
4s/s6
35/44

g /~DF
70/95
91/95
92/95
9S/9S

y'/NDF
36/5 1
47/51
47/51
48/51

TABLE VI. Four-parameter fits according to Eq. (44). The first column labels the fit algorithm. In the last two columns,

the "best" 6t range and corresponding reduced y values are stated. The 6rst errors are statistical only; the second errors
include systematic uncertainties.

UN
UB
CN
CB

UN
UB
CN
CB

UN
UB
CN
CB

UN
UB
CN
CB

Vp

0.545 (1)(3)
0.545(1)(3)
0.545(l) (3)
0.545 (1)(3)

Vp

0.550{2)(6)
o.s47(2){lo)
O.S47(2)(9)
0.549(3)(14)

Vp

0.519(1)(2)
0.521(1)(2)
0.521(l)(2)
0.523(1)(3)

Vp

0.4823(4) (7)
0.4828(3) (8)
0.4828(3) (5)
0.4827(5)(10)

K
0.0349(2)(4)
0.0349(2)(3)
0.0350(2)(4)
0.0350(3)(4)

K
o.o347(2)(s)
0.0350(2){9)
0.0350(2)(12)
0.0348(3)(12)

K
0.01467(3)(14)
0.01459(2)(8)
0.01458(2)(8)
0.01451(7)(13)

K
0.00832(3)(5)
0.00830(2) (4)
0.00830(2)(3)
o.oos3o(3)(6)

p=2.5, Ls xLg =16
e

0.242(2)(5)
0.242(2)(5)
0.242(2)(5)
0.242(2)(5)

p=25, LsxL~=32
e
0.256 (5)(14)
0.245 (4)(23)
0.245(5) (24)
0.251(9)(36)

= 2.635, L~ x LT ——48' x
e
0.254(2) (9)
0.263{2)(6)
0.263(l)(7)
0.267(4)(9)

p=274, LsxLT =32
e
0.2220( 9)(21)
0.2235( 9)(26)
0.2235( 9)(15)
0.2234(14)(34)

f
0.244(7)(14)
0.248(7) (26)
0.248(7) (28)
o.24s(s)(27)

o.3o(2)(9)
O.34(2)(14)
0.34(2) (15)
0.33(4) (14)

0.29(2)(11)
O.23(3)(9)
0.15(2)(8)
0.16(7)(15)

0.21(1)(5)
O.19(1)(3)
O.19(1)(2)
0.2o(2)(s)

+min y +max
1.73,13.86
1.73,13.86
1.73,13.86
1.73,13.86

B;„,R
2.83,24.25
3.00,17.32
3.00,17.32
3.00,17.15

+min q +max
3.00,39.84
4.24,41.57
4.00,36.00
4.00,27.00

+min q +max
2.45,26.00
2.83,27.71
2.83,27.71
2.83,26.00

X'/~DF
19/30
19/30
2O/3O

20/30

y'/~DF
45/60
37/46
37/46
37/4S

X'/~DF
67/95
74/93
71/90
s6/76

y'/NDF
38/62
51/62
51/62
Sl/61
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TABLE VII. The "P function" H (P)—n ~ =gina gin o p
ion, an y the interpolation rocedure

per ur ative
oil p
re a en rom Refs. [27,28, the = 2.5]

2.3
2.4
2.5

2.5115
2.635
2.74
2.85

~z
0.3690(30)
0.2660(20)
0.1870(10)
0.1836(13)
0.1208(1)
0.0911(2)
0.0662(6)

( )
0.39746(1)
0.36352(l)
0.34802(1)
0.34564(1)
0.324308(2)
0.308721(2)

—&. I...(P)
5.77
6.04
6.31
6.34
6.67
6.95
7.25

—& '(p)
7.20(13)
7.28(9)
7.36(8)
7.38(8)
7.51(6)
7.63(5)
7.81(4)

Ai'(a) = AZ'(o) + &a.

Prom the 6tted slo epe, g, we obtain the relation

and arrive at

.=A; (.=O) I —nf(P)

(see Fi . 7)'i4 th'g. ~, herefore, we use a linea t l
our data in the region 2.4 & ( ear in erpo ation of

, according to the2.85
The resulting values for —B b

loo a rox'
, o tained in the two-

oop approximation and by the above fit d
in the foe fourth and Bfth columns of Table VII, respectivel .

ove, are displayed

fit we obta'
~ ~atic uncertainty is incorporated into the errors of the B

a c t e i erence between

ease wi t e lattice spacing, as

& '(P) = 19ln f(p)
p

[1 '0f (P)]

P
b

+ », l [
—nf(p)] '. (54)

B. Color Beld distributions

Gener al featur es

%-MS
3

.5 ~k'

2—

We are now in the osp sition to present a survey on the
Aux distributions and watch th f
with increwit increasing distance between the static sources.

Ba=8a=07
s. an, we display the situation at P = 2 5 da = . an

.7 fm, for the energy and acti d
resp ectivel

ac ion ensities,
ive y, in units of the string tension. Notice th

the mesh is not e uidistaq i is ant in the perpendicular direction
ecause the ofF-axis se a
e confirm the earlier observation [3] th ta magnetic and

I

0.05
I

0.15
I

0.2 0.25 0.3

G. 7. A (a)vair, versus the lattice spacing a ~r. b h
measured in units of the st '

g a~~r, oth
e s rIng tension. The estimates f

A l h b obt d fn o aine rom the erturb

erne ( ower values). Linear fits to th ds o e ata are indicated.
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11 II
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I I II
I II
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1 I

I IIrl ll
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I II
I II
I Il
I 11
I Il

II
II
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II

HHowever, for small a, the leadin order cg o
iona o g x 1/ ln Aa, instead. So

prising that the l'
d. So, zt zs not sur-

g a e inear effectr've parametriza '

trapolate to th
p e rizatxons do not ex:—

e o e same continuum limit.
FIG. 8. The enerrgy density distribution at P = 2.5 R = 8

(r = 0.7 fm) in units of th te s nng tension.



51 OBSERVING LONG COLOR FLUX TUBES IN SU(2) LATTICE. . . 5179

0 40—
35—
30-
25—
20—
15—
10—
5
0

I

I
I

I

t
I

I

I

I

I I

I

(

I

I h

II
II
Il

II I
I

II
II
I I

I
(li

t((1 I

t(
I

I I Iit

nl

the ratio of the corresponding two B values (7.36/7. 51).
We observe nice scaling of the fields outside the peaks.
The lat ter diverge by the expected additional factor
a2.5 a2.635

The elongation of the fIux distribution into a tube is
traced in Figs. 9, 11, and 12 for the action density. The
physical source separations correspond to 0.7 1 1.35
and 1..7 fm, respectively. Our data representation avoids
use of a smoothing procedure, as has been l d in pre-
vious work [31,32]. We are in the position to judge the
significance of the actual data from its intrinsic fluctu-
ations. In this way, we are less bound to be deceived

y the beauty of some graphic interpolating algorithm.
Indeed, given the quality of our data, we can follow, for
he first time in a lattice simulation, the Aux tube along
istances of up to 1.7 fm or 30 lattice sites at P = 2.635

FIG. 9. ThThe action density distribution at P = 2.5, R =
(r 0.7 fm) in units of the string tension.

electric field energies are of similar size (within 20%), i.e.,
definitely dominated by higher order contributions in g .

the fj.ux tube, which in the ca f F' 8
'ase o ig. is nevertheless

we . axis o ig. is expandedwe a ove noise. The vertical ' f F . 8
'

y a factor —2B i = —2(9 ln a/c( lnP = 2 x 7.36, relative

sum rules at large B [see Eqs. (40) and (42)]. The gures
show that this is indeed a reasonable choice. The electric

ux tu e looks distinctly broader around the sources:

distributions roughly equal each other. This observation,
w ic is in accord with the sum-rul d' t'e pre ic ion, causes
the above optical impression.

Figure 10 illustrates the action density distribution at
equal physical geometry as Fig. 9 but with finer lattice

tical scale of Fe of Fig. 10 is contracted relative to Fig. 9 by

2. Einite-a egects

0
K
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In this section we will start to discuss the systematic
errors on our field measurements. A prominent efFect
would be expected 6.om the limitation of the lattice res-
olution a to which we will turn first.
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FIG. 10. The aaction density distribution at P = 2.635a=i2(~=07f ~.
m& in units of the string tension. Rela-

tive to Fi . 9 thg. e vertical axis has been rescaled by the ratio
of the corresponding H(P) values.

FIG. 11. Same as Fig. 9 for R = 12 (r 1 fm) and R = 16
(r 1.35 fm).



5180 BALI, SCHLICHTER, AND SCHILLING 51

transverse profiles obtained o th t dn e wo ata sets at the
ces ig. . owever, be-center plane between the sources Fi . 14 . H

t e two data sets of about 8%%uo is expected, which easily
explains systematic deviations &om our t t'our expectation.

We conclude that at separations B & 8 con '

action and
ons continuum

ac ion and energy density distributions can indeed be
observed on the 1attice. This conclusion is further sup-
ported by the fact that cylindrical rotational invariance is
restored (within errors), as can be gathered from Fig. 14
w ere the values obtained at plan d' 1ane iagona sites multi-
ples of 2) neatly interpolate between the v 1en e va ues, mea-
sure a ong a lattice axis. As we will see in Sec. VA
violations of this rot
for B & 6 eve

ational invariance are encou t dun ere
, even at the center plane. However, for suf-

ficiently small lattice resolution th '
1

understoodun erstood in terms of lattice perturbation theory and
eventually corrected to obtain thain e correspon ing contin-
uum expressions. This is beyo d thn e scope o the present
paper, where we are mainly interested in nonpertur ative
large distance eÃects.

The comparison shown in F 12 big. etween results on
the action density distribution at a quark separation of

fm, obtained at two di8'erent 1 tt'en a ice spacings, indi-
cates scaling of the results outside th lf-u si e e se -energy region.

e same holds qualitatively true for the situa
distance of 0.7 fm as

e or e situation at a
nce o . m as can be seen &om Figs. 9 and 10.

Thus we are
resul

e riven to the conclusion that t'e a con inuum

~ ~

resu ts can be obtained from qua k d tuar is ances as small as
eight lattice s acin s at 1p g, least at positions separated b
more than two lattice sites &om the sources.

Let us investi ate t ' '
e

In Fi . 13
g e situation in some more d t '1.

'g. 13 we compare longitudinal action Aux tube pro-
c e ai.

files obtained at P = 2.5 and P = 2.635 for

units of t
sys em. e data are appropriatel 1 dey sea e in

ex ected ano
t e string tension and in add t' d' d d bi ion ivi ed by the

expec e anomalous dimensions &om Table VII. The sit-
uation is displayed for x = 0.17 f Th 1m. e atter distance
corresponds to n~ ——2 and = 3 f hn~ —— for the two va ues,

other within errors, the values obtained at the finer reso-
lution tend to be systematicall b 1 thy e ow e corresponding
P = 2.5 values. The same is found

'
un in a comparison of

g 30-
K 25-

20—

15—

10—

p= 2.5
A=20

8. Einite-size egects

Lattice results for the heavy quark potential and color
ux istributions are subject to finite-size effects (FSE's).

e impact of FSE's on (smeared) W'1 1i son oops is
wo o . The ground-state potential V(B) itself inight

depend on the finite volume, due to the in&ared cuto

tice studies
ry o e perturbative expectation prev' 1 t-) vlous a-

s u ies of the confined phase of SU(2) and SU(3

comes negligible for lattice extents as small as Ls 1 fm

0 4 egg '~

n1

~scle& ~ ~

0.9 — P = 2.5 ™
P = 2.635 ':

g 35—
K 30—

25—
20—
15—
10—

P = 2635
B = 30

0.7—
0.6—
0.5—
0.4

0.3—
0.2

0.1

0--
-0.1 I I I I I I

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

FIGIG. 12. The action densit distr b'
y is ributions for quark separa-

ions =20atP=25andR=30at =2635
ing to r = 1.7 fm. The

, correspond-
m. he scale on the abscissa of the first plot

e wo &~g values with respect
e secon plot to account for the anomalou da ous lInenslon.

FIG. 13. Co
files at r =

mparison of longitudinal act d tion ense y pro-

the
es a r = 0 7 fin between the P = 2 5 d t R—a a = 8 and

of the strin tens
e P = 2.635 data (R = 12) at n a = 0.17 fn~a = . m in units

o t e string tension. One source is placed at thea e positron
( i, n~) = . The second source is located at ni~K = 1.6
(outside the visible range).
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028

p 2 5 2 ee 2

P=2.635

0.6-

024

0.2

FIG. 14. Comparison of transverse action
density pro6les at the center plane of two
sources, separ'ated by r = 0.7 fm between the
P = 2.5 data (R = 6) and the P = 2.635 data
(B = 12) in units of the string tension. The
vertical axis has been multiplied by B(P).
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W(RT) =) c e (55)

In the present simulation we are able to confirm this ob-
servation by comparing the 16 and 32 potential data
at P = 2.5.

In addition one might worry about the impact of mir-
ror sources, due to the toroidal structure of the lattice:
if one places sources at the positions 0 and R, the corre-
sponding state is virtually indistinguishable from a state
created by so-called mirror sources. Thus, in the case of
the (self-adjoint) fundamental representation of SU(2),
one might expect, in addition to a nonvanishing overlap
of the creation operator with a QQ state with separation
D(0) = R, overlaps with states of internal separation
D(rn) = R+ rnLs with rn, being (not necessarily pos-
itive) integer numbers. Let us consider for the moment
the "perfectly" smeared Wilson loop (with no overlap
whatsoever to excited states). One would thus antici-
pate

try under transformations by center group elements of
SU(2) in the fundamental representation: Z2 ——(—1, I).

Let us introduce a nontrivial center transformation to
all spatial links that point into direction i and cross the
hyperplane n; = k+ 1/2:

r& . U;(n) -+ —U;(n) for all n with n, = k.

Obviously, the action is invariant under this transfor-
mation since each plaquette crossing the transformation
plane contains two such rotated links.

Our creation operator I'~~ ——Q(0)U(0 m R)Qt(R)
[Eq. (3)] contains the spatial transporter U(0 -+ R) that
is a combination of various paths connecting the two
quarks. The smearing algorithm [Eq. (14)] only permits
continuous deformations of the straight path. Thus, all
paths cross the hyperplanes n; = 0, . . . , B, —1 an odd
number of times while all other planes are crossed an
even number of times. Therefore, I'~~~0) is an eigenstate
of v.~.

In strong coupling these mirror copy efFects are expo-
nentially suppressed as the linear size grows in all direc-
tions: for a large planar Wilson loop the leading order
behavior is

gr(g T) e KRT (1+ e K(e, e —2RT2+
)

—(—56)

However, in weak coupling, perturbation theory yields
W(R, T) = TV(Lg —R, LT —T) in the nonzero momen-
tum sector. At least to the lowest order (O[g /(L&Lz)])
the zero modes obey a difFerent behavior [33 . Their inffu-
ence might become even more important to higher orders,
especially in the in&ared regime of large B.

The na'ive geometrical expectation of Eq. (55) is not
borne out by the data, neither for the potential nor for
the action and energy densities. This can be inferred
from selection rules due to symmetries of the creation
operator. As we shall show in the following, this indeed
happens in case of the Wilson loop, due to a symme-

—I'R, O&k &B,,~~I'R ——
I'R elsewhere.

(58)

The following discussion on the connection between FSE's
and the center group symmetry has been preceded by
Ref. [34].

Obviously, the coefBcients c can differ from each other,
depending on the path combination, appearing in the trans-
porter U(0 -+ R), unless R, = mLs.

As the eigenvalues of ~& remain invariant under the
evolution in Euclidean time they serve as conserved
quantum numbers. Consequently, in case of the gauge
group SU(2), only coefficients c with even m; are
different from 0 in Eq. (55). Therefore, the efFective
"periodicity" is 2L p rather than I~. For example, the
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0.007
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V=16' =
V=324''

&324 —&l64 ' =

0.004
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FIG. 15. Difl'erences between the longitu-
dinal action density profiles measured on 16
and 32 lattices at P = 2.5 for R = 8 and
AJ —2 ~

0.001

E3
{&

-0.001
-8 -4 -2 0
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leading order "pollution" for the on-axis separation B
carries the decay constant V(2Ig —R). For a linearly
rising long-range potential, these large exponents cause a
strong suppression of fake states. This explains why such
effects remain unseen in the present simulation, even at
B as large as 3/4Ls.

The above arguments can be generalized to the lo-
cal field strength measurement operators OR (n)
E~(xl) lTR(n). Og has no overlap to a QQ state, sep-
arated by Ls —B. The only relevant finite-size effects
stem &om the periodicity

On(n) = O&(L& —ni, Ls —n2, L& —ns).

For n taken along the QQ axis, energy and action den-
sities are strongly suppressed outside the sources: in the
case of a dipole field [the leading order perturbative ex-
pectation, Eq. (33)j the action and energy densities fall
off like (~ni~ —B/2) for ~ni~ ) B/2. Thus, FSE's into
the longitudinal direction are negligible. The n~ distri-
butions are more sensitive to FSE's as will be explained
in Appendix D (see also Fig. 3).

A comparison of the potential computed on 16 and
32 lattices at P = 2.5 shows no statistically significant
bias due to the volume. The same holds true for the
action and energy density distributions, as a comparison
between the two lattice volumes shows for the largest QQ
separation realized on the smaller lattice, R = 8 (where
FSE's should be strongest). As an example, the two data
sets are displayed in Fig. 15 for the longitudinal slice
n~ ——2. Figure 16 shows the corresponding transverse

T stability

In the two preceding sections, limitations in the lattice
geometry have been discussed. to substantiate the rele-
vance of our lattice results to continuum physics. Here,
we address the reliability of our ground-state results in
view of the (necessarily) limited temporal extent of the
lattice operators. We will explain in some detail how the
(T ~ oo) results shown above have been obtained.

In order to obtain asymptotic results on the potential

0.006
oa4

0.005-
v = 164
V=324

0 32~ +164

0.004

0.003

0.002

0.001

distributions for n~ ——0.
Since the P = 2.635 lattice is comparable in physical

size to the 324 lattice at P = 2.5 while the P = 2.74 lattice
has about the same physical extent as the 16 lattice, we
conclude that all our lattices are suKciently large for the
present purpose and that FSE's are below the statistical
accuracy of the present investigation.

-0.001

The ground-state overlaps tend to be smaller on the larger
lattice, though the same smearing procedure has been ap-
plied. We suspect that the number of smearing steps needs
to be increased when working on larger lattices due to a more
extended wave function. However, within our statistical ac-
curacy, this is not reflected in the color field distributions.

-0.002
-6 0

AJ

PIG. 16. Differences between the transverse action density
profiles measured on 16 and 32 lattices at P = 2.5 for R = 8
and Ai = 0.
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0.1—

e(O, T)a4
p

smeared: "---'
unsmeared ' =

0.01—

FIG. 17. Comparison between smeared
and unsmeared finite T energy density ap-
proximants in the center (ni ——n~ = 0) be-
tween two sources, separated by R = 4 at
P = 2.74.

0.001

&om unsmeared Wilson loops, one has to take T )) B
as a consequence of Eqs. (15) and (17). In the case of
field strength operators this amounts to T )) 2A since
excitations are damped by a decay constant AV(B)/2
only [instead of AV(R), Eq. (25)]. For large B values,
in which we are interested, it is practically impossible to
obtain signals at sufBciently large T. However, this sit-
uation is considerably improved by the smearing proce-
dure, described in Sec. II C. This is evident &om Fig. 17
in which a comparison between smeared and unsmeared
results for the energy density in the center between two
sources, separated by B = 4 at P = 2.74, is presented.
Notice the logarithmic scale.

To all our (smeared) data we have performed four pa-
rameter fits according to Eq. (26) as well as two- and
three-parameter fits of the form

( (S))w = ( )~o,a)-(o)
+cie ~ cosh(2' S/B)

—2m(T —2S)/R+c26 ) (60)

where ( )~p ~) ~p) and c; are the fit parameters. In case
of two parameter Gts, c2 is constrained to 0. We note
that, because of the difFerent temporal positions of mag-
netic and electric insertions (i.e., different values of S at
Axed T), the fits have been performed separately before
combining the expectation values for S and 8 to the en-
ergy and action densities, e and 0.

In all cases, the agreement with our data was remark-
able with reduced y values close to 1. For the two-
parameter fits we had to exclude the T = 1 data point.
The best results have been obtained with the three-
parameter its. In case of four parameters, c3 was found
to agree with zero within the (large) statistical uncer-
tainty. Within errors, the T + oo extrapolated values
coincided with the T = 3 value for large B and the T = 4
value for small B in all cases. All our results refer to the
extrapolated values whose errors have been obtained by
the bootstrap method [35].

In Figs. 18 and 19 we exemplify the time dependence

of the electric and magnetic energy density estimates,
8 and 8, at P = 2.5 for a quark separation R = 6
at the position ni ——0, n~ ——3. The corresponding
two-, three-, and four-parameter fits are included, to-
gether with the T + oo extrapolated values. Because
of the early ground-state dominance, the fits yield fairly
stable results. Notice that due to the fact that the dis-
tance S of the plaquette insertions &om the central time
slice alternates with T, the parametrizations are discon-
tinuous. For this reason, the Gt values are just indicated
at integer values of T. In the case of integrated quan-
tities, needed for computation of the width of the Aux
tube and comparison with the energy and action sum
rules, the summation was first performed over the elec-
tric and magnetic energy densities for fixed T, separately,
and the T extrapolation was carried out subsequently, be-
fore combining the components to the energy and action
densities.

Za4

p

0.0012

0.001
+ ,P e

0.0008

0.0006—

0.0004

d3t3
2-paf
3-par
4-par

0.0002
0 1 2 3 4 5 6 ex

FIG. 18. Finite T approximants to the electric plaquette
expectation value Es(0, 3) (diamonds) at P = 2.5. The sources
are separated by six lattice units. The 6eld is measured at po-
sition (ni, n~) = (0, 3). Two-, three-, and four-parameter fits
are indicated, together with the corresponding extrapolated
asymptotic values (rightmost points with error bars).
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Oa4

P

0.0012

0.001

0.0008

0.0006

0.0004

data . =
2-Pelf'
3-Pell
4-par

replaced by a lattice sum, f~(n~), that can be coinputed
from Eqs. (All) and (A12). Remember that this is only
the leading order perturbative expectation. The data re-
veal that restoration of rotational invariance takes place
at unexpectedly small separations, especially in the ac-
tion density. To account for these higher order eÃects,
which cancel lattice artifacts in a subtle way, we will also
allow for a mixture of both, lattice and continuum ex-
pressions.

As the source separation becomes large, compared to
the transverse size of the object, the string picture comes
into play and we might expect (at least for small n~) the
Aux distributions to be proportional to

0.0002
0

FIC. 19. Same as Fig. 18, but for the magnetic plaquette
expectation, 8()(0, 3).

V. PHYSICS ANAI VSIS

1 6 n2~)
f, (~~) =,exl

I
—,I.

The normalization has been chosen such that

) f((nz) = f& nif, (nz) = fd nzfg(ni) =
AQ

(62)

Having presented and substantiated our numerical re-
sults we are now ready to enter the physics analysis.

A. Transverse shape

We will focus on the transverse profile of field distri-
butions in the center plane of the Qux tube. For small
separation of the sources, r, perturbation theory is likely
to apply, and one might thus expect the (energy and ac-
tion) distributions to follow the shape of the dipole field
[see Eq. (33)j:

4b'1 1
fg(n~) = ——

J

where the width of the fiux tube would increase linearly
with R: b = R/2. In lowest order this would be multi-
plied by C~n with a = g2/(4vr).

For small R, the continuum form of Eq. (61) has to be

(63)

to allow for a direct comparison of the fitted coeKcients.
The question arises how the lattice data might connect
between the two regimes. We will attempt to model the
transition region by its to the dipole parametrization,
f, (n~), with b treated as free parameter. This is moti-
vated by the idea that due to antiscreening of the color
sources, their effective charge increases when viewed at
increasing distance from the QQ axis, n~, which is tan-
tamount to a rescaling of R.

In this heuristic spirit, a wide variety of one-, two- and
three-parameter fits (with free parameters ci, c2, and b)
have been performed on the data, which are listed here
in shorthand notation: (1) c2f~(n1); (2) c,fd(n~) with
b' = R/2; (3) cia(n~) + c2fi(n~) with b = R/2; (4)
cia(n~, b); (5) cia(n~ , 8) + c2f'i(n~); (6) cia(n~, b);
and (7) cia(n~, b') + c2fi(n~)

The stable fit results are collected in Tables VIII—XI

TABLE VIII. Results of fits to the central transverse profile of the energy density distribution at P = 2.5. c), c2, and b are
Gt parameters. A is the integrated area.

R
2
2
2
2
2
4
4
4

4

4
6
6
6
8
8

Method
1
2

3
4
6
1
2
3

5
6
7
1
2
6
1
2

cg/p

0.0711(8)
0.0296(8)
0.0570 (10)
0.0310(3)

O. 162(3)
0.017(3)
0.065(7)
0.001(2)
0.023(2)
0.011(4)

0.166(9)
0.090(30)

0.260 (30)

c2/p
0.043 (1)

0.0252(5)

0.082(2)

0.074(2)

0.077(8)

0.040(10)
0.110(6)

0.210(20)

b

1
1
1

0.90(1)
0.65(1)

2
2
2

1.55(5)
1.09(1)
1.O1(3)
1.03(6)

3
3

2.2(2)

4

A/p
0.0223(2)
0.0356(4)
0.0280 (5)
0.0354(8)
0.0368(5)
0.0142(3)
0.0205 (4)
0.0150(6)
0.0136(17)
0.0134(14)
0.011 (1)
0.012 (3)
0.0086(4)
0.0095(5)
o.oo9o(3o)
0.0082 (8)
0.0087(10)

y'/lan F
16.0
17.4
15.6
1.6
7.4
1.2
5 ' 5
1.2
0.9
1.3
1.6
0.8
1.9
1.5
1.6
0.8
0.8
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TABLE IX. Same as Table VIII for the energy density profile at P = 2.635.

R
2
2
2
2
4

4
4
4
4
4
6
6
6
6
8
8
8
8

Method ci/p

0.0446(8)
0.0383(8)
0.0230(9)

0.102(2)
0.019(2)
0.045(5)
0.040(10)
0.016(2)
0.009(3)

0.096(6)
0.090(6)
0.000(l)

0.170(20)
0.000(1)
0.000(1)

cg/p
0.0271(5)

0.0039(5)

0.052(1)

0.043(1)

0.010(10)

0.025 (8)
0.063(4)

o.oo4(4)
0.068(4)
0.13(1)

o.is(2)
O. ls(2)

b

1

1
1

0.83(3)
2
2

1.59(5)
1.59(6)
1.03(3)
1.06(5)

3
3
3

o.s(8)
4
4

1 (3)
o.9(9)

A/p
0.0143(3)
0.0223(4)
0.0211(5)
0.0160(10)
o.oo9s(2)
0.0128(3)
0.0101(4)
0.009 (1)
G.olo (3)
0.008 (1)
0.007 (2)
0.0054(4)
0.0054(4)
0.0053(4)
0.0058(4)
0.0063(5)
0.0055(6)
G.0063(10)
0.0063(10)

y'/lVDF
3.7
1.3
1.3
1.6
1.0
3.3
0.9
0.5
0.5
0.9
0.5
0.5
0.4
0.4
0.5
1.1
1.3
1.2
1.2

TABLE X. Same as Table VIII for the action density profile at P = 2.5.

R
2
2
2
2

2
2
2
4
4
4
4
4
6
6
6
6
6
8
8
8
8
10
10
12
12
14
14
16
16
18
18
20
20
22
24

Method

0.234(l)
0.105(1)
0.468(6)
0.560(10)
o.2i7(s)
0.247(6)

0.62(1)
1.81(7)
0.64(2)
1.15(7)

1.67(3)
1.65(3)
5.7(5)
2.2(2)

3.03(4)
10.1(7)
3.7(2)

i4(i)
5.1(4)

18(l)
6.5(7)

27(1)
10(1)
i9(i)
7(i)

38(2)
13(7)
i6(i)
6(i)
12(l)
13(2)

c2/p
0.1395(6)

0.0774(6)

0.052(2)

0.064(1)
0.304(2)

0.131(5)
1.11(2)

0.01(2)

2.4o(s)

b

1
1
1

1.381(8)
1.77(2)
1.034(7)
i.s5(i)

2
2.69(S)
i.75(2)
2.37(5)

3

4.2(i)
2.82(6)

4
5.6(1)
3.72(7)
6.3(2)
4.2(1)
6.8(4)
4.5(1)
7.8(2)
5.2(2)
7.4(2)
4.9(3)
9.4(2)
6.1(3)
7.2(2)
4.7(3)
5.8(2)
6.1(3)

A/p
0.0734(3)
0.1171(5)
0.093(1)
0.123(2)
0.114(3)
0.101(2)
0.101(2)
0.0527(4)
0.0783(5)
0.128(6)
0.103(5)
0.125(9)
0.087(2)
0.096(2)
0.096(2)
o.i7(2)
o.is(i)
0.093(1)
0.101(1)
0.184(14)
o.is(i)
O.21(2)
0.15(1)
o.23(s)
O.16(2)
O.27(2)
o.18(s)
o.2i(2)
0.15(3)
O.26(2)
0.17(1)
0.19(2)
O. ls(2)
0.18(1)
0.18(2)

X'/~DF
437.7
443.6
455.0
41.6
3.9

156.0
12.1

174.4
65.5
11.8
32.7
5.4

19.0
14.7
15.7
1.9
3.7

12.7
20.0
1.2
2.9
1.5
2.5
1.0
1.2
1.4
1.0
1.0
0.8
1.1
1.0
0.6
0.6
1.4
0.7
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TABLE XI. Same as Table VIII for the action density profile at P = 2.635.

R
2

2
2
2
2

2
2
4
4
4
4
4
6
6
6
6
8
8
8
8
10
12
14
16
18
20
22
24

Method
1
2
3
4
5
6
7
1
2
4
6
7
1
2

6
1
2

6
6
6
6
6
6
6
6
6

ci/P

0.166(1)
0.050(1)
0.261(1)
0.15(1)
0.133(3)
0.058(5)

O.226(2)
0.35(1)
0.118(4)
0.17(1)

0.394(7)
0.86(9)
0.31(3)

0.73(2)
2.9(5)
l.o(2)
1.2(2)
2.9(7)
1 8(5)
2.7(9)
3(1)
4(l)
3(1)
2(1)

c2/p
0.1027(5)

0.0721(5)

0.047(5)

o.o62(3)
0.111(l)

0.053(3)
0.264(5)

0.57(2)

1
1
1

1.38(1)
1.42(4)
1.09(1)
1.13(2)

2
2

2.27(2)
1.46(l)
1.90(5)

3.7(1)
2.46(7)

4
4

5.9(3)
3.9(2)
4.3(2)
5.7(4)
5.1(4)
5.8(6)
6.o(6)
6.5 (6)
6.o(6)
5.3(6)

A/P
O.O544(3)
0.0830(4)
0.0632(5)
0.0682(5)
0.062(4)
0.055(2)
0.054(3)
0.0199(2)
0.0285 (3)
0.034(1)
0.028(1)
0.033(2)
0.0227(4)
0.0226(4)
0.032(4)
0.026(3)
0.0275(9)
0.0243(6)
0.044(9)
0.035(6)
o.o32(7)
o.o4(1)
0.03(1)
0.04(2)
0.04(2)
0.05(2)
0.04(2)
0.03(2)

y'/lVoF
7.3

20.1
4.7
5.4
0.5

15.7
0.5

55.6
10.8
4.3

12.9
3.5
6.0
3.5
1.2
2.2
2.5
4.0
1.1
1.5
0.9
1.0
0.7
0.9
0.7
0.6
0.9
0.6

which also contain the integrated area

ci ( 2c2)I++, l.
)

(64)

This formula is exact in the infinite volume limit. The
second term has been corrected by numerical computa-
tions of the corresponding lattice sums. In the case of the
Gaussian and dipole parametrizations, additional fits, ac-
cording to the finite volume expressions, derived in Ap-
pendix D [Eq. (D4)], have been performed. Subsequently,
the results have been corrected for the finite volume in
the way, described in Appendix D. For the Gaussian pro-
file the finite-size corrections on the integrated area are
negligible (below 0.2'%%uo). However, in the case of a dipole
distribution, although h is little affected by FSE's (up to
4%), the impact on the area is substantial (up to 25%%uo at
large R).

In the case of the dipole fits to the energy density, the
combination ci + cz = t y'o. ,(R) amounts to a kind of
effective coupling on the scale R. Notice that the odd
numbered Ansatze incorporate the lattice expression, f~,
while the forms (2), (4), and (6) only involve continuum
formulas. Ansatze (I) and (2) require one parameter only,
while (3), (4), and (6) are based on two and (5), (7) on
three parameters.

0.03
ca4

0.025

0.02

(~)------
(4)

0.015

0.01

0.005

-0.005
-4 -3

tion of fiux tubes, along the guidelines of perturbative
prejudice. The statistical significance of our energy den-
sity data is not yet good enough to map out the proper
string region, r & 0.75 fm.

At P = 2.5 and R = 2 the data is very precise and
excludes the one-parameter fits (I) and (2) as well as the
two-parameter fit with constrained width (3). The first
acceptable results are reached with Ansatz (4), yielding

1. Energy yr ogle

We start with the discussion of the energy density data.
We will concentrate the analysis mainly on the preforma-

FIG. 20. The central transverse energy density profile at
R = 2, P = 2.5 together with fit curves of methods (1) and (4)
(one-parameter lattice dipole and two-parameter continuum
dipole with unconstrained width).
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a width b = 0.9. The situation is visualized in Fig. 20
where we compare Ansatze (1) and (4) against the data.

This situation changes at R = 4 where Ansatz (1)
leads to good results at both P values [while (2) fails],
as can be seen &om Figs. 21 and 22. Ansatze (3)
and (5) yield results of equal quality with ci « c2,
which its very nicely into the lattice perturbative pic-
ture. The data can also be parametrized by a contin-
uum dipole with width 8 1.55 [Ansatz (4)]. How-
ever, the result of Ansatz (5) (ci « c2) shows that the
data prefers the (one-parameter) lattice expression to the
(two-parameter) continuum expression. At R = 6 sta-
tistical errors allow for all parametrizations (apart &om
occasional numerical instabilities) .

We conclude that qualitatively the B = 2 data is de-
scribed by leading order lattice perturbation theory while
the B = 4 and B = 6 data can be quantitatively under-
stood along this line.

It is gratifying to see that the efFective coupling param-
eter n, (R) increases with R, as is expected from asymp-
totic freedom. For P = 2.5 we obtain values ranging from
0.15 & n, (2a) & 0.19 (under exclusion of n~ = 0) over
0.26 & n, (4a) & 0.31 up to 0.36 & cr, (6a) & 0.56 while
at p = 2.635 we find the ranges 0.145 & n (2a) & 0.16,
0.17 & n, (4a) & 0.22, and 0.22 & cr, (6a) & 0.34, respec-
tively. We note that 4a2 5 6a2 635 Thus these numbers
give a consistent picture and should be put in perspec-
tive to the bare couplings n = 2%/(4rrP) 0.127 and
n = 0.121 for P = 2.5 and P = 2.635, respectively.

0.004
~a4

0.0035

0.003

0.0025

0.002

0.0015

0.001

0.0005

I
I

I
I
I

I
I
I
t
I

t
I

I

l
I

I
l

1

1

I
L

I
I

1

1

-0.0005
-2

FIG. 21. The central transverse energy density profile at
R = 4, P = 2.5 together with a fit to the lattice expression,

f~ [method (1), lattice dipole].

2. Action profile

In the case of the action density, a pure lattice Coulomb
Ansatz is expected to fail since the action density is
largely due to higher order efFects. Nonetheless, it would
be interesting to see whether an admixture of this term
within the parametrization remains necessary to account

0.0025

0.002-
R 4 I A I

0.0015

0.001

FIG. 22. Same as Fig. 21 at P = 2 635.

0.0005

p (w""---k-y----4:----pp

-0.0005
-2

e deviation from the expected value, b = 1, can be attributed to the fact that for small R the lattice dipole tends to be
more narrow than its continuum counter part (Fig. 4).

Excluding the point n~ = 0, we also find acceptable fits with methods (2) and (3). The same is the case at P = 2.635

where, due to the link integration procedure, no data point is available at this position. It is interesting to see from the large

coefBcient cq that the data prefer the continuum dipole over the lattice dipole.
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for lattice artifacts.
It turns out that this heuristic approach shows little

promise as all fits to the R = 2 and R = 4 action data
yield values. y )& NDF. Among the fits, the three-
parameter forms (5) and (7) come closest to being suc-
cessful. The fits are not good enough, however, to decide
whether this gives genuine evidence for perturbative lat-
tice eR'ects or trivially reHects the higher Bexibility of a
three-parameter Ansatz.

From R = 6 up to R = 10 (R = 8 at P = 2.635)
the dipole fits with unconstrained width (4) appear to be
the best parametrization of the data. Beyond these R
values, we observe the data being equally well described
by Ansa'tze (4) and (6) at P = 2.5, while at P = 2.635
from R = 10 onward the Gaussian parametrization turns
out to be more robust than the dipole Ansatz against
statistical fluctuations. From R = 12 onward the other
fitting methods also started yielding y NDF values.
Since these its are unphysical in this region, we have not
included them into the table.

The quality of the dipole (4) and Gauss (6) fits is exhib-
ited for source separations R = 8 and R = 12 at P = 2.5
in Figs. 23 and 24, respectively.

3. Synopsis

0.0035
~o4

0.003

R=8 '"
(4)
(6)

0.0025

0.002

0.0015

0.001

0.0005

-0.0005
-10 -5 10

FIG. 23. The central transverse action density profile at
R = 6, P = 2.5 together with fit curves of methods (4) and
(6) (unconstrained dipole and Gauss).

Leading order lattice perturbation theory is found to
describe the energy density data well at small R. The
fitted amplitude is in accord with asymptotic &eedom.
The lattice dipole term helps in finding a parametrization
for action density data at small R, although it is not a
dominant term. Continuum dipole fits to the action yield
acceptable results &om distances of about 0.5 fm onward.
Up to 1 fm this continuum parametrization has a width

~a4
0.003

/3

0.0025 R=12 ' "-

0.002—

0.0015

0.001

0.0005

0

-0.0005
-10

I

10

FIG. 24. Same as Fig. 23 for R = 12.

larger than R/2. This effect is at variance with the anti-
screening picture of color sources and might well be a lat-
tice artifact since a lattice dipole is broader than a con-
tinuum dipole in this R region (see Fig. 3). For larger R,
the combination 2b'/R decreases to values substantially
below 1. From a separation of 1 fm onward the Gaussian
parametrization yields an equally good (and occasionally
superior) description of the data.

B. String formation

When the sources are adiabatically pulled apart, the
accretion of action density, Acr, should, according to the
string picture, be strictly localized in the center plane
between the sources. This holds for R large enough com-
pared to the other inherent length scales in the prob-
lem, i.e., the transverse width of the tube and the size of
the Coulomb dominated region. It is not a priori obvi-
ous when this R asymptotia sets in. The accretion phe-
nomenon will be exploited to determine this transition
point to genuine string formation.

For this purpose, we differentiate the action density
distributions with respect to an increase in the source
separation. This is done by computing the change,
b, oR = /r~ —o~ 2, under stretches (R —2) + R.

In Fig. 25 we display the results for P = 2.5 and R = 6,
8, and 10, respectively. At r = 10a 0.85 fm, we find
impressive evidence that Lo is in fact zero outside the
center plane. This does not hold at smaller separations,
where Lo exhibits a net How of action into the center
plane &om the next neighbor planes. This latter feature
is in accord with the dipole picture described in Sec. III A.
It is a substantial effect at R = 6 and decreases to the 5%
level at R = 8. Within our resolution we thus conclude
that the transition point to string formation is located
at2 R = 9.

The P = 2.635, R = 2 data is exceptional since in this case
we have omitted the n~ ——0 point from our fits.

Strictly speaking, there is of course no transition point into
the asymptotic regime, since the transition is smooth.
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m rule-22differential action sum rule:we can write a i e
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1 lobal tool offered
formation, w ic provi

the more conventiona g o

b h d h
In fact, the

re ime appears to e ra
f h fi

' t t l.
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K
flulTl

dipole:
Gauss

0.04

0.03

0.02

FIG. 26. The string tension (dashed line)
obtained from the potential at P = 2.5, com-
pared to the integrated center plane action
density, scaled by a factor B/2 (in lattice
units). In addition to the numerically inte-
grated data (num), the dipole and Gauss fit
results from Sec. V A are displayed.
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0 I
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XI), we attempt to compute this important parameter
by direct numerical integration:

Jo dB~ 0~0'(0& Bg)
J""'dng ngcr(0, ng)

The results, including their systematic errors from vary-
ing n, „t, are displayed in Fig. 27, together with the expec-
tations &om the above dipole and Gauss fits. We realize
that this method is not a viable way to determine the B
dependence of b: the relative error, Lb, of the numeri-
cal integration is intolerably large and the two fit results
also differ by a factor of about 1.5. This, of course, is
related to the large weight with which large n~ points
contribute to Eq. (69). For R & 10 the data is well de-
scribed, both by a dipole and by a Gaussian parametriza-
tion for our n~ window within statistical errors, and yet
the two parametrizations dier substantially at large n~.

The data on the numerically integrated widths for
physical distances below 0.5 fm (the largest separation
at which numerical integration of the energy density data
could be performed) exhibit that the energy density val-
ues fall onto the line h = R/2 while the action density
values are significantly larger. This tendency has also
been observed in Ref. [3] and is consistent with our fit
results (Tables VIII and X).

An alternative approach to study the functional de-
pendence, 6(R), is to constrain the center plane analysis
to the results of the differential action sum rule. In ad-
dition, we apply a geometric method that will correlate
results &om diferent R values to the extent that we end
up with reduced relative errors and all uncertainty cast
into a large overall scale error. To quote the assump-
tions, (1) accretion of ad.ditional energy and action when
pulling the sources apart is localized in the center plane
and (2) at sufficiently large R, the change of the trans-
verse shape under variations of R can be absorbed into
two (independent) scale transformations.

Assumption (1) has been verified &om our data in
Sec. VB for distances r & 0.75 fm and P & 2.5. Within
our statistical errors, assumption (2) is also fulfilled in

this region, according to the fit results in Tables X and
XI.

In this case, we can define

(70)

A is the area below the curve. It can be fixed by the
sum rules with high accuracy. For the action density we
obtain A kom

A = 2KB (—P)

In the case of the energy density, A. directly equals the
force, up to a renormalization constant. 6 denotes the ac-
tion/(energy) density in the middle of the tube (n = 0).
p is a geometry factor. Depending on the parametriza-

10 &num
&num
&dido(e ~
Ogauss ~
&geom. ~

a&

3

I

10

R

I

15
I

20

FIG. 27. The width of the flux tube& 6, against R at P = 2.5
(in lattice units). The dashed line corresponds to h = R/2.
In addition to the numerically integrated results from the en-

ergy and action density distributions, fit results to the action
density from Table X, and results from the geometric method
(with p=l) are displayed.
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h a 1.1/p/m 0.5 fm~p, (72)

where we expect p to take values between 1 and 2. I og-
arithmic fits to the r & 1 fm data according to the string
picture expectation, Eq. (38), yield the values

Rov K & 1/4 (73)

tion it can take the following values: p =
2 for a distri-

bution, constant for n~ ( n „and zero outside of this
circle; p = 1 for a Gaussian shape; p = 2 for a dipole
shape; and p = 3 for an exp( —c~n~~) shape.

By employing the definition Eq. (70), a large portion
of the error on the width is cast into the (overall) uncer-
tainty of the geometry factor p.

In addition to data obtained by use of the other
methods, we have included the data &om this geomet-
ric method into Fig. 27 for the case p = 1 (triangles).
The difI'erences between these points and the Gauss fits
(crosses) refiect the fact that the large n~ data is not
well approximated by the Gaussian form. Remember,
that this very efFect has also led to an underestimation
of the force in Fig. 26.

In Fig. 28, we display our geometric results (p = 1) for
the action and energy densities at P = 2.5 and P = 2.635,
scaled in units of the string tension. The dashed vertical
line denotes the distance 0.75 fm above which the geo-
metrical approximation is justified. As can be seen, the
data exhibit scaling even below this limit. The width of
the energy density starts out to be smaller than the width
of the action density, as has been observed in Ref. [3],but
increases faster. It then reaches the same magnitude as
the action density width, before it disappears under the
noise level at about 0.8 fm.

Above r = 1 fm the action density data are in agree-
ment with a constant value

I I I

c 2.500

0.8

0.6

04

/

/ 0

I

I 0

0.2

I

0.5 1.5
C I

2 2.5

R~It

I

3.5
I

4.5

FIG. 28. The width of the Hux tube, b, against B in
units of the string tension, obtained by use of the geomet-
ric method (p = 1) for the energy and action density distri-
butions at P = 2.5 and P = 2.635. The vertical line indi-

cates the lower limit of applicability of the geometric method.
The dashed-dotted curve is the string picture expectation
[Eq. (38)t for Rov K = 1/4, bo gK/p = 0.69.

No lower limit is imposed on the cutofF Bo since the data
are also in agreement with a constant. bo comes out to be
close to the string picture expectation 1/(mK). A curve
with parametrization Rov K = 1/4 and bo2Kvr = 1.5p is
indicated in Fig. 28.

The strong parametrization dependence of the rms
width, b, is reflected in the difFerence by a factor of about
1.5 between the Gaussian and the dipole parametriza-
tions (and by the different geometry factors, p). The
half width p is much less sensitive to the parametriza-
tion: both forms are valid interpolations of the data in
the small n~ region. For the two parametrizations, p can
be connected to b by the relations

0.5

FIG. 29. The half widths, p, of the energy
and action flux tubes obtained at P = 2.5
and P = 2.635 against R in units of the string
tension. The line corresponds to the (small
R) dipole expectation.

0
0 0.5 1.5 2.5 3.5

Note that these values only apply to the in6nite volume case. At large b/Ls, they tend to be smaller.
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p = 2bgln2 = 1.67h (Gauss),

p = 2h/2 ~s —1 —1.02b (dipole).

(74)

(75)

The resulting half widths for energy and action densi-
ties in units of the string tension are displayed in Fig. 29.
We have attempted a Bnite-volume correction to the
dipole results by Btting the data to the functional form,
described in Appendix D [Eq. (D4)], and subsequently
converting the resulting h values into p via Eq. (75).
This amounts to a reduction of p by less than 10%. Differ-
ences between the uncorrected dipole data and the Gauss
results (up to 6'%%up) reflect the systematic uncertainty due
to the form of the interpolating curve. We observe nice
scaling between both P values. We also confirm the width
of the energy flux tube to be smaller than the width of
the action flux tube for distances below 0.5 fm. Both
densities increase until r = 1.1 fm. The action density
saturates at the level p 0.7 fm.

We conclude that the data beyond 1 fm is in agreement
with a constant but does not contradict the expected
string picture behavior either. The ultraviolet cutoff rp
of the effective string theory is found to be comfortably
large (larger than 4v o or 1.8 GeV). This has to be related
to lattice resolutions of 2.35 or 3.64 GeV at P = 2.5 and
P = 2.635, respectively.

VI. SUMMARY AND CONCLUSIONS

It goes without saying that an approach based on the mea-
surement of Polyakov lines would neither be amenable to such
an improvement program toward "early T asymptotics" nor
would it be safe from L s-periodic effects from mirror sources.

We have demonstrated that Wilson loop plaquette cor-
relations offer a viable access to a lattice study of the flux
tube problem on the required length scale of 1—2 fm.

Prior to a workable application of this tool one must
ascertain an essential improvement of the lattice obser-
vation technique: the crucial ingredient of our method is
the smearing of the parallel transporter within the bilocal
QQ creation operator. This secures a controlled ground
state preparation of long flux tubes within few lattice
time slices. Smearing is combined with integration on
the timelike links of the Wilson loop to cut noise.

As a result, we can observe flux formation in the ac-
tion density over lengths well beyond 1.5 fm with spatial
resolution 0.05 fm. We find that, due to a center group
symmetry of the Wilson loop, finite-size effects remain
well below the level of accuracy reached in the present
simulation, at least as long as Lg is kept larger than 1.3
fm and R & 4Ip. In particular, there are manifestly no
efFects of Lg periodic distortions of the Beld distribution
or potential due to mirror sources. This implies that
we can safely accommodate a flux tube of length 1.9 fm
on our largest lattice of volume (2.7 fm) . The energy
and action densities exhibit the expected scaling behav-
ior and are consistent with the potential measurements
through Michael's sum rules.

At small distances the flux tube is corrupted by lattice

artifacts, which can be understood in terms of lattice
perturbation theory. This holds in particular for the self-
energy peak around the sources, whose nonscaling behav-
ior is well in accord with perturbative expectations.

The transverse rms width of the action flux distribu-
tion in the midplane between the sources rises with source
separation r until it reaches a rather constant level for
separations between 1 and 2 fm. The physical value
for this constant remains model dependent and ranges
between 0.5 and 0.75 fm, as we estimated &om a set
of transverse profiles, supplementing our measurements
with various plausible assumptions on the large n~ be-
havior. For the half width we Bnd a plateau value of
p = 0.7 fm. In the preasymptotic domain, the action
width is observed to rise by a factor 6, distinctly ma-
joring the width of the energy distribution, before both
reach their (common?) plateau values. A logarithmic
increase as suggested by string pictures for the "asymp-
totic" R region is consistent with our data, suggesting a
rather large ultraviolet cutoff on inverse wavelengths in
effective string models, rp & 1.8 GeV.

In the range r & 0.75 fm, we observe a remarkable sta-
bility of long flux tubes in the sense that Beld accretion
exclusively occurs in the center plane of the tube, as the
sources are further pulled apart. This is another impor-
tant quantitative support for the flux tube picture. The
issue of establishing a definite tube profile (like Gaussian
transverse shape) will remain a rather elusive subject for
any numerical approach like ours.

The present research can readily be generalized to the
situation of more than two static sources, like three quark
sources in SU(3) [36] or in the case of "nuclear chemistry, "
with two quark-antiquark pairs in SU(2). The latter has
been studied recently by Green and co-workers [37] in the
context of hadronic potentials, while the former will help
to answer interesting questions related to the three-body
character of color forces in the proton. Work along this
line is in progress.

The methods described here should also be useful in
the quantitative studies of the confinement mechanism
in the maximal Abelian gauge [13—15].

During completion of this work, we received an un-
published paper by Haymaker et aI,. [32]. They work at
P values up to 2.5 and refrain from applying ground-
state enhancement techniques. Instead, they attempt
T extrapolations on derived flux tube properties. This
enforces a smaller R range and implies less control on
systematic effects.
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APPENDIX A: WEAK COUPLING EXPANSION
OF FIELD DISTRIBUTIONS

In this appendix, we recall the one-gluon exchange
approximation to the lattice potential and compute the
leading order perturbative contribution to the electric en-
ergy distribution.

With the lattice gluon propagator in the Feynman —'t
Hooft gauge,

a p k ti v: "", k„=2sink /2,

a weak coupling expansion of the Wilson loop yields

1 N —1
C~ = Tr(T~Tb—)b~b =

N 2N (A3)

Fourier transforming Eq. (Al) yields

~ikn
G(n) = )

p
(A4)

with

2~
A;, = mi,Ls

2"
k4 —— m4,I~

mi

m4

Ls Ls)'')27+ 1 . . -

I7 L~
(A5)

for the real space gluon propagator on a finite lattice.
With

~ikR
G (R) = ) G(R, i) = )

T k+0
(A6)

and V(R) = —limp~ ln[W(R, T)]/T, one obtains

V(R) = C~g2 [GL, (R) —GL, (O)]—. (A7)

By construction, the weak coupling expansion of the
quantity [Eq. (24)]

(( w)(&)~ = (&) I (~)(~)
—'

~
(A8)

involves only interactions between the plaquette and the
Wilson loop. All self-interactions of the plaquette and
Wilson loop are canceled by the denominator.

(W(R, T)) = 1+ C~g ) G(R, b,7.) —G(O, b,~)
~,~'=0

(A2)

with 6'T = 7 —w. Only terms extensive in T have been
kept and the leading term 1 is the expectation value of
the loop with the interaction switched off. Note that we
have neglected the zero momentum contribution in the
calculation that is suppressed by a factor 1/(I &I&). The
color factor C~ can be calculated by contracting the color
indices of the SU(%) generators T (a = 1, . . . , N —1):

An expansion of the plaquette yields

( )=1—c,g 2 (As)

(A10)

By squaring the one-gluon exchange contribution, divid-
ing the expression by a factor 2 to avoid an overcounting

with ci ——2C~g [G(0) —G(1)] = C~g /4 on symmetric
lattices. If we are interested in the leading order behavior
only, the plaquette can be approximated by 1. However,
at realistic values of the coupling higher order corrections
are large. At P = 2.5 we find for example ( ) = 0.65198.
This observation inspired Parisi to formulate a program
of mean field improved lattice operators [38]. The idea
is to split every lattice operator into a part that corre-
sponds to (discretization dependent) fluctuations on the
ultraviolet lattice scale and a physical infrared part.

More recently, the deviations of lattice results &om
perturbative expansions in terms of the bare lattice cou-
pling parameter have been explained as being due to large
contributions Rom tadpole diagrams [39]. This circum-
stance has revived the interest in mean field or tadpole
improved lattice perturbation theory and operators. The
hope is to suppress ultraviolet contaminations by divid-
ing every link in a given lattice operator by its Monte
Carlo mean field. value uo. This is supposed to procure
early asymptotic scaling and reliable perturbation theory
predictions.

A popular choice of uo is the fourth root of the average
plaquette. Following this procedure, we should. divide the
expression on the RHS of Eq. (A8) by the average plaque-
tte. However, in the end, we are interested in the com-
bination P( )~ only. Since the plaquette in the action
S~ = —PU has also to be divided by its mean fleld value,
P is replaced by a mean field coupling PMF = P( ). Per-
forming both replacements, the (U) contributions cancel.
In this spirit, the definition of action and energy densities
in Sec. II D represents already in itself a tadpole improved
definition. Keeping in mind that in the last step our op-
erator will be multiplied by P, it is justified to neglect
the multiplicative ( ) factor in Eq. (A8) even in a region
where g depending deviations &om 1 are not small.

The two loops being disconnected in color space, only
singlets can be exchanged. Thus, we expect an exchange
of two gluons as the leading order contribution. Tech-
nically, this can be seen as follows: for computation of
the product of two (real) traces, both possible relative
orientations of the Wilson loop and the plaquette have
to be averaged over. Thus, exchanges of single (bare
or dressed) gluons cancel. The same holds for a triple
gluon vertex that can only be attached with two legs to
one loop and with one leg to the other. Because of the
Lorentz structure of the propagator Eq. (Al), magnetic
plaquettes cannot interact by a direct exchange of gluons
with the timelike links of the Wilson loop.

The color factor of the two-gluon exchange between
the disconnected loops turns out to be

Tr(T~Tb)Tr(T, Td, ) =
2 Tr(T~Tb)b~b =~. ~bd,
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of gluon exchanges, and performing the T integration, we
obtain (again, only terms extensive in T have been kept)

) y; (n) = 2 [GL, (0) —GL, (R)],
Ilia

(A15)

4(E2( )) 2C &'(n) + & (n e )
) 2

while

'(B,'( ))i, ,„) i,)
= o(g'). (A13)

Many of the higher order diagrams contribute to 8 as well
as to E'. Thus, we would expect a partial cancellation of
higher order effects in the energy density:

S~ (n) —8~ (n)
e~(n) =

2
(A14)

From

(U(n)' ) = &'(n)
Cpg4
4N [GL, (n —ri + e;) —Gl, (n —ri)

—Gg(n —r2 + e;) + Gg(n —r2)], (All)

where the sources are placed at the positions rq ——
2 eqR

and F2 ———2eR

After averaging over the two plaquettes used for con-
struction of the electric Geld operator and multiplying by
2P/a, we end up with

we obtain

a ) Qii(n) = g'C~[G, (0) —G~(R)] + O(g

= V(R). (A16)

Note that to order g the action density equals the en-

ergy density. However, the action density is expected
to deviate much more &om the leading order perturba-
tive expectation since higher order electric and magnetic
contributions are added and no cancellations of diagrams
occur.

Perturbation theory yields (up to a divergent self-
energy part)

v(r) = —C~g 2 1
4vrr

(A17)

for the continuum potential. The associated elec-
tric field is given (up to a color factor) by
g V [v(x + r/2ei) —v(x —r/2ei)]. In the continuum
limit the difFerences in Eq. (All) will be replaced by
derivatives, yielding exactly this expression. After squar-
ing and expressing the result in lattice units, one obtains

(,)( )
g Cp 1 ) l~

n —b;iR/2
a' (4~)' ( ln —e,R/2I'

n; + h, ,R/2 ')

/2I') (A18)

which is just the continuum limit of Eq. (A12).

APPENDIX 8: ACTION SUM RULE

I

times the mass gap, Ei ——ni&+a = 3~% [40], in the
exponent.

After summing over all S, we obtain

( )w, 2 = ( )io, z) —io)

In order to derive the action sum rule we start &om
the definition [W = W(R, T), Dirac indices and spatial
position are suppressed] + + I il —AVT+o

I

b dg2 bVT q- .

ldol
(B3)

IT /2 —x). ( (S))w.
S=O

(B1)

In Eq. (25), the spectral decomposition of the argument
of the sum for 0 & S ( T/2 has been carried out. For
the plaquette position outside the loop, i.e. , S ) T/2, we
obtain

We have made use of the fact that the off-diagonal
(i.e. , S-dependent) pollutions, inside and outside the
loop are incomplete geometric series. The summation
gives, apart &om the constant parts, only multiplicative
1 —e " + or 1 —e ' + factors. The con-
stant b„(n) is the sum of all ofF-diagonal coefficients
f'rom the expansion equations (25) and (B2) of (Cl)w,
weighted by corresponding coefficients (1 —e +vf') i or
(1 e E,

)
—1—

Together with

( (S))w oc e '( )~ cosh [Ei(LT/2 —S)] +.. .

(B2)

(W) = f17UWe~, U = ) (T~ (n),
fLiP,)v

(B4)

The signal is suppressed with the temporal distance of
the plaquette insertions from the Wilson loop, S —T/2,

and the decomposition of the Wilson loop [Eq. (4)] we
obtain, from Eq. (B3),
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). (U -(n))M. = T— I W
—(U) I

((UW)
T i W

0
T B

ln(W)

1 Bln ~do~2 BV
T Bp Bp

~vr
BP /do/2

(B5)

Note, that the equalities are exact. Thus, in the expan-
sion of the derivative of the Wilson loop the same terms
appear as in Eq. (B3).

A comparison of the 1/T coefficients between the above
equation and b of Eq. (B3) yields

B= ) b„(n) =
n, p, )v

Bln /do/2

BP
(B6)

Prom the estimate for ground state overlaps of un-
smeared operators Eq. (19) we obtain

B= —R =P VOR0

a4):( -( )), - —).-[ ( )
— ( )1

n, p) v n
4

o~ n. (B8)

By carefully comparing the coefFicients of the expansions
one finds many (exact) "sum rules. " In the following we
list three such examples:

PBV
a 0~ n = ——

)

n

P BEV
a o.& n —o.~ n (Blo)

for large R and weak couplings. The monotonic increase
of the ground-state overlap at fixed R with P is con-
Grmed in the present simulation. Therefore, B is posi-
tive. For smeared operators, Vo is replaced by some con-
stant f that is small compared to all R, such that
the exponential can be expanded and the ground-state
overlaps ~do(R)~ exhibit the linear behavior of Fig. 2.
f is expected to be proportional to g2 to the lowest
order such that B = P fR Under t.he assumption
that dq dominates other excited-state overlaps we obtain
~di(R)~ = fR Equation .(Bl) can also serve as a def-
inition for color field measurement operators. However,
we have preferred to use ( )~ instead, due to the better
asymptotic behavior: excited states are suppressed by
factors proportional to ~Be ~2 = ~Be ~+ instead
of R/T only.

From Eqs. (21), (22), (24), (28), and (29), one obtains

o.& denotes the action density distribution of the erst
excited QQ state without angular momentum, o&+ is

1
the action density distribution in presence of the lightest
glueball state. The derivatives with respect to P in Eqs.
(B9) and (B10) have to be taken at fixed (lattice) R.

The ground-state potential consists of a constant phys-
ical part v(aR) = Vp~(R)/a and a self-energy contribu-
tion Vo which diverges in the continuum limit:

V(R) = V~h(R) + Vo ——av(aR) + Vo. (B12)

By using this decomposition, we obtain from Eq. (B9)
the action sum rule

1 t'B lna) a'~R(n) = ——
B 1

[Vi,~(R) + R&pt, (R)]a (Bln

BVO

B lnP
(B13)

APPENDIX C: ENERGY SUM RULE

The derivation of the energy sum rule, although the
more intuitive rule, turns out to be more complicated.
We start &om the decomposition of the Wilson action
into a spatial and a temporal part:

~iv = —pt U't —p.&' (Cl)
In the following, the spatial and temporal lattice spacings
will be called a, and az, respectively. The asymmetry is
defined by ( = a, /at. Following the steps of Appendix
B, one finds

a4' ) f~(n) () (U;4(n))~ 2

n n, i

( B
ln(W),

t
(C2)

The derivatives of the coeKcients have been calculated
by Karsch in Ref. [41]. For SU(2) the result is

c', = c', (1) = 0.11403.. . , ct = c', (1) = —0.06759. . .

(C7)

—') .~~(n) - —) . (U" (n))vv, 2

n n,i)j
ln(W) . (C3)

1 |9
T BP,

A weak coupling expansion [41] relates the anisotropic
lattice couplings to the isotropic coupling P(a, ):

p, $ = p + 2Nc, (() + O(p ), (C4)

ptg = p+ 2mct(g) + O(p-'). (C5)

The coefBcients satisfy the relations

11K
c, (l) = ct(1) = 0, c', (1) + c', (1) = bo —— . (C6)

P BEi
aoA+ n

n
(Bll)

After expressing the derivatives with respect to the
asymmetric couplings by derivatives with respect to P
and ( and taking ( = 1, we end up with
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( ~ ) (~').~~(") = —
I

1 ——~o I+ V
I

1 ——(cl —c'.) I,BlnP ( P ) ) P
OV ( N ) (

~ ).~~(~) = I1+ —~o I+VI1- —(c~-c'.) I)
Subtracting both expressions yields the (exact) action sum-rule equation (B9).

Adding Eqs. (C8) and (C9) and dividing by a factor 2 yields the energy sum rule

(C8)

(C9)

1 ( N
/ r ) )9V) n"„(n) = — V

I
1 ——(c', —c'.) I+ b,—+ "

a ( P ' ') OlnPP

(a ina= — V(R) 1 — (c', ——c', ) + IV,),(R) + RV,'„(R)]+ — 6&—+ . .
0 lil

(C10)

(C11)

The energy sum rule is not exact due to the pertur-
bative origin of the relation between the symmetric and
asymmetric couplings IEqs. (C4), (C5)]. Of course, it
would be preferable to measure the corresponding deriva-
tives of inc directly on the lattice instead.

Note that the coefficient of the last term in Eq. (Cll)
is identical to the action sum equation (B13). The factor
c) ln a/0 ln P appearing within this term carries an anoma-
lous dimension (as the action does), canceling a P fac-
tor Thu. s, an additional factor —

4 (V&h + RV'h) seems
to survive the continuum limit a ~ 0 besides V(R). Its
origin is an incomplete resummation of the series: the
non-perturbatively determined coefEcients contribute to
all orders in P i. The order P i term yielding the above
contribution has to be canceled by other anomalous terms
appearing in higher orders of the expansion. However, if
consistently cutting the expansion at order P by ex-
panding the potential perturbatively, the expected con-
tinuum limit is reproduced as P ~ oo.

APPENDIX D: FINITE-SIZE CORRECTIONS

In this appendix we elaborate details on the compu-
tation of finite-size corrections on the action and/or en-
ergy density distributions within the center plane. These
FSE's are mainly due to the periodicity of the measure-
ment operator,

O~(0, n2, n3) = O~(0, Ls —n2, Ls —n3),

I

ties fall ofF at least as fast as (IniI —R/2) into the lon-
gitudinal direction. The effect &om mirror copies placed
along the transverse directions can be substantial (de-
pending on the ratio 8/Ls).

We perform our calculations for two models: namely,
a dipole transverse shape

$2
fg(x~, oo) =-

7t ($2+x2)
(D2)

and a Gaussian shape

c ( x2~)
fg(x&, oo) = exp I— (D3)

f~(x~, oo) and fg(x~, oo) are the corresponding (infinite
volume) center plane energy and/or action density dis-
tributions.

As argued above, it is justified to neglect interactions
between different pairs of mirror sources. We also as-
sume that the chromoelectric and chromomagnetic fields
on the finite volume can be obtained by superimposing
the (infinite volume) fields of all (pairs of) mirror sources.
Note that we have to add the fields rather than the ac-
tion and energy densities themselves. From the geometry
it is clear that the perpendicular electric and longitudi-
nal magnetic Beld components vanish in the center plane.
Under the assumption that the (perpendicular) magnetic
field component is proportional to the (longitudinal) elec-
tric component, we find

at a given QQ separation, K = Rei. This mirror source
effect should not be confused with contributions &om
the replacement R ~ R + nLs, which are negligible (as
shown in Sec. IV B 3). We also neglect efFects from mirror
sources along the QQ axis which are almost completely
screened &om the center plane since the color field densi-

I

f (x22 xsj Ls) ) g (x2 + n2Ls2 x3 + n3Ls)
pn3

(D4)

with g(x2, x3) = g(x~) = gf(x~, oo). The integrated
area can be computed in the following way:

A(LS) = dx2dx3 f (x2, xs, Ls)

(m2+i) L,s
dX2 dx3 g (x~) g (x2 + n2Ls, x3 + n3I s)

m2L S m3I S
=). ).

n2n3 m2m3

) fd g(T2 —ng LgT/z 2—nz / )gL(Tgq d2-nqLg/2, zq+nsLg/2).
n2n3

(D5)
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In case of a dipole field with (infinite volume) rms width b we have

g~(z~) ~ (b'++~) ' '

and obtain, for the area,
2'' OO

Ad(Lg) oc ) dc' drr(d (n2, ns) + r 1 —L&(n2cosp+ nq sing)
0 0

with

(D7)

(D8)

d'(n2, ns) = b'+ (n', + n', ).
4

After performing the radial integration, we arrive at

1 2 1
Ad(Ls) oc .— dPdz o 4d' —Lz (n, cos(P+ ns sing)'

71 2 'Aa

(D10)

(D11)

with A(oo) = c/(2b').
For the Gauss fits we have A(I. )=A( )) «(0) (D15)

( x2~)
gg(x~) oc exp [—2b') (D12) and

Thus, we end up with
2 L 2

Ag(Ig) = ) Jdx~e ~e ~~ +

712 YLQ

(D13)

= A(~) ) exp
~

— ' (n,'+ n', ) ~

.4b' ' ' )
' (D14)

In conclusion, the results for both transverse profiles
read

(L ) A( ) ) ~ gg (Ls(nl + n2)/2)
gg (0)

(D16)

respectively, with g(x~) = gf (x~, oo) and A(oo)
c/(2b' ). For the typical dipole rms width b/I g = 6/32,
we find an increase of the area by 43% due to the
Rnite volume while the corresponding Gaussian result
(b'/Ls --4/32) is only affected by 5 x 10 ". Notice that
the infinite volume b can be obtained by fits of the form
equation (D4) from finite-volume data.
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