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P function and equation of state for +CD with two flavors of quarks
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We measure the pressure and energy density of two-Savor QCD in a wide range of quark masses
and temperatures. The pressure is obtained from an integral over the average plaquette or (g@). We
measure the QCD P function, including the anomalous dimension of the quark mass, in new Monte
Carlo simulations and from results in the literature. We use it to find the interaction measure,
e —3p, yielding nonperturbative values for both the energy density e and the pressure p.

PACS number(s): 12.38.Gc, 11.15.Ha

I. INTRODUCTION

We expect that at high temperatures strong interac-
tions will enter a new phase, the quark-gluon plasma
(QGP), which is believed to have existed in the ex-
tremely high temperatures microseconds after the big
bang. Heavy-ion collision experiments at the Brookhaven
Alternating Gradient Synchrotron (AGS) and CERN are
currently trying to recreate the QGP. In order to prove
its existence in the aftermath of a heavy-ion collision and
to understand the dynamics of the QGP in the early Uni-
verse one needs as input, among other things, the equa-
tion of state for the system. Since the phase transition
occurs in a regime of strong gauge coupling, a nonper-
turbative method is called for. Lattice calculations pro-
vide such a method. However, at currently practical lat-
tice spacings the operator formalism usually used in such
calculations for the equation of state is not necessarily
nonperturbative, since it requires the knowledge of the
asymmetry coefficients, or Karsch coefficients [1]. These
are currently known only perturbatively [2]. These asym-
metry coefticients are short-distance quantities defined at
the scale of the lattice spacing a, so that if a could be
made small enough (and temporal size K& large enough to
keep the temperature fixed) the perturbative coefficients
could be used accurately even though the temperature
would remain at a typical QCD length scale. However,
the use of perturbative values for the asymmetry coeK-
cients leads to distortions in the equation of state at the
bare couplings used today. An eÃort can be made to non-
perturbatively ineasure the asymmetry coefficients [3]. In
practice that has turned out to be difficult [4].

The integral method does not require the knowledge
of these coeKcients. It was erst used in the context of
lattice QCD to calculate the interface tension by Huang
et al. [5] and later modified for the bulk pressure of pure
gauge QCD by Engels et al. [6]. The disadvantage of
the integral method is that for the pressure at a single
temperature and quark mass, a number of diferent sim-
ulations are required in order to provide the integrand.

We have done an extensive survey of the gauge cou-

pling and quark mass plane for two-ffavor QCD, allowing
us to measure the nonperturbative pressure by integra-
tion. Using data from the literature for the p and vr meson
masses, we calculate the nonperturbative P function to
compute the interaction measure and hence the energy
density.

Although these simulations avoid one of the problems
of using QCD simulations on small lattices, namely the
use of perturbation theory, the problems of scaling vio-
lation, or nonconstant ratios of physical lengths, of fla-
vor symmetry breaking with the Kogut-Susskind quarks,
and of effects on the thermodynamics of replacing inte-
grals over the momenta by sums over discrete Matsubara
&equencies remain.

In Sec. II, we present the formalism for calculation
of thermodynamic quantities and the P function. Sec-
tion III details our simulations and the results for the
energy and pressure.

II. THEORY'

A Euclidean N, x Nq lattice with periodic boundary
conditions has a temperature T and volume V given by

V=K, a

1/T = %pa,

where a is the lattice spacing. The form of the parti-
tion function Z for QCD with nf fermions with Kogut-
Susskind (KS) discretization is

Z= dU(„„) exp 6 g Sg

+(nf /4) Tr ln[amq + P]j, (2)

where the gauge fields U( „) are SU(3) matrices at the
link (n, p) (at site n, in the direction p, = 0, . . . , 3), (6/g )
is the gauge coupling, and amq is the bare quark mass in
lattice units. The gauge action
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Sg ——sRe ) TrUa(n) IM, v)

is a function of U~(n, p, v), the path-ordered product of
link matrices around the elementary plaquette at site n
in the pv plane. The covariant derivative P contains
the Kogut-Susskind phases. For nf ——2, the simula-
tion is performed using the standard re&eshed molecular-
dynaxnics algorithm [7]. This involves integration of an
equation of motion with a nonzero step, and a resulting
error in physical averages. As it turns out, this step size
error must be handled with care.

value removes the divergent zero-temperature pressure.
The lower limit for the integration should be in a re-
gion where the difference between the zero- and nonzero-
temperature plaquette expectation values is negligible.
This removes the unknown constant introduced by the
integration. In a completely analogous way we get, Rom

Gmq

(6/g, am~) = N, Ni [(Qg(6/g, m'a))
cold

{gg—(6/g, m' a)),y ]d(m' a) (11)

A. Thex modynamics

Thermodynamic variables are derivatives of the parti-
tion function Z defined in Eq. (2). In particular, the
pressure p and energy density c are given by

0 lnZ

~(1/T) (4)

p 8lnZ
T t9V

For large, homogeneous systems the IIree energy is pro-
portional to the volume:

0 lnZ
BV (6)

pV fV—
(7)

Thus, the &ee-energy density f can be connected to the
pressure by

or
Gmq

, (6/ '
) =N' [(@&(6/

' ', ))
cold

—(gg(6/g, m' a)),z ]d(m' a) . (12)

Here the "cold" limit of the integral should be at a quark
mass where g@ is essentially equal on the hot and cold
lattices. Such a limit only exists for 6/g less than the
critical 6/g for the quenched theory, which is the limit
of infinitely massive quarks.

At high temperatures, p/T4 should approach a con-
stant. This means that the integrand in Eq. (10) must
approach zero at large 6/g2. Figure 1 shows the Ni ——4
plaquettes and cold lattice plaquettes as a function of
6/g2 at am~ = 0.1. As required, the curves join at large
6/g2 values.

Although the average plaquette curves coalesce, the
difference between the spatial and temporal plaquettes
approaches a constant as shown in Fig. 2, and as required
by the operator formula for the entropy. This means
that at very high temperatures the spatial and temporal
plaquettes are shifted by equal amounts but in opposite
directions &om the zero-temperature plaquette.

The Bee energy cannot be obtained &om a single simu-
lation, but its derivatives can be. In particular,

0 lnZ
2¹Nioi(6/g2)

'

where ( ) is the average plaquette normalized to 3 for a
lattice of unit matrices and
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These are relatively easy to measure in a simulation. If
a series of runs is performed with different am~ and 6/g
values the pressure can be obtained by numerically inte-
grating Eqs. (8) and (9). With the plaquette we obtain

o~
1.6— I H

Qi

QI

Gg
Qx

1.6 —Q

6/g'
(6/g, am&) = 2N, Ni [(H(6/g', am&))

cold
—(O(6/g', am )),„]d(6/g' ), (10)

I I I I I I I I

5.3 5.4 5.5 5.6
I I I I I I I I

5.7 5.8

where (Cl(6/g2)), „ is the average plaquette &om a sym-
metric (cold) systexn. The subtraction of the symmetric

FIG. 1. The N& ——4 plaquettes (octagons) and the symmet-
ric plaquettes (squares) as a function of 6/g at am~ = 0.1.
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B. Energy density

To obtain the equation of state for @CD we also need the energy density c. It can be obtained nonperturbatively
using the P function and the interaction measure I. The interaction measure I is

eV pV 1 OlnZ OlnZ
T T T B(1/T) clV

cl 85=
~

—ai —a,
~

inZ
claq cia, )

8 lnZ
ulna

where a, and aq are the spatial and temporal lattice spacings. In the last step we have subtracted the zero-temperature
value. We have measured (Cl) and (@g) on the lattice and calculated the P function from mass spectrum data in the
literature.

Knowledge of the nonperturbative pressure and interaction measure allows us to compute other bulk quantities.
The energy and entropy 8 become

(i4)

sT = I+4p.
Given the need for the P function to find the interaction measure from Eq. (13), or for the asymmetry coefficients

to And the energy directly, it would be nice to compute the energy density by an integration similar to that used for
the pressure. To the extent that we can make a small change in temperature by changing Nz, this is possible. Let us
start &om Eq. (4):

0 lnZ A lnZ

8(1/T) A (Kg a)
N~ Gmq

(N( —4)a Ni( (&&)iv; + (—@&) ~-]+ N~((&@)w —(A) ~-]d(~', a) (i6)

where N~ and Nq are two diQ'erent temporal extents. Of
course, an analogous formula in terms of the plaquette
also exists.

Equation (16) can be given in the form (17)

'(N (~~) N(~~)-
4 t & cold

+(N~ —N~)(@vP)sr ]d(m a),

C3

I

0

0.015

0.010—

0.005 —
O

I

am =0.1

where we have taken as the inverse temperature the av-
erage (N~ + Nq)a/2.

Ideally, we would like to take N,'a and N&a as close
as possible to each other to increase the accuracy of the
approximation of the derivative by the Gnite difFerence.
This approximation gives a curve that is smoother than
the real energy density. In fact, it gives the average s/T4
in the temperature range (1/(N~a), 1/(Nqa)). For linear
regimes of p/T it is exact. This is true, for example, in
high temperatures, where the Boltzmann law is expected
to be valid.

Approximating the pressure at 1/T = (N,' + N, )a/2
with the average of 1/T' = %~a and 1/T" = Nqa systems,
we can get a formula for the entropy 8 as well:

0.000
5.3

I I I I I I I I I I I I I I I

5.4 5.5 5.6 5.7 5.8

FIG. 2. The di6'erence of spatial and temporal plaquettes
as a function of 6/g at am~ = 0.1. The diamond corresponds
to 16 x 4 lattice, the squares to 12 x 4 and the octagons to
8 x 4 lattices.

s N,'Ng [(N,' + Ng)/2]s

f
Gmq

[(4'0)w. —gM) m, ]d~', a .
cold

The entropy does not need a vacuum subtraction; the
symmetric average cancels out.

In the applications of the equation of state, the sound
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velocity of the thermal system is an important quantity.
Acoustic perturbations travel in the system with a speed

C. The P function

Ca'.

C dP

To change the lattice spacing keeping physical ratios
Axed, we must adjust both relevant couplings in the ac-
tion, 6/g2 and am~, so our P function has two compo-
nents:

8' =KG
4

P =7+
I = Ia (20)

as the dimensionless quantities measured on the lattice.
Then, the sound velocity becomes

dI——
2

=3+
e2 dp—

4I —"

4p —" (21)

One has to take the derivative keeping the physical quark
mass 6xed, i.e. , on the line of constant physics. Unfor-
tunately, we know best only the variations of the energy
density and pressure along lines of constant bare param-
eters. In order to measure the correct sound velocity one
has to use the P function to map the changes in bare pa-
rameters to physical changes of temperature and quark
mass.

Define

(0(6/g') B(am, ) ) (22)

where a is the lattice spacing. This can be measured &om
m and mz in units of the lattice spacing as functions of
6/g and am~. In general, a change in the bare quanti-
ties changes both the lattice spacing a and the physical
quark mass. In practice, to keep physics constant while
changing a, the partial derivatives in Eq. (22) are taken
at constant m /m~. Clearly, the nucleon mass or any
other physical mass could be substituted for m~, and
in the continuum limit should give the same answer. In
practice, m is special since it is uniquely sensitive to the
quark mass. (In principle, other quantities sensitive to
am~ could be used, such as the nucleon-b mass splitting. )

We have used vr and p masses from simulations with
two flavors of Kogut-Susskind fermions reported in the
literature (see Table I) to calculate the P function over a
wide range of coupling and quark mass. A 2 x 2 matrix
M was formed by calculating derivatives &om three or
four points in coupling-quark mass space:

where the differentials have to be taken along a path
which keeps m, /m~ constant. Therefore, it is not enough
to have the energy density and pressure as the function
of bare parameters; one needs the P function as well. We
will return to this in future work.

din(am )
d ln(amp)

8 ln(am )
8(6/g )ai (am, )
8(6/g )

d(6/g')
d(am, )

8 ln(am )
8(am')

8 ln(am~)
8(am')

(23)

TABLE I. Spectrum runs used to construct the nonperturbative @CD P function. We also tabulate the 7t and p masses,
together with the values of our interpolating expression at these points, using the functions in Table III. Note that the points
with 6/g = 5.7 were not used in the fitting.

Run Ref.
[9]

[io]
3 [11]

[io]
5 [10]
6 [i5]
7 [io
8 [12]
9 [13

10 [14
11 [16
12 [16]
13 [16]
14 [12]
15 [16]
16 [13]
i7 [16]
18 [17]

Qmq

0.1
0.1
0.1
0.1
0.05
0.05
0.025
0.025
0.025
0.025
0.02
0.02
0.02
0.0125
0.01
0.01
0.01
0.004

6/ 2

5.35
5.375
5.4
5.525
5.32
5.47
5.2875
5.445
5.6
5.7
5.5
5.6
5.7
5.415
5.5
5.6
5.7
5.48

Lattice size
8 x24
8 x24
6 x24
8 x24
8 x24
8 x24
8 x24
16 x 24
16 x 32
32 x 32
16'
164
20'
16 x 24
164
16 x 32
20 x 20
16 x 32

0.8019(1)
0.8088(7)
0.819(4)
0.8262(8)
0.5827(7)
0.6112(5)
0.4184(9)
0.4488 (4)
0.4197(7)
o.3s3(i)
0.3901(17)
0.3696(31)
0.3402(17)
0.3239(5)
0.2942(44)
0.2667(8)
0.2451(23)
0.189(1)

1.432(5)
1.408 (11)
i.38(i)
1.210(16)
i.4o6(48)
i.O23(2)
1.342(46)
0.918(4)
0.6396(28)
0.530(2)
0.758(48)
0.563(11)
0.4916(30)
0.883(6)
0.636(37)
0.5133(22)
0.4184(70)
0.62 (4)

fn"'
0.805
0.811
0.814
0.817
0.543
0.611
0.375
0.447
0.425
0.390
0.403
0.377
0.338
0.330
0.293
0.263
0.219
0.197

Rt
P
1.438
1.399
1.362
1.211
1.315
1.024
1.274
0.912
0.641
0.511
0.769
0.599
0.464
0.891
0.692
0.512
0.368
0.686
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(
(6/g ) Q (6/g ) 8 (amq }

I91n(a)8(amp, ) 81n(a)8(amp) 8 ln(a)8(amp, )

82(6/g ) 8 (amq } 8 (amq)
8 ln(a) 8(am p, ) 8 ln(a) 8(am p, ) 8 1n(a) 8(amp, )

(Aarnh )

(24)

These matrices were added together to obtain a nonsin-

The partial derivatives were found by linear interpola-
tions among the points. The P function was then calcu-
lated by inverting Eq. (23) with the changes on the left-
hand side set equal: din(am ) = din(am~) = b. This
keeps m /mz constant. We have also calculated the P
function at 6/g = 5.35 and am& ——0.1 from new simula-
tions I9]. In these simulations, we varied space and time
couplings anisotropically to measure the asymmetry co-
e%cients. The asymmetry coeKcients give the change in
couplings as the space and time lattice spacings are ad-
justed independently. However, their sums give the sym-
metric change in the couplings when all lattice spacings
are varied together, or the usual P function. Values for
the nonperturbative P function are given in Table II, and
a plot of the renormalization-group (RG) flow is shown
in Fig. 3. The values of 6/g2 and am~ quoted in Table II
are averages of the points used in calculating the P func-
tion. In Table II, we also give the value of the quark mass
component of the P function minus the contribution from
the classical dependence on the lattice spacing. The RG
flow depicted in Fig. 3 shows how to approach the con-
tinuum limit. Prom Table II we see that the gauge piece
of the P function is roughly half the perturbative value at
couplings for the range of 6/g2 used in these simulations.

The errors shown in Fig. 3 were calculated by forming
a singular covariance matrix for the two components of
the P function for each of the hadron masses am', used
in the calculation:

0.0200—

0.10
0.0198—

I

5.61 5.62

0.05—

I I I I I I I I I I0.00
5.2

gular covariance matrix. The covariance matrices for the
first two entries in Table I were calculated Rom a jack-
knife estimate. The covariance matrices are diagonalized,
and the allowed variance is then given by an ellipse whose
semimajor and semiminor axes are along the eigenvectors

5.4 5.6
6/g'

FIG. 3. Renormalization-group How in the gauge cou-
pling-quark mass plane for two Bavors of Kogut-Susskind
fermions. The base of each line is indicated by an octagon
and is where the P function is evaluated. The end is indi-
cated by a one standard deviation error ellipse. The inset
shows this error ellipse for the P function at 6/g = 5.65 and
amq ——0.0175, the point indicated by the arrow. The length
of each line and its error ellipse corresponds to a scale change
of din(a) = 0.1, so this is actually 0.1 times the error on the
P function. The two lines at 6/g = 5.35 correspond to the P
function calculated using the VT p and PV p masses. (The
larger line is for the VT p. ) The difFerences are due to flavor
symmetry breaking from the large lattice spacing.

TABLE II. Nonperturbative QCD P function. The upper section is for the P function calculated by the direct method. The
first two entries are from new simulations and correspond to the VT p and the PV p, respectively. In these new simulations
the couplings were actually varied asymmetrically in space and time around the cited values. The other points are from the
literature and correspond to the VT p. "Runs" gives the runs from Table I used to construct the P function. "Corr" is the scaled
correlation between the two components of the P function. The lower section of the table contains the P function obtained
from the fits to the mass spectrum in Table III at a few selected points. Finally, we quote the perturbative value.

6/g
5.35
5.35
5.379
5.381
5.382 5
5.465
5.505
5.55
5.65

amq
0.1
0.1
0.075
0.037 5
0.020 8
0.016 9
0.033 3
0.016 25
0.0175

Runs
1
1
1256
5678
7814
8 11 14 15
689
9 11 15 16
9 10 16 17

~(6/ ')
a in(a)
—1.201(342)
—0.379(128)
—0.333(11)
—0.243(15)
—0.251(23)
—0.176 (53)
—0.338(58)
—0.249(88)
—0.344(35)

Bamq
a &n(a)

0.304(20)
0.253(8)
0.1774(9)
0.088 6(8)
0.044 4(5)
0.035 1(15)
0.067(2)
0.027(3)
0.024(2)

I9 ln(amq )
sin(a}

2.04(20)
1.53(8)
1.37(1)
1.36(2)
1.13(2)
1.08(9)
1.01(6)
0.64(18)
0.37(11)

Corr.
—0.99
—0.97
—0.50
—0.77
—0.84

0.40
0.98
0.98
0.84

5.35
5.35
5.55
5.35
5.55

O. l
0.025
0.025
0.0
0.0

—0.565(25)
—0.278(14)
—0.226(3)
—0.371(20)
—0.270(4)

0.200(4)
0.082(2)
0.0450(2)

1.00(4)
0.28(8)
0.80(8)

0.52
0.09
0.49

0.0 —0.734
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of the covariance matrix and whose lengths are given by
the square roots of the corresponding eigenvalues. The
ellipses shown in Fig. 3 were calculated for one standard
deviation. The error ellipses in Fig. 3 are close to straight
lines, which indicates the two components of the P func-
tion are highly correlated. Correlations between the vr

and p masses kom the same simulations were not in-
cluded in our analysis except for the point at 6/g = 5.35.

There are two systematic errors in our calculation of
the P function. The first comes &om the linear approx-
imation of the matrix of derivatives. However, Fig. 3
shows that the P function is smooth over a wide range in
coupling-quark mass space. This indicates the first-order
approximation is good even for these large changes. The
second and most apparent systematic error comes from
scaling violations in the masses [see (3)]. The point at
6/g = 5.35 and amq = 0.1 was calculated using both the
VT p and the PV p masses, and each gives a different an-
swer for the P function. (See Ref. [8] for a discussion of
the meson operators, including definitions of the VT and
PV propagators. ) The difference is attributable to the
slopes of the masses as functions of 6jg2 and amq. Since
the VT p and PV p are not degenerate at this point but
should be in the continuum limit, this is expected. At
this coupling the slopes differ roughly by a factor of 2,
which leads to the large discrepancy in the P function.
At larger 6/g and smaller amq the problem is alleviated
since the p masses become degenerate to good accuracy.
[For example, we can examine the fractional difference
in the p znasses, A~ = (ampv —amvT)/amvT, in runs
1, 6, and 9 of Table I. We find that at 6/g = 5.35
and amq = 0.1, A~ = 0.065(4), at 6/g2 = 5.47 and
amq = 0.05, A~ = 0.026(4), and at 6/g = 5.60 and
amq ——0.025, Ap ——0.011(8).]

Since we are interested in the P function at many
points in coupling-quark mass space to evaluate the in-
teraction measure, a better method is to fit the spectrum
data as a function of 6/g and amq. Such a fit can also
be used to transform functions of the bare quantities to
functions of physical parameters such as the tempera-

ture. Thus, we determine m /m~ and m~a as functions
of amq and 6/g . The inverse function then yields the
P function. The fitting functions are given in Table III
and shown in Fig. 4 where we have used m~ = 0.770
GeV to convert to inverse lattice spacing. These fitting
forms are ad ho@ fits to the masses in the relevant pa-
rameter region, and do not have the correct asymptotic
behavior for large 6/g2 or large amq. We take the func-
tional form of m /mz from chiral perturbation theory
with coefficients that are polynominals in 6/g2. We fit
the mass ratio in this case because we could not obtain a
fit with reasonable y for the pion mass alone. These fit-
ting functions are compared to the simulation results for
am and am~ in Table I. For the region of 6/g relevant
to the %q ——4 thermal crossover, it can be seen that this
is a good interpolating function for these masses. The
m, results (not shown) are also fit reasonably well by a
quadratic function of 6/g and amq. In the continuum
limit, the functions in Figs. 4(a) and 4(b) should con-
verge, i.e., m = m, . However, at the couplings used in
current lattice simulations, a pronounced breaking of the
continuum SU(2) x SU(2) chiral symmetry is evident.

The P function is determined by computing numerical
derivatives of the bare parameters with respect to lattice
spacing along lines of constant m /m~, i.e. , from the in-
verse of the functions shown in Fig. 4. The confidence
levels in Table III are low, which may indicate that the
errors on the spectrum data are underestimated. In any
case, the fits should be considered as giving smooth in-
terpolated mass values in the parameter regions where
data exist. Evidence that they work is the agreement
between the resulting P function and that from the di-
rect calculation as shown in Fig. 5. We note that there
seems to be a discrepancy at 6/g = 5.35 and amq = 0.1.
This is where the P function was calculated from new
simulations. These simulations show that the p mass is
a much Hatter function of the bare parameters. As the
quark mass is reduced below 0.1, it steepens appreciably.
Since we have no spectrum data between amq ——0.1 and
amq ——0.05, our fits can not resolve this behavior. In

TABLE III. Pits to spectrum data used to construct the nonperturbative QCD P function. (Not recommended for
6/g ) 5.6.)

rn /m~ = gamq[5. 10+ 12.89(6/g —5.45) —2.49(6/g —5.45) ]
—amq [15.05 + 34.38(6/g —5.45)] + 16.51(amq)

with 8 degrees of freedom 23.4.
Confidence level 0.0029.
Runs from Table I used in Bt: 1,2,3,4,5,6,7,8,9,11,14,15,16,18

mz ——0.72 —2.25(6/g —5.45) + 1.75(6/g —5.45) + 7.75amq
+10.0lamq (6/g —5.45) —20.08(amq)

with 8 degrees of freedom 20.7.
Confidence level 0.008.
Runs from Table I used in fit: 1,2,3,4,5,6,7,8,9,11,14,15,16,18

m~, = 0.49 —2.20(6/g —5.45) + 3.00(6/g —5.45) + 11.02avnq
+7 32amq(6/g —5.4. 5) —36.61(amq)

with 5 degrees of freedom 8.9.
Confidence level 0.11.
Runs from Table I used in fit: 1,4,8,9,11,12,13,14,15,16,18
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O.5
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(a) t/a (cev)
2.0

O.O

(b)
1
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FIG. 4. Spectrum fit showing contours of constant bare coupling and quark mass. (a) Using the mass of the Goldstone
pion of the exact U(1) x U(1) lattice chiral symmetry. (b) Using a non-Goldstone pion mass. The fitting functions are given in
Table III. The dashed line is the physical value of m /m~. The inverse function gives the renormalization-group fiow. The
octagons indicate the points where zero-temperature spectrum calculations were done. The solid lines are contours of constant
bare parameters 6/g and am~ with the values indicated in the graphs.

Table II we also give the P function from the fitted spec-
trum at a few selected points, including extrapolations
to zero quark mass.

The errors on the P function from the fitted spectrum
were calculated as described above for the direct method.
That is, we determined a singular covariance matrix for
each mass used in the fit at each point where the P func-
tion was evaluated and proceeded as before.

III. SIMULATIONS

We performed simulations with the parameter values
displayed in Fig. 6. At each point we ran both hot (Ni ——

4) and cold (Ni ——N, ) lattices. For 6/g & 5.45 we
used N, = 8 or 12. For 5.45 & 6/g & 5.69 we used
N, = 12, and for 6/g = 5.77 we used N, = 16. On the
cold lattices we performed about 800 trajectories plus 100

0.15 r

0.5—
I I I

i

i I I 'LJ I

i

I I I I

0

0.10— 0.2—

0.05— 0.05—

0.02—

o oo
5.2 5.4 5.6

6/g'
o.o i

5.2 5.4
t I I I I I I I

5.6 5.8

FIG. 5. Comparison of +CD nonperturbative P function
calculated directly from spectrum data and from the fit to the
spectrum data. The octagons are the direct calculation, and
the diamonds are from the fit. The locations of the octagons
are averages of the points in parameter space used to calculate
the P function. The diamonds show where thermodynamic
data were obtained for the equation of state.

FIG. 6. The bare parameters of our runs. The plot symbols
indicate the step size used, where the cross is dt = 0.01, the
squares 0.02, the octagons 0.03, the diamonds 0.04, and the
pluses 0.05. Some of the points have runs with several step
sizes. The pluses connected by the solid line show estimates
for the phase transition or crossover region for N~ ——4 [18,19j.
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warmup trajectories, on the hot runs about 1600 plus 100
warmup trajectories.

As mentioned in Sec. II, these results are subject to
step size errors. We found that these are not the same
for the hot and cold runs. In cold lattices the effect was
much more pronounced. Thus it is not safe to subtract
the results of cold and hot lattices without making sure
that the step size errors are under control. This increases
the workload considerably.

The system, with fixed step size dt is self-contained,
that is it corresponds to some statistical system and
the integrations along constant am~ and 6/gz should
give consistent results also at nonzero dt, provided our
integrations are numerically accurate. So, this self-
consistency, although not strictly speaking physical, can
be used to test the accuracy of our integrations. Indeed
at fixed step size, the integrations agreed reasonably well.

In our case the proper handling of step size errors was
especially important in the integration over 6/g2. This is
because the difference of the hot and cold plaquettes was
in many cases of the same order as the step size error. In
Fig. 7(a), we show the plaquette as a function of step size
squared, which is the leading error in the Balgorithm [7].
The difference in the step size errors between hot and cold
runs also has implications for the operator measurements
of pressure and energy density where a similar zero-point
subtraction is needed.

For @g the step size error was not as large relative
to the difference in values for the hot and cold conden-
sate, as is seen in Fig. 7. Thus, the error in the mea-
surement of the pressure from the amq integrations is
smaller. However, for the smallest values, 6/g = 5.35
and am& ——0.025, the extrapolation of @@ to dt = 0
had to be taken into account: with step sizes 0.02, 0.03,
lattice g@ was 0.3021(20), 0.3328(25), and 0.3867(33),

respectively. Linear extrapolation in step size squared
gave @@ = 0.2731(28), significantly difFerent from the
smallest step size result. In contrast, the hot @g was
almost the same at dt = 0.02 and 0.03. This was the
worst case in the mass integrations.

For the 6/gz integrations the step size errors are hard-
est to handle. The effects at amq ——0.1 were within
error bars. At mqa = 0.025 there were two major effects.
First, the cold plaquettes were smaller with larger step
sizes, increasing the apparent difference between the hot
and cold systems. This means, that at larger step sizes
the pressure apparently becomes too large. Second, the
position of the phase transition was shifted for the hot
system towards smaller 6/g2 as step size is decreased.
Therefore, the integrated pressure near the transition be-
came smaller at larger step sizes, partially cancelling the
first efFect after integrating to large 6/g . In all, the step
size error caused the pressure to look steeper than it re-
ally is. In Fig. 8, we display the pressure for two different
step sizes. To get the physical value we make a linear (in
step size squared) extrapolation of the pressure to zero
step size also shown in the figure. The extrapolation is
in reasonable agreement with the values of pressure from
the mass integrations. In our final results, when a point
could be reached by two integration paths, we combined
the results of the two paths with weights proportional to
the inverse squares of their statistical errors. Roughly
speaking, the effect of this on the pressure versus 6/g is
to use the integrations over amq, with smaller statistical
errors, as "anchors" for the integrations over 6/g .

Figures 9 and 10 collect our results for the pressure
with Nq ——4. In Fig. 9, we have combined the results of
integrating over 6/g2 and am&.

Having the results as a function of amq, we may wish
to extrapolate to even smaller, physical quark masses.

QI Qi

S.eo

6/g = 5.45
'G Q Q

1.50
0.000 0.002

(b)

0.000 0.008

FIG. 7. (a) The variation of the plaquette as a function of step size squared at 6/g = 5.45 and am~ = 0.025. The diamonds
come from 8 and the octagons from 8 x 4 lattices. The cold system has a much more pronounced effect. (b) The same for
g@. The cold system again has a larger effect, but it is much less significant for the calculation of the pressure, since the shift
in gg due to the step size error is a small fraction of the difFerence between the hot and cold values. The squares and bursts
are runs with N, = 12.
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FIG. 8. The eKect of the 6nite step size on the pressure.

The fancy pluses are from step size 0.03, the fancy crosses
from 0.02. The octagons give the result extrapolated to zero
step size. The bursts show the mass integration results.

FIG. 10. The pressure in units of T as a function of the
quark mass mq/T from the integrations over mass. The di-
amonds give 6/g = 5.53, the octagons 6/g = 5.45 and the
squares the 6/g = 5.35 results. The bursts are extrapolations
of the mass integrations to amq = 0 [see Eq. (26)].

For small quark masses amq, v)@ should go as

QQ = hii(6/g') + hi (6/g')amq + O(amq)2, T ) 0,
@Q = cp(6/g ) + ci (6/g )amq + O(amq), T = 0, (25)

where h, and c, are independent of mass, and ho ——0 for
T ) Tc. Using Eq. (12) one gets, for the pressure,

Gmq

pa (amq) = (ppa ) + [(hp —cp) + (hg —cg)(am')]
mll

xd(am' )

= (ppa ) + (hp —cp)(amq —m")

+ [(amq) —(m") ] + O(am ), (26)
Pa (amq) = @pa (mq: 0) 1PIP&z p Iqma4 4 4 (27)

and its mass derivative is determined by the zero tem-
perature v)@. In physical units

where the lower limit m" is small enough for Eq. (25) to
be valid and (ppa ) is the value of the pressure at that
point. Therefore, a simulation is needed only down to a
mass value where the behavior of Eq. (25) is established.

However, if the transition is of second order, near the
critical temperature the scaling of Q@ is governed by the
critical exponent b and these formulas must be altered.
Using Eq. (26) to extrapolate the curves in Fig. 10 results
in the bursts in Fig. 9.

It is interesting to notice that at high temperatures the
behavior of the pressure becomes (hp m 0, m" ~ 0)

I I I I

j

I I I I

]
I I I I

N =4 I (mq) = I (0) —(@&)T=pmq . (2S)

0
5.2 5.4

6/g'
5.6 5.8

FIG. 9. The pressure in units of T as a function of gauge
coupling 6/g . The bursts are extrapolations of the mass
integrations to amq = 0 [see Fig. 10 and Eq. (26)].

Thus, even in very high-energy scales, the zero-
temperature subtraction produces a nonzero derivative
of the pressure with respect to quark mass at amq = 0,
in contrast with &ee quark behavior where this slope is
zero.

The energy density &om the interaction measure and P
function using Eqs. (13) and (14) is displayed in Figs. 11
and 12. The P function was obtained &om the fits to
m /m~ and m~ in Table III.

The finite-size error in the pressure comes from the
assumption [Eq. (6)] that the partition function scales
with the volume. However, since most of the simulations
were done in a region where the finite-size effects in ex-
pectation values are small, we expect only small correc-
tions. Even the integration through the crossover region
is mostly at a large mass, where finite-size effects are not
so important. The correlation length is determined by
the quark mass am, q rather than by the lattice size N, .
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FIG. 14. Gauge and fermion contributions to the interaction measure for (a) am~ = 0.1 and (b) am~ = 0.025. The circles
give the gauge part, and the diamonds give the fermion part. The squares are the total.

fermion contribution is given by the vacuum subtraction
(a constant) times the quark mass component of the P
function which goes to zero in the continuum (T + co)
and chiral limits. Figure 5 shows why this contribution is
not falling ofF for mqa = 0.1. The quark mass component
of the P function is actually increasing in this region of
6/g2 while for m~a = 0.025 it is decreasing. The gauge
contribution behaves in just the opposite way. The gauge
component of the P function goes to a constant while the
average of the plaquette in the hot phase approaches the
zero temperature value (see Fig. I).

In this study we have developed and tested methods for
determining the equation of state for high-temperature
/CD, and presented results with a large lattice spacing
a = I/4T. Simulations must be done at many values
of 6/g2 and am~, and extrapolations made to the phys-
ical values. Zero-temperature simulations must be done
to allow the divergent parts of the energy and pressure
to be subtracted, to provide the P function for comput-
ing the interaction measure, and to provide the mapping
from the lattice variables 6/g2 and am~ to the physical

variables T and m /m~. At the lattice spacing used here,
lattice effects on the thermodynamics are large and flavor
symmetry is strongly broken. We expect to pursue this
project at smaller lattice spacing in the future.
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