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The results of an extensive study of B-meson properties in quenched lattice +CD are presented.
The studies are carried out in the static quark limit where the b quark is taken to be in6nitely
massive. Our computations rely on a multistate smearing method introduced previously, with
smearing functions generated from a relativistic lattice quark model. Systematic errors arising
from excited state contamination, 6nite volume e8ects, and the chiral extrapolation for the light
quarks are estimated. We obtain continuum results for the mass splitting Mz. —Mgy„——86 +
12(stat)+t(syst) MeV, the ratio of decay constants fig. /f~„= 1.22+0.04(stat) +0.02(syst). For the
B-meson decay constant we separately exhibit the sizable uncertainties in the extrapolation to the
continuum limit (a —+ 0) and higher-order perturbative matching. We obtain fis = 188 + 23(stat) +
15(syst)+0 (extrap) + 14(pert) MeV.

PACS number(s): 14.40.Nd, 12.38.Gc, 13.20.He

I. INTRODUCTION

Heavy-light mesons are ideal systems for lattice QCD
studies. For hadrons that contain a single heavy quark,
the dynamics of QCD simplifies as mg ~ oo. In this
limit, the heavy quark is on shell and at rest relative
to the hadron [1] and the QCD dynamics becomes inde-
pendent of mg [2]. Heavy-quark mass dependence can be
extracted analytically to produce an efFective action for a
static quark and the remaining light degrees of freedom
[3,4]. In the continuum, the resulting heavy-quark ef-
fective theory (HQET) makes transparent the symmetry
[5] and scaling relations between systems which difFer by
heavy-quark spin or fiavor [5—7]. Furthermore for finite
heavy-quark masses, the efFective action can be improved
order by order in 1/mg. The mg ~ oo limit may also
provide other insights into QCD dynamics. In particu-
lar, heavy-light mesons are physical systems with a single
light valence quark and fully relativistic QCD dynamics.
It is likely that much can be learned about constituent
quark ideas in this simple setting [8].

These theoretical developments have immediate phys-
ical applications for B physics. Since the 6 quark mass
is significantly heavier than the other mass scales (the
QCD scale and the light-quark masses) which enter into
the dynamics of B hadrons, it is likely to be a good ap-
proximation to treat the 6 quark in the mg —+ oo limit
within B hadrons.

Recent developments in lattice gauge theory have led
to the possibility of calculating the masses and decay
constants of B~ (q = u, d, s) mesons from first principles
(QCD) with enough accuracy to be of both phenomeno-
logical and theoretical interest. In particular, we consider
the mass difference Mii —Mii, the decay constant fis
and the ratio f~ /f~ . We will only consider the lattice

action appropriate to the static limit (mi, -+ oo) and
hence all the results reported have corrections of order
ActCD/mb. A variety of other methods have been de-
veloped to study B mesons on the lattice. Methods for
treating the b quark using nonrelativistic actions [9], a
nonzero velocity formulation [10], and a generalization of
the usual Wilson action which is not constrained to quark
masses less than the inverse lattice spacing [11]are being
actively pursued.

The present study encompasses a systematic analysis
of data for M~ and f~ at four difFerent lattice spacings
a (with associated P values P = 5.7, 5.9, 6.1, and 6.3)
and a variety of physical volumes (in lattice units 12s,
16s, and 20s) for one fixed spacing (P = 5.9). For each
case above at least four light-quark mass values (K val-
ues corresponding to pion masses in the range 300—800
MeV) were studied. A uniform and consistent fitting
scheme was used in all cases. This is particularly impor-
tant for an accurate extrapolation to results at physical
light-quark masses (r = r„d, and r. = K, ) and for assess-
ing the a dependence of the results.

In the static approximation, the heavy-quark propaga-
tor is reduced to a straight timelike Wilson line, making it
possible to calculate correlators of spatially smeared Qq
operators without having to compute light-quark propa-
gators from smeared sources. Because of this simplifying
feature, the heavy-light meson system is an ideal place
to develop sophisticated operator smearing techniques.
Such techniques are indispensable for the accurate cal-
culation of f~ and other B-meson properties. Until re-
cently, most such calculations have relied on a more-or-
less ad hoc choice of smearing functions (e.g. , walls [12],
cubes [13],exponentials [14], or Gaussians [14]).

In the present study, we have applied a multistate
smearing method introduced previously in [15]. This
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analysis provides some significant improvements over pre-
vious investigations. First, we have made a serious efFort
to construct smearing functions which closely resemble
the actual Coulomb gauge wave functions of the valence
Qq systein as measured on the lattice. As reported in a
previous paper [16], the heavy-light wave functions from
lattice QCD are reproduced with remarkable accuracy
by a simple relativistic quark model (RQM) Hamiltonian
which contains the static QCD potential extracted from
Wilson lines in Coulomb gauge. In addition to being an
interesting statement about QCD dynamics, the success
of the RQM has a practical consequence which we will
exploit here. The RQM Hamiltonian provides a simple
and precise way of constructing orthonormal sets of re-
alistic smearing functions for lattice heavy-light calcula-
tions. For each value of P and lattice size, the static Wil-
son potential is calculated from the gauge configurations
and used in the RQM to generate heavy-light smearing
functions. The only tunable parameter in this procedure
is the light-quark constituent mass parameter p in the
kinetic term of the RQM Hamiltonian. In practice, this
parameter was initially selected by measuring the lattice
QCD ground-state wave function and adjusting p to give
the best fit for the RQM ground state. In some cases,
after an initial multistate fit to the heavy-light propaga-
tors, it was found useful to iterate the procedure with
a more finely t,uned value of the constituent quark mass
p, using the more accurate wave functions obtained from
the multistate fit.

In addition to this method for constructing smearing
functions, another important innovation introduced in
the present study is the fitting procedure used to extract
information from the heavy-light correlators. Starting
with the wave functions from the first M 8-wave states
of the RQM, it is relatively easy to construct the entire
M x M matrix of correlators among the corresponding
smeared Qq operators, as well as the "smeared-local" cor-
relators between each of these operators and the local Qq
source. Along with the local-local correlator, these form
an (M + 1) x (M + 1) matrix. This matrix contains
far more informat, ion than just; the smeared-smeared and
smeared-local correlators of any single smearing function.
In particular, the matrix contains information about ex-
cited states, which, when properly exploited, allow an ac-
curate extraction of ground-state properties even at very
short time separations, where excited-state contributions
are still large. The method we introduce to accomplish
this employs a y minimization procedure to simultane-
ously fit the (M + 1) x (M + 1) matrix of correlators
to a sum of M exponential (pole) terms, representing
the contribution of the M lowest-lying heavy-light eigen-
states. (In all fits, we exclude the local-local correla-
tor, which, at short time separations, is not well fit by a
few low-lying states. ) The matrix coefficient (residue) of
each pole term factorizes and can be written in terms of'

an M + 1 component vector whose entries represent the
vacuum-to-eigenstate matrix element of each smeared op-
erator. In practice we have found an M = 2 fit to yield
fairly accurate results for ground-state properties. For
all of the fits used, the y2 per degree of freedom was less
than 1.3. The multiparameter fits were carried out using

the cERNLIB minimization routine MINUIT.
The improved control over systematic errors gained

from the multistate fitting method allows us to better ad-
dress a number of issues. In particular, the dependence
of heavy-light meson parameters on both the light-quark
mass and. the lattice spacing are examined in detail. One
of the diKculties with previous analyses which prevented
accurate chiral and a ~ 0 extrapolations was in the arbi-
trariness of the smearing procedure. It is clear that any
ad hot- smearing function will have a substantial over-
lap with excited states. Typically one tries to optimize
the smearing function (e.g. , by adjusting the size of the
cube) and to go far enough out in time that excited states
have died away. The approximate equality of smeared-
smeared and. smeared-local effective masses, combined
with some indication of an efI'ective-mass plateau, are
the main criteria of success in this procedure. Unfor-
tunately, the procedure is somewhat subjective and it is
diKcult to rule out large systematic errors due to excited-
state contamination. An attempt to reduce these errors
by extracting results from larger time separations leads
to a rapid deterioration of statistics. Moreover, because
of the well-known signal-to-noise difFiculty for the heavy-
light propagator in the static approximation [17,15], the
problem of isolating the ground state becomes more difFi-
cult at smaller lattice spacing. As a result, extrapolation
to a = 0 is particularly problematic. Furthermore, use
of any fixed smearing function at diferent light-quark
masses introduces a significant systematic error in the
extracted K dependence. This is important in the deter-
mination of results for f~ /fIi and Mii —M~ . The
multistate fitting procedure electively deals with these
difIiculties, greatly reducing our errors.

Extrapolating to the continuum limit (a = 0) we ob-
tainthe ratio f~ /f& = 1.22+0.04(stat)+0. 02(syst) and
M~. —M~ = 86+ 12(stat) s(syst) MeV for the mass
difference. For these quantities, only a slight dependence
on the lattice spacing is observed, and the systematic er-
rors associated arith the a ~ 0 extrapolation (included
in the above) are small.

The situation for the decay constant is more com-
plicated. We find a significant lattice spacing depen-
dence for the ground-state pseudoscalar decay constant
f~. The results for the four P values are consistent with
either a linear or quadratic dependence on the lattice
spacing a. The linearly extrapolated result in the a ~ 0
limit is f~ = 188 + 23 + 15 MeV. This result is notably
smaller than previous estimates of f~ in the static ap-
proximation. The primary reason for this is the a ~ 0
extrapolation. The quadratic extrapolated result in the
a ~ 0 limit is flan = 214+ 13 + 17 MeV. This fit refiects
the fact that our results at P = 6.3 are not inconsistent
with those of [12,18,19] (the latter two results using a
Sheikholeslami-Wohlert action for the light quarks). In
both cases, the first error is statistical while the second
includes systematic errors, which we discuss in Sec. V.
Our final result for the B„~ meson decay constant (in
the heavy-quark limit)

f~ = 188 + 23(stat) + 15(syst)+o (extrap)
+14(pert) MeV
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explicitly separates out this theoretical uncertainty as-
sociated with the a ~ 0 extrapolation as well as our
estimate of the uncertainty associated with higher-order
perturbative matching corrections.

We will give a complete discussion of the perturba-
tive matching of lattice to continuum results in Sec. II.
We include a discussion of the heavy-quark mass renor-
malization in relation to the residual mass parameter
[A = Mii —mb(quark)] of HABET. In Sec. III, we dis-
cuss our analysis procedure. The details of the multistate
smearing technique and the construction of the smearing
functions from a relativistic quark model (RQM) are pre-
sented. In Sec. IV, the numerical lattice results at each
P are presented. The statistical and fitting errors associ-
ated with our final physical results are determined. The
light meson results used to set light-quark masses are con-
tained in Appendix A. The discussion of systematic errors
associated with excited-state contamination, finite vol-
ume, nonzero light-quark masses, scale uncertainties, and
the extrapolation to zero lattice spacing are all discussed
in Sec. V. A study of the time evolution of the wave
functions for heavy-light states is presented in Appendix
B. These results provide an independent check that our
multistate smearing analysis has removed excited-state
contamination. In Sec. VI, we present our final results,
compare them with other recent calculations, and discuss
upcoming studies.

II. PERTURBATIVE MATCHING

A. Extracting properties of heavy-light mesons from
lattice +CD

In this section, we will focus on short-distance cor-
rections to the results obtained from lattice @CD. These
corrections are common to both traditional techniques for
extracting meson properties and to the multistate smear-
ing method employed here. Explanation of the details of
the multistate smearing method are deferred to the next
section.

The corrections to the matrix elements of time com-
ponent of the heavy-light axial current, Jps(n), are com-
puted by demanding that the ratio of the current renor-
malized with some continuum regularization scheme and
the lattice-regularized current be unity. To be a little
more precise, one computes this ratio, Z, using some ma-
trix element, and from then on one multiplies any result
obtained using the lattice-regularized current by Z. The
states used to determine Z can be chosen for calcula-
tional convenience since the ratio is independent of the
choice of states. Although there is no choice of states for
which the numerator and denominator of the ratio are
separately calculable, because the operators only difFer
at scales on the order of the cuto8's of the two regulariza-
tions, and at these scales @CD is perturbative, the ratio
can be calculated in perturbation theory.

The procedure is actually slightly more complicated
than explained in the preceding paragraph. Because the
lattice @CD calculations are done in the heavy-quark ef-
fective theory (a theory which does not have the same

particle content as the full standard model), it is neces-
sary to compute an additional ratio, Z, „&. This is the
ratio of the axial current renormalized at the scale m& in
the standard model to the axial current renormalized at
a scale q* in the heavy-quark effective theory.

The calculations of Z and Z, „& are the subject of
the following two subsections. An analysis of the heavy-
quark mass renormalization follows thereafter. In the last
subsection, we summarize the various constants used in
this study.

B. Calculation of Z

The ratio Z introduced above was calculated some
time ago, but there is substantial uncertainty in these
calculations. Tadpole-improved perturbation theory, as
formulated by Lepage and Mackenzie [20], promises to
reduce these uncertainties below the 10% level at one
loop. The application of the tadpole-improvement pro-
gram to heavy-quark effective theory has recently been
discussed by Bernard [21], and calculations have been
performed by Hernandez and Hill [22]. In this subsection
we summarize the calculation of Z within the framework
of tadpole-improved perturbation theory. Hernandez
and Hill considered both the zero-separation and unit-
separation point-split heavy-light axial currents. We will
restrict our attention here to the zero-separation heavy-
light current used in our Monte Carlo calculations. We
will further restrict our attention to the case of Wilson
fermions with r = 1. The use of tadpole-improved per-
turbation theory results in a substantial reduction in our
best estimate of the central value and uncertainty for f~.

The root of the tadpole-improvement program is a non-
perturbative renormalization of the basic operators in the
lattice action. These redefinitions absorb the large renor-
malizations arising from lattice tadpole graphs. A related
additional part of the Lepage-Mackenzie prescription is
the use of a larger perturbative coupling. If one uses
P to determine the perturbative coupling, ni t, one-loop
perturbative corrections are consistently underestimated.
These perturbation theory problems are due to the fact
that o.~ q is a poor choice of expansion parameter. For ex-
ample, at an inverse lattice spacing of 2 GeV, the tadpole-
improved expansion parameter is o.v ——0.16, which is
twice as large as o.~ t. Lepage and Mackenzie argue that
the best way to arrive at o.v is from a nonperturbative
lattice determination of a perturbatively calculable quan-
tity, such as the gauge field plaquette expectation value.

Using tadpole improvement of the Wilson action for
quarks on the lattice as a guide, one can perform tad-
pole improvement of the heavy-quark action, and this
has been done in [21]. Instead of discretizing

8 = d xbt (imp + gAp) b

as

8 = i a ) bt (n) [b(n) —Up(n —0) tb(n —0)],

it is discretized as
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~tadpole improved /8Kc, one loop Z

=ia ) bt(n)
~

b(n) — —Uo(n —0)tb(n —0)
~

tl, o

where uo is defined as

The one-loop expression for Z is therefore

g(q) = g(q) + h(q)/2,

where

The combination U„(x)/uo more closely corresponds to
the continuum field [1+iagA„(z)], than does U„(x) itself.
With the tadpole-improved action, there is an additional
factor of 1/uo for each gauge field link in the product.
Thus the Green's function of two heavy-light currents
separated by no lattice spacings in the time direction
satisfies

(fgmg)'
exp[ —Cnoa] .

2mB

Thus we see that the tadpole-improvement procedure has
no effect on the fitted value of f~ Its only. effect is the
change

CmC+ ln tLO

that is, a linearly divergent mass renormalization.
So far we have seen that tadpole improvement does

not affect the extraction of f~ as it is generally done in
lattice Monte Carlo calculations. However we must still
take into account the eKect of tadpole improvement of the
light-quark action, and this will involve some additional
factors.

As conventionally defined in lattice Monte Carlo calcu-
lations the lattice operator Js involved in calculating f~
is renormalized by a factor i/2v, Z, where K is the criti-
cal value of the hopping parameter for the light quarks.
The tree-level value of K is 8. Lepage and Mackenzie ad-
vocate a reorganization of perturbation theory such that
a factor of i/8r, is included in Z and the renormalizing
factor becomes Z/2.

Let us see what this factor does at one loop. Calcula-
tions of Z have been carried out to one-loop order and
the result is of the form

Z = 1+
~

g(q) + —ln(q*a)
crs f d4q 3
3' ( vr' 2 )

This definition of g(q) [and similar ones for h(q), j(q), and
k(q) which will be introduced below] follow the definitions
in [22]. A one-loop calculation of Sr, has been performed,
and the result is expressible as

8Kc,one loop

d4
h(q) .

The relationship between Z and Z is

G~(no)
[GB(n0)]tadpole improved

ZL0

The B-meson decay constant f~ is usually extracted
from numerical simulations by fitting G~(np) to

Z = 1+
~ g(q) + —ln(q*a)

crs f d4q

37r i 7C 2 )
We continue with the application of the Lepage-

Mackenzie prescription to determine the A value of the
coupling and the scale q* at which it is evaluated. The
prescription for fixing the value of the coupling o.v is
to extract it from a nonperturbative calculation of the
1 x 1 Wilson loop (i.e., the expectation value of the pla-
quette, Upi ~). Once the coupling is known at some scale
(alternatively, once the value Av is known), it can be
run to any other scale. The formula which relates o.v to
the nonperturbatively determined (lattice Monte Carlo)
plaquette expectation value is

4'—in(-'Tr Upi q) = —ri'v (3.41/a) [1 —riv (3.41/a) (1.19

+0.025nf) + O(nv)] .

The coeKcient of nf is the one appropriate for Wilson
fermions with r = 1. In the quenched approximation,
nf ——0. Av is determined through

nv(q) = [Po lil(q /Av) + (P /P ) lrl ln(q /Av)]

It remains to fix the scale q* at which nv(q) is eval-
uated in the expression for Z. Lepage and Mackenzie
propose to do that by calculating the expectation value
of lnq in the one-loop perturbative lattice correction.
The formulas determining this scale are

d qg(q) = —13.93,

2 —1
(ln(qa) ) =-

Y
21.76

d qg(q) ln(q a ) =
13.93 '

q'a = exp[(ln(qa) )/2] = 2.18 .

Hernandez and Hill quote the errors on the numerically
evaluated values of Y and Y'(lnq2) as order 1 in the last
decimal place.

Using the two-loop formula for the running of o.~ with
zero-quark flavors one obtains nv(q'). The explicit de-
pendence on the value of a drops out of the ratio
q*/Av. Hence, the only way lattice Monte Carlo results
have been used so far is for the expectation value of the
plaquette; the determination of a has not yet entered.
The results for Z at various values of P are summarized
in Table I.

This completes our calculation of Z. It remains to mul-
tiply Z by the continuum running and matching factor,
Z, „t. We leave this for the following subsection.
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TABLE I. Length scales and renormalization constants
used in this paper. The values of a for = 5.7, 5.9, and
6.1 are taken from [44]. For P = 6.3, a is estimated from
that at 6.1 by one-loop asymptotic freedom. Plaquette expec-
tation values are taken from [20]. Z is the lattice to contin-
uum renormalization factor for the axial current, Z, „t is the
factor relating the continuum heavy-quark effective theory to
full QCD, and Z~ is the overall renormalization factor used
in previous discussions.

bp
——11 —2ny/3, bi ——102 —38ny/3 .

Here ny is the number of light flavors and we take A =
175 MeV for five light Havors [24]. For other ny, A is
fixed by demanding that o., „t be continuous. Applying
this procedure with mb ~ i, = 4.72 GeV [25] gives

mb ——4.34 GeV .

5.7
5.9
6.1
6.3

a ' (GeV)
i.i5 (8)
1.78 (9)

2.43 (15)
3.08 (18)

(3~ P»o)
0.549
0.582
0.605
0.623

Z
0.73
0.77
0.80
0.81

Zcont
1.00
0.96
0.94
0.93

C. Continuum running and matching factor

ZA
0.63
0.65
0.68
0.68

Now that q* and mb are fixed we use them in the com-
bined two-loop running plus one-loop matching formula
for Z, „t. The one-loop anomalous dimension calcula-
tion [26] for the heavy-light axial current was extended
to two loops by Ji and Musolf [27] and the two-loop re-
sult was confirmed by Broadhurst and Grozin [28]. The
same authors [29] also confirmed the one-loop matching
calculation of Eichten and Hill [30]. The result for Z, „t
ls

For consistency the one-loop computation of Z should
be combined with a two-loop running in the continuum
effective theory and a further one-loop matching between
the continuum effective and full theories. This produces
the continuum running and matching factor Z, „t which
multiplies Z to give the full perturbative correction. It
will turn out that the lattice to continuum matching fac-
tor Z is most significant, while Z, „t produces only a
small additional change.

In the previous section, the coupling o.~ was deter-
mined in a no-flavor (quenched) lattice theory. We must
now match onto a four-flavor (or five-flavor depending
on the value of q*) continuum theory. In order for
the infrared behavior of lattice and coritinuum theories
to match exactly, we could use a continuum coupling
whose value is equal to n&(q*) (although differences be-
tween couplings are higher-order effects). This implies
we should choose a continuum scale q, „t according to
n, „t(q, „t) = nv. (q*). In practice, we ignore this crite-
rion and simply set q, „t ——q*, using nv. (q*) everywhere
in the matching. We then run in the continuum the-
ory using four or five flavors depending on whether q* is
greater or less than the 6-quark threshold mass.

The 6-quark threshold itself is determined as follows.
We assume the pole mass mb ~ ~, is known and relate it
to the modified minimal subtraction (MS) running mass
mb(p) according to [23]

m b vo& = mb(p)
I

1+ ' " —+ ln[p /mb(p)]
~ -t(p) 4

7r 3

Setting p = mb ——mb(mb), we fix the threshold mass mb
by solving

Zcont—
gp /2bp

~ ctcant (mb ) ~ ~ ~cant (mb) ~cant (q*)b

( Ctcont(q ) )
Vo Y&

X
bl clcrcont(mb) ~„+
bp 4vr

In this equation po and pi come from the anomalous di-
mension p of the heavy-light axial current in the effective
theory,

p =go
4

+pi
4

while ci comes from the effective to full theory matching
at one loop in the continuum, obtained by the method
described at the beginning of Sec. IIA. This matching
produces a contribution to Z, „t of

O'coDt

4m

Ci

—4,
—56vr /27+ 20ng/9,

8
3

Using Eq. (4) we determine the Z, „t values given in
Table I. These are then combined with the Z's obtained
in the previous subsection to give the overall perturbative
corrections Z listed in Table I. Here, to conform with our
previous notation [31] we also list the quantity

Note that Ji and Musolf [27] quote ci with a sign er-
ror in the term which differs for vector and axial-vector
currents. The values of p; and ci are

4~cont (mb )mb poic mb(mb) 1 +
37r

We use the usual two-loop result for o., „t'.

ZA = Z Zcont

8K
(5)

with

4vr ( bi ln ln(pz/A2) )
bp in(P2/Az) ( bp ln(P2/Az) )

D. Renormalization of the heavy-quark mass

Before leaving the subject of short-distance perturba-
tive correction we will compute the tadpole-improved es-
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timate of heavy-quark mass renormalization. In the con-
tinuum static limit neither the heavy meson mass (M~)
nor the renormalized heavy-quark mass (mg) appears ex-
plicitly, only the residual mass combination A = M~ —mp
remains. The precise definition of the renormalized mass
parameter in the dimensionally regularized heavy-quark
effective theory has been discussed by Falk, Neubert, and
Luke [32]. Since the heavy-quark mass renormalization
is a linear divergence it vanishes in dimensional regular-
ization with minimal subtraction.

On the lattice, the heavy-quark mass is renormalized
in the static limit. This mass shift, bm, is proportional
to 1/a with a perturbatively calculable coefficient. Hence
the mass, M,g, calculated for the ground-state B meson
in this lattice theory can be expressed as

M,g ——A —bm, (6)

in terms the continuum residual mass A and the mass
shift bm. It is clear from Eq. (6) that the mass M,z
is linearly divergent as the lattice spacing a —+ 0. How-
ever, it would appear that by measuring M g and remov-
ing the tadpole-improved one-loop mass counterterm, we
have a determination of A. Hence we could obtain mg
as defined in [32] from m~. Unfortunately, Bigi et al.
[33] argue that nonperturbative effects ruin the preced-
ing connection. Even if that is so, it is still possible to
verify that the linearly divergent piece of M,~ is correctly
determined by the perturbative calculation of bm.

At one loop, the lattice heavy-quark mass renormal-
ization is of the form

0!S 1 d gbm = — — k(q) .
37T' Q

3

k(q) = — ) sin'(q /2)

As already noted the eKect of tadpole improvement on
the fitted value of the heavy-quark mass is to change

ln 'Qp
C —+C+

This nonperturbative reduction of the mass is accompa-
nied by a reduction in the counterterm:

The one-loop correction to the self-energy is linearly di-
vergent and positive. The coefficient, bm, of the mass
counterterm is negative. The integrand k(q) is given by
[34]

X= d qk q =1007,

(ln(qa) )—:— d qk(q) ln(q a ) =

@*a:—exp[(ln(qa) )/2] = 2.04 .

14.34
10.07 '

The calculational technique used is exactly that of [22],
and the errors on the numerically evaluated values of X
and X(lnq2) are order 1 in the last decimal place. The
values of n~(p*) at the P values used in this study and
abm+ lnuo are presented in Table II.

Two methods for the determination of A are possible.
The first of these is to do the tadpole-improved pertur-
bative subtraction just described. This results in a sta-
tistically independent result for A for each P value. The
second method is to use the fact that the subtracted term
is proportional to 1/o, , and the physical value desired is
independent of the lattice spacing. A two-parameter fit
of the mass over the four values of P has two degrees of
freedom, and one of the parameters is the one we desire.
The latter procedure ignores the running of the coeffi-
cient of the 1/a term.

E. Comparison and summary

It is worthwhile at this point to compare the results in
Table I with the widely used value of Z~ of 0.8, which
does not benefit from tadpole improvement. Consider the
results at P = 6.1. From the table, we find ZZ, „t/v'8K,
to be 0.68. Consequently, tadpole-improved perturbation
theory results in a reduction of the physical value of f~
by a factor of 0.68/0. 8, i.e. , a reduction of 18%.

As an aside, we note that for the Sheikholslami-
Wohlert action also termed "improved, " but in the
sense that order a eKects rather than tadpole graphs are
being incorporated —the axial current has been renormal-
ized [35], but tadpole improvement has not been applied
to this operator.

Now that perturbation theory has been reorganized to
include tadpole corrections to all orders, we expect our
one-loop calculation of the renormalization factor to be
accurate to about 7%. This estimate of the magiutude of
the two-loop corrections is obtained simply by squaring
the largest one-loop correction for the various values of r
quoted in [22], for both discretizations of the axial current
considered there.

While the values for Z, „q depend on the estimate of

where

os 1bm=-
37t CL

d4q-
k(q), TABLE II. Tadpole-improved mass counterterm for a

static quark at the P values used in this paper. The asso-
ciated gauge couplings nv(p') are also listed. The scale p' is
2.04/a (see text).

k(q) = k(q)+~(q) .

As in the calculation of the scale q*, we need to compute
the expectation value of lnq in the integral of k(q). The
formulas determining this scale are

5.7
5.9
6.1
6.3

~v(p*)
0.228
0.191
0.170
0.156

CBm + ln tLO

—0.394
—0.339
—0.307
—0.285
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the lattice spacing, this dependence is weak; an increase
by 10% in the estimate of the scale results in a reduction
of at most 1.5% in the value of Z, „t. Thus, this source
of uncertainty in the Z factor is negligible compared to
both the estimated size of the two-loop corrections or the
direct dependence of fIs on the lattice spacing.

III. ANALYSIS PROCEDURE
FOR MULTISTATE SMEARING

A. Relativistic quark model for heavy-light systems

The rapid deterioration [17,15] of the signal-to-noise
quality of Euclidean correlators of heavy-light mesons
at large Euclidean time makes the choice of an efFicient
smearing scheme essential if we wish to extract accurately
the properties of low-lying heavy-light systems. In the
multistate smearing approach previously introduced [15],
the coupling of smeared bilocal Coulomb gauge operators
to higher meson states was reduced by using smearing
wave functions obtained from a relativistic quark model
(RQM). The basic features of such a model are (a detailed
examination of the connection of such a model with the
full field theory in the case of the t'Hooft model can be
found in [36], see also [37]) (a) the use of a relativis-
tic kinetic term gp2 + p2 (with p a constituent quark
mass) for the kinetic piece of the Hamiltonian, and (b)
a static confining potential V(r), which can be chosen to
be the static interaction energy obtained from correlators
of temporal Wilson lines in lattice @CD.

The importance of relativistic kinematics in determin-
ing the shape of meson wave functions (with a light
quark) was already implicit, if not clearly recognized,
in the puzzling persistence of purely exponential falloK

[ exp( —Cr)] of hadronic wave functions, instead of the
more rapid falloH' one might naively expect in a confining
model ( exp Crs~2 for a nonr—elativistic particle in a
linearly rising potential). This exponential falloff is due
to the nonlocal character of the kinetic part of the RQM
Hamiltonian

Qp2 + p2 exp[ip (r r')]d p—

H;„-:—K;„- + V(r)b;;

p

Cip(v —v )

(i4)

Such an eigenstate, in a channel of given orbital quantum
number (S, P, D, etc.), will correspond to a pole of the
resolvent applied to a source wave function 4'( ~ of the
same orbital symmetry:

In the static limit in which the heavy-quark mass is
taken to infinity, the relativistic Schrodinger equation
(12) gives a single-parameter fit (the constituent quark
mass p is the only adjustable parameter after the static
potential has been measured on the lattice) to a complete
set of orthogonal spin-independent wave functions corre-
sponding to arbitrary radial and orbital excitations of the
heavy-light system. To minimize lattice discretization
and finite volume artifacts in the comparison of RQM
and lattice Monte Carlo results, we have generated a set
of lattice smearing functions by solving a discretized ver-
sion of (12), in each case on lattices of the same size as
those used in the Monte Carlos, and in each case with
the static potential determined from Wilson line correla-
tors in the same gauge configurations used to extract our
quenched @CD results. Namely, on each lattice and for
each P value, we have extracted a full lattice static poten-
tial V(r) by measuring the correlator of two Wilson lines
of time extent T (in Coulomb gauge-fixed configurations),
and separated by a spatial distance r. The potential is
then extracted by going out in Euclidean time T until
the static energy E = —

& ln(W(0, T)Wt(r, T))—:V(r)
stabilizes (for example, with P = 5.9 on a 16 lattice,
this occurs for T ) 5). The static potential extracted at
various P values and lattice sizes is displayed in Fig. 1.

The procedure used for generating lattice smearing
functions from the RQM is as follows. We wish to obtain
orthonormal lattice wave functions which are eigenstates
of a lattice RQM Hamiltonian defined on a I,s lattice
(with r, r ' lattice sites):

which implies that @„(r)satisfying

cannot fall exponentially faster than e "" [if it did, the
integral over r' in (12) would be dominated by r' 0, giv-
ing an asymptotic behavior e ~" for the kinetic term,
in contradiction with the assumed asymptotic behavior
of (E —V(r))iIJ(r) for any V(r) with power growth). In
other words, irrespective of the power rise of the confining
potential, relativistic kinematics automatically smears
out the wave function of a light quark over the Compton
wavelength corresponding to the constituent quark mass.

For the starting source functions 4( ~, one may take,
for example, a monopole localized at the origin for S
states, a dipole for P states, etc. After the energy E
is tuned close to an eigenvalue E (until R is at least
10 larger than the background value), a smearing eigen-
state iIi. ..(r) is extracted by renormalizing the vector
[I/(E —H)]@~ l to unit norm. The inversion of EH-
is performed by the conjugate gradient algorithm, with
the multiplication of the kinetic term done in momentum
space using a fast Fourier transform.

In most cases we have found it adequate to fit the
RQM constituent mass by matching the 1Swave function
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generated by the above procedure to the Coulomb gauge
Bethe-Salpeter wave function obtained at a roughly fixed
Euclidean time (corresponding to time slice 4 at P
5.9). For the particular case of P = 5.9, Ic = 0.159,
on a 16 lattice, a more detailed fitting procedure was
used to determine the optimal choice of quark mass p
in order to fit the meson wave function at various time
slices. The mean-square deviation of 4. .. from the(is)
measured quenched wave functions at various times T,
for various p, is displayed in Table III.

From Table III we see that the optimal choice for the
constituent quark mass varies in the range 0.10—0.15 if we
fit to meson wave functions on time slices 4—8. We have
chosen p = 0.12 as the best compromise for P = 5.9,
~ = 0.159. With this parameter fixed, we have gener-
ated, by the procedure outlined following (12), 1S, 2S,
3S, and 4S smearing functions to be used in the multi-
state analysis described in the next section. For other P,
K values, we have usually used two smearing states only.
The careful tuning of the quark mass performed here re-
duces to a very small level (4% or less) the coupling of the
exact ground state to the higher smearing states, but will
not turn out to be essential to the extraction of accurate
masses and couplings for the ground state. A detailed
discussion of the dependence of the results on the RQM
mass parameter chosen for smearing is given in Sec. V A.

As described in a recent article [17], the RQM gives a
single-parameter fit to all the excited radial and orbital
meson wave functions of our heavy-light system. After

fixing p by a match to the 1S wave function, we have
found remarkable agreement with measured excited-state
wave functions (for example, the 1P state, cf. [16]). This
agreement suggests that this ansatz accurately describes
at least the valence quark sector of the full mesonic bound
state.

B. Multistate smearing

Our object in this section is to outline a general pro-
cedure for extracting the maximum usable information
from the multistate correlator matrix:

C (T) = ) iris' l, , (r)(0~q(r, T)Q(0, T)Q(0, 0)q(r ', 0) ~0)
~~ I

xel'~...(r'), (16)

IJ

0.05
0.10
0.12
0.15
0.20

T=4
3.37
0.75
0.37
0.40
1.75

T=5
1.99
0.42
0.45
1.06
3.30

T=6
1.36
0.20
0.36
1.15
3.61

T=7
5.65
1.86
1.02
0.39
0.72

T=8
5.95
2.14
1.30
0.67
1.00

TABLE III. Mean-square deviation of RQM smearing and
lattice QCD heavy-light wave functions (x10 ), for P = 5.9,
w = 0.159 as a function of time. p, is the constituent quark
mass parameter in the RQM Hamiltonian.
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where q (Q) are light (heavy) quark operators, and

(a = 1, 2, . . . , %) contain the set of orthonor-()
mal smearing functions obtained &oxn the RQM as de-
scribed in the preceding section. From a set of N decor-
related gauge configurations, we begin with a correspond-
ing ensemble of N, statistically independent C (T) ma-
trices, &om which a standard deviation matrix o b(T)
can be obtained directly. In addition to the smearing
wave functions of the relativistic potential model, the
set (4~ l) also includes the local source generating the
desired heavy-light axial-vector matrix element for ex-
tracting fIx. Other types of smearing (cube, wall, etc.)
may also be included to facilitate an objective compar-
ison with other recent calculations. In (16), the heavy-
and light-quark propagators in each gauge configuration
are computed in Coulomb gauge. As we are dealing with
global color singlet states on each time slice (color sums
are suppressed) C b is well defined and nonzero.

Defining states

e, T) —= ) el l...(r)q(0, T)q(r-, T)lo) (17)

we have

C'(T) = (+,TIC', 0)

= ) e " (4 ln)(nlC ) + O(e ~+' ), (19)

where the states ln) are exact eigenstates of the lattice
Coulomb gauge transfer matrix with eigenvalues e
The remainder term of order e +' will of course be
small at large Euclidean time, but in addition should
have a small prefactor to the extent that our smearing
functions 4. ..(rQ (a = 1, 2, . . . , M) do a good job in
representing the valence quark structure of the low-lying
states, and to the extent that more complicated Fock
states (containing extra quark pairs, real gluons, etc.)
are not too important.

Next, define xnixing coefficients (in our case, they are
real):

&- &'- IC'(T) —E.=xv -v'-e
a.ab(T) 2

o.,b T=T(
(22)

I ~ ~

i+A
v ';l@ "), A = 1,2, . . . , M (23)

is guaranteed (to the extent that we have accurately
extracted the xnixing coefficients v „) to contain only
the exact meson state lA), together with contaminations
from the (N + l)th excited state and higher. An effec-
tive mass plot of the usual kind can then be obtained
for the Ath state by displaying (we use a smeared-local
correlator to minimize noise)

with respect to the fitting parameters (v „,E ), over a
fitting range T& & T & T& in Euclidean time. The fit is
performed on an ensemble of N, jackknife coupling matri-
ces obtained by replacing each in turn of the N coupling
matrices by the average matrix and reaveraging. We have
chosen lC ) = J „; l(0)l0), so the parameters v „should
be interpreted as lattice f parameters for the ground and
excited meson states, E as the corresponding masses,
and v (a = 1, 2, . . . , M) as mixing coefficients indicat-
ing the degree of overlap of the exact meson states with
our RQM sxneared states l@ ). The sum over a, b in (22)
does not include the local-local correlator a = 6 = N,
which is not well described by a sum over a few low-lying
states. Note that this fitting procedure automatically
gives the lattice f parameters without the need to divide
by the square root of the smeared-smeared correlator as
in the usual approach. Moreover, the ensemble of N
parameter sets (v, E ) obtained in this way can be
subjected to a straightforward statistical analysis to de-
termine the error in each of these parameters separately,
correlations between parameters (e.g. , between masses
and f parameters), and so on.

Once the overlaps (4 ln) have been estimated by a
best fit of C (T), a smearing operator can be con-
structed which is guaranteed to contain at most one of
the first N exact meson states, thereby removing any
other exponential time dependence to the e ~+' level.
Specifically, if e, , ... is the totally antisymmetric sym-
bol in N dimensions, the smeared state

v „—= (4 ln) = (nlC ) . (20) C"(T —I)
m, „(T)—:ln (24)

Neglecting the exponential contamination of order
e M+', we see that the multistate coupling matrix can
be fit to an expression of the form

where

CA(T) (C
A Tl@(loc) 0) (25)

M
Cab (T) ) a b E„T—

Of course, we cannot hope to extract M-independent
time dependencies with N ( M smearing wave func-
tions, so only N & M will be considered. Typically we
shall extract the maximum information from the lattice
data by picking N = M + 1 (the extra source function
being the local current needed for the extraction of fxi).

The fit is performed by a y minimization of

Of course, this plot will be most flat for the ground state
A = 1, where the relative exponential contamination is
reduced to the level e & ~+' '~T, and where small ad-
mixtures of lower-lying states cannot creep in to distort
the efFective-mass plateau. The efFective-mass plots for
the ground state at P = 5.7, 5.9, 6.1, and 6.3 for various
K values are shown in Figs. 2—7. The solid line in each of
these plots represents the ground-state energy extracted
kom the full multistate fit over the time window indi-
cated by the length of the line. For each P the time win-
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dow for the multistate fit was chosen to be over approx-
imately the same interval in physical units, viz. about

&

fm to 1 fm. Noting that the splitting between the ground
state and the second excited state is found, in our multi-
state calculations, to be around 800—900 MeV, the choice
of 3 fm for the lower end of the time window should pro-
vide an exponential suppression of excited states by at
least a factor of 3. In addition, our careful tuning of the
smearing functions should produce a relatively small co-
eKcient for the higher excited states. The equality of the

smeared-smeared and smeared-local effective masses ex-
hibited in the plots confirms our choice of fitting interval.
A more complete discussion of systematic errors due to
excited states is given in Sec. V A.

The fitting formula (22) is easily generalized to allow
a global fit to the data at various e values (for fixed P):
this is essential in order to take into account correlations
between the coupling matrices at different K values, which
would affect our estimate for the error of the results when
linearly extrapolated to K, Na.mely, (22) is replaced by

~C b(K, T) —P„,v „(K)vb„(K)e ~"i"lT~'x'=—
o~b(K T)2

a, b ~ T=T&
(26)

where

:"( ) = p. + i.(
' —K. ')

E„(r.) = Ep„+ Ei„(K ' —K, '),
and the mixing coefIicients v = '" are varied freely.
Note that only the immediately physical mass and
lattice-f parameters are assumed to have the chiral de-
pendence on K: other mixing coefIicients involve the
model-dependent choice of smearing functions from the
RQM. The y minimization allows the direct extraction
of masses and couplings extrapolated to K„as well as
the slopes in r of these quantities (all of which are free
variational parameters in this new global fitting proce-
dure). The usual jackknife procedure can then be applied
to yield the correct errors on the extrapolated quanti-
ties. We have checked for the absence of autocorrelation
effects between successive gauge configurations by com-
paring single and multielimination jackknife results.

When suKcient statistics are available, it is also de-
sirable to include the effects of cross correlations in a y
calculation such as (22) and (26). The statistics presently
available do not allow a stable evaluation of the full cor-
relator matrix. For the run at P = 6.1 and v. = 0.151,
with a two-state (plus local source) fit, over a time win-
dow 4—12, the matrix would be 72 x 72, and only 50
jackknife configurations are available. We estimate that
at least an order-of-magnitude higher statistics would be
required for a full correlation analysis. The importance
of cross correlations has been studied by calculating par-
tial correlation matrices (a) across mixing elements, but
diagonal in time, and (b) across time slices, diagonal in
mixing elements. The fit values obtained were the same
as those found using diagonal elements only, well within
the statistical errors we quote. The y increased in case
(a) by 5%%up, and in case (b) by about 20%%up. Unlike the light-
quark case, much smaller time correlations are found in
the heavy-light case, presumably as a consequence of the
large uncorrelated Buctuations in the static quark line.

IV. LATTICE RESULTS
FOR HEAVY-LIGHT MESONS

To extract results for masses and decay constants we
have used the set of gauge configurations and light-quark

TABLE IV. Summary of gauge configurations and
light-quark parameters used in this paper. Listed are a letter
used to identify each Monte Carlo run, the P value, lattice
size, number of gauge configurations in each ensemble, and
the values of light-quark hopping parameter a analyzed.

Run P Lattice Confs.
b 5.7 12 x 24 100
e 5.9 12 x 24 100
c 5.9 16 x 32 100
f 5.9 20 x 40 100
d 6.1 24 x 48 50
g 63 32 x 48 50

0.168, 0.1667, 0.165, 0.161
0.159, 0.158, 0.157, 0.154

0.159, 0.158, 0.157, 0.156, 0.154
0.159, 0.158, 0.157, 0.154
0.1545, 0.154, 0.153, 0.151

0.1515, 0.1513, 0.1510, 0.1500

I

propagators enumerated in Table IV. The light-quark ac-
tion we use is not O(a) improved. The four columns in
Table IV are the gauge coupling P, lattice size, number
of gauge configurations (separated by 1000, 2000, 4000,
and 4000 sweeps for P = 5.7, 5.9, 6.1, and 6.3, respec-
tively), and the light-quark K values calculated for each
configuration.

The multistate smearing analysis outlined in Sec. III
provides a powerful method for extracting heavy-light
meson parameters. Unlike single- or double-exponential
fits to single-channel "smeared-smeared" and "smeared-
local" correlators, the fitting of the N x N matrix of
correlators to an expression of the form (21) is highly
constrained. As we will show, this method allows a deter-
mination of f~ and other heavy-light parameters which
is less prone to systematic errors than previously applied
methods. In this section, we present our results. In
Sec. VIB, we compare these results with those recently
reported in [12,14,19,38]. Most of the results presented
here were obtained from the fitting procedure discussed
in Sec. III using N = 3 and M = 2, i.e. , a 3 x 3 matrix
of correlators (two smearing functions and the b-function
source) fit to the sum of two exponentials (always ex-
cluding the local-local correlator from the fit). To es-
timate the systematic errors associated with the fitting
procedure, we have tried varying both the shape of the
smearing functions (by adjusting the RQM quark mass
parameter) and the number M of smearing functions in-
cluded. These results are discussed below.

First consider the mass eigenvalue Eq in Eq. (22) which



ICHTEN F

describ t

LYNN

es the lead'
correlato rs:

ia alloE of theo the heavy-light

b(t) ca b E~—t

~INCAN E HILL, HOICK&NEY A D THACK ER 51

In the multistatistate fittin gpo i 's the ener
a e contribut

indin

ion to t

ver h

combinnation of th
e plus a di-

r is remov
'

u
theory. Th

ucing

aramete E
o Ei on bo

r i. We m
a nonscal-

hth 1 hg t qu 'who
g. showsap lIl Fl . 8

stud-

or each v
ica results a

a ion to

tbl b

s are tabulat d
'

ox.

c t li
'

e last
o aine d

column.

i f d Ei at

8 (except for

ox ' re isted
b ). 11

separatel
ts for the

h 1 bap etween the tru
wave-function smeared

e true ground
operator s is

b

2+md) +

es

„a = Ei (0, a) + (r. ' —~. ' E'
2am~E', (0, a) . (2S)

The quantity M
1 t d

in ec. II, Eq. (6), is just E, is just Ei

M, ir = Ei(o, a (29)

g

e a simultan

II

wing the

1S
p one a

multistat e

k f d b
e of the

u ensem-
error on t

1 td

resu

nalysis

1

out 30ts are ab

lues fo E

% lovrer th

i

correlations.
an those obt

th'" ultu aneous-K fi.t

ana . us it is

, reducin th e
he independen ent-r

q t'ties such

Let us c

u
' '

s such as m

consider E

s sue g —mg

1

1

e attice

ence on
see A ix A).

LU
g5

0.8

0.7

0.6

0.5
p = 6.3

0.05 0
(1/ic - 1/x/Xc)/2a (GeV)

f
onstants:

/M~a / Z~=f~ 2

h' h f 11tho ith th
iscu d in [34,39

i 'n e chiral li 't

)

e re e consistent

(30)

aEi(0, a, a) = Ei(0, 0) + E,a (31)

The slop p am eters E' (oope paramp p io, a) areo
v v s escribed S

b '
1

a e VI.

cay constant
t}1 o (I

B-
-state pseu r e-p

h
h h

over-
c ion sour ))

imit th e physical v I I3

FIG. 8. ght grou d. 8. cavy-li enery- z n -state
61 d6

are statis
eener c e

q rk
.3.

are ua

l l
&

a point is's the

te 6t to all

or bar

e text.
. ..1...f. en as described

with

, (o, o) = o351(14),

Ei —0.4sl(25) GeV . (33)



51 PROPERTIES OF B MESONS IN LATTICE QCD 5115

TABLE V. Lattice results for heavy-light mesons (static approximation). Values for the
ground-state energy aE& and decay constant fz are extracted from a two-state fit over time window
6T. [f~ is related to the physical decay constant fz by Eq. (30).] Results at e = r, are from the
multi-K fits as discussed in Sec. III B. The column labeled overlap is a measure of the total overlap
between the true ground state and the RQM wave-function smeared operators used.

5.7

5.9

6.1

6.3

AT
2-8

3-10

4-12

5-14

0.161
0.165
0.1667
0.168

0.154
0.156
0.157
0.158
0.159

0.151
0.153
0.154
0.1545

0.1500
0.1510
0.1513
0.1515

aEg
0.827(6)
0.794(8)
0.776(9)
0.767(11)
0.758(10)
0.719(5)
0.692(8)
0.678(6)
0.665(7)
0.645(9)
0.638(9)
0.620(7)
0.583(9)
0.561(11)
0.551(13)
0.544(12)
0.528(7)
0.511(7)
0.506(8)
0.504(8)
0.499(9)

Overlap
0.725(7)
0.717(8)
0.699(7)
0.694(9)
0.694(8)
0.742(12)
0.731(13)
0.724(13)
0.716(15)
0.704(18)
0.686 (24)
0.769(17)
0.721(24)
0.705(24)
0.700(30)
0.689(25)
0.748(18)
0.728(20)
0.724(20)
0.729(20)
0.720(17)

fa
0.670(19)
0.626(23)
0.590(24)
0.578(29)
0.564(28)
0.347(11)
0.318(13)
0.300(11)
0.283(12)
0.259(14)
0.250(14)
0.199(10)
0.170(12)
0.149(12)
0.142(14)
0.135(13)
0.120(7)
0.107(7)
0.104(7)
0.103(8)
0.099(8)

y /dof
0.50
0.78
0.54
0.43
0.58
0.87
1.06
0.62
0.56
0.60
0.66
0.57
0.60
0.61
0.48
0.55
0.72
0.66
0.61
0.56
0.62

The first term Ei(0, 0) is the linearly divergent [i.e.,
O(l/a)] term in the heavy-quark mass shift.

The tadpole-improved estimate of abm was discussed
in Sec. II. The corresponding quantity is abm+ln uo, and
was tabulated in Table II. Comparing the ground-state
effective mass with the tadpole-improved one-loop result,
at each lattice spacing one finds about a 30'% discrepancy
in the singular part of the mass shift, which can easily
be accounted for by higher-loop and/or nonperturbative
contributions. In fact, ordinary (nonimproved) one-loop
perturbation theory [34] gives

bm = —— 19.95 .
1 g
a 12+2

Simply identifying this value with the extrapolated lat-
tice result gives n, = 0.162(6) which is in reasonable
agreement with other determinations of o., in the range
of lattice spacings considered here [20]. So the entire "dis-
crepancy" can be removed by a reasonable rede6nition of
the perturbative coupling being used.

The mass of the meson B„composed of a 6 quark and.
a strange antiquark, is of considerable phenomenological

interest. Our calculation of the heavy-light ground-state
energy as a function of v provides a determination of the
mass splitting between the B, and the B„mesons

AMg ——Mg —Mg (35)

Since the divergent self-mass of the heavy quark is inde-
pendent of light-quark mass, it will cancel in the mass
difference LM~, and the latter should therefore scale
properly with a. For each value of P, we use the determi-
nation of K,, and K„discussed in the Appendix, along with
the observed ~ dependence of Eq to determine LM~ .
The results are shown in Fig. 11.

A linear extrapolation of the mass difference AM~ to
a = 0 gives

AM~. ——86 6 12 MeV .

Notice that the results for AM~ shown in Fig. 11 exhibit
a fairly mild dependence on the lattice spacing, in marked
contrast to the strong a dependence of f~ The decay.
constant f~. for the strange B meson may be determined,
using the values for the slope parameter f& in Table VI.
The ratio f~./f~ is plotted in Fig. 12. Again, the a

5.7
5.9
6.1
6.3

AT
2-8
3-10
4-12
5-14

aEi (0)
0.758(11)
0.638(9)

0.544(12)
0.499(9)

E,'(0)
0.236(25)
0.350(25)
0.450(47)
0.376(56)

f~(0)
0.564(29)
0.250(13)
0.138(13)
0.099(7)

TABLE VI. Slopes and intercepts for aEi and fn as a function of e
values are obtained from a simultaneous two-state fit to all values of e over a time

For a given P,
window AT.

fa(0)
0.424(72)
0.444(38)
0.387(46)
0.290(56)
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FIG. 9. f& as a function of bare quark mass for the four
runs P = 5.7, 5.9, 6.1, and 6.3. Data points are decay con-
stants extracted from a two-state fit. Error bars are statistical
only. Solid lines are obtained from a simultaneous fit to all K

values for a given P as described in the text.

dependence of the ratio is much weaker than that of f~
itself. Extrapolating to a = 0, we obtain

= 1.216 + 0.041 .

V. DETERMINATION OF SYSTEMATIC
ERRORS

A. Systematic error due to excited-state
contamination

The main results presented for f~ have been obtained
by a two-state fit to the correlators which employed
quark-model smearing functions for the ground state
(IS) and first radially excited (2S) state. As pointed

0 0.2 0.4 0.6
a(GeV ')

FIG. 11. M~, —M~„vs lattice spacing. The solid line is
the best linear fit. The dashed line is a quadratic fit (a )
used to estimate systematic error in a —+ 0 extrapolation.
(See Sec. V E.)

1.4

out in Sec. III, this produced quite stable effective-mass
plots which indicated that accurate ground-state param-
eters could be extracted with time separations as short
as T = 2 or 3. Since the errors in most previous cal-
culations have been dominated by the systematic effect
of higher state contamination, it is particularly impor-
tant to estimate the size of this eKect to get an overall
determination of the accuracy of our results. To further
investigate this issue, we have carried out a more com-
plete study of the dependence of the extracted f~ value
on the fitting procedure. First, we have varied the size of
the source smearing function by changing the quark mass

0.8

1.2
CD

Q3 J

0.4

I I I I I I I I I I I I I I I I I I

0 0.2 0.4 0.6 0.8
a (GeV ')

FIG. 10. Heavy-light ground-state energy at p- = v, vs
lattice spacing for P = 5.7, 5.9, 6.1, and 6.3. The solid line
represents a minimum of y linear fit to the four data points.

0 0.2 0.4 0.6
a (GeV ')

0.8

FIG. 12. f~./fn„vs lattice spacing. The solid line repre-
sents the best linear (a) fit. The dashed line is a quadratic fit
(a ) used to estimate systematic error in a —+ 0 extrapolation.
(See Sec. V E.)
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parameter p in the RQM wave functions. We then com-
pare the results from the two-state fit with those from
a truncated one-state fit (using only the correlators of
the ground-state smearing function and the 8-function
source .

In Fig. 13 we compare the effective mass from the one-
state fit with that of the two-state fit. After determin-
ing the 18-2S splitting 4 from a two-state fit, the ef-
fective masses obtained over a Euclidean time window
can be plotted versus the variable e, allowing an ex-
trapolation to t = oo (see below). The results of the
one-state fit are plotted for four different time windows,
1-6, 2-7, 3-8, and 4-9, and for four different choices of
RQM smearing functions (with quark mass p, = 0.32,
0.60, 0.90, and 1.20). (Note: The result from window
t& —t& is plotted at the value of e corresponding to
t = t&.) The effective masses from the two-state fit using
the four different p values and the time window 2-8 are
all plotted on the far left side of the plot at e = 0.
The one-state results for the different smearing function
choices are clearly converging to a common effective mass
at t = oo which agrees well with the two-state result, the
latter being quite insensitive to the choice of p. Simi-
larly, the result for f~ from the full two-state fit remains
unchanged, within errors, for a wide variation of the p
parameter. On the other hand, the result from the one-
state fit varies by 20—30% over the same range of tt val-
ues. This provides strong evidence that the two-state fit

does a good job of isolating the ground state, even when
the chosen smearing functions are not very well tuned.
To demonstrate this, we look at the dependence of these
results on the time window chosen for fitting. While the
two-state fits are generally stable under variation of the
time window, the one-state fit shows a systematic time
dependence. If this time dependence is assumed to be
largely due to contamination from the first excited state,
it should fit asymptotically to the functional form

fgy(t) = f~(oo) + ce (3S)

1.3
1 state fits

where 4 = E2 —Ei is the energy splitting between the
ground state and first excited state. Without an indepen-
dent estimate of this splitting, it is difBcult to obtain a
reliable determination of the parameters in (38) directly
from the results of the one-state fit. On the other hand,
the two-state Bt determines both E~ and E2, and there-
fore A. If we use this determination to fix 4, formula
(38) can be used to extrapolate the one-state results to
t = oo. Comparing this result with that of the full two-
state fit provides a useful and nontrivial check on the
assertion that the systematic effect from excited states is
under control. Figure 14 shows the results of such a com-
parison for the case P = 5.7, K = 0.161. The splitting
obtained from the two-state fit is 4 = 0.321 in lattice
units. It is seen in Fig. 14 that, for the time window
1-6 (far right on the graph), the result for f~ varies sys-
tematically with the choice of smearing function. As t
gets larger, the results from the difFerent smearing func-
tions tend to converge to the same value. The points
plotted at e = 0 include the four extrapolated values
obtained from Eq. (38). For comparison, the results of
the two-state fit for the four p values and t = 2—8 are also
plotted. All of these points are well within a standard de-

0.8

0.78

p. = 1.20
~ p = 0.90
0 p. = 0.60
x p. = 0.32

p = 5.7 lc=.161
I I I I I I I I I I I I I I I I I I I

1.2
8 P

~ ~

&E» c
'

2state 1 state
fit extp

0 0.2 0.4 0.6
exp( (E2 E1 )t mini

0.8

FIG. 13. Time-window dependence of effective mass for
one-state fits compared with two-state 6ts for P = 5.7,
K = 0.161. The four sets of points represent the different
values of RQM mass parameter p, used to construct smearing
functions. One-state fits were obtained from time windows
(reading from right to left on the graph) 1-6, 2-7, 3-8, 4-9.
Points are plotted at exp[ —(AE)t;„],where AE = Ez —Ei
is the splitting of the first excited (2S) state from the ground
state and t;„ is the smallest time included in the fit. The
two-state fits were obtained from the window 2-8 but are
plotted here at t oo to illustrate the convergence of
the one-state effective mass to the essentially p,-independent
two-state value.

p. = 1.20
p. = 0.90
p. = 0.60
p, = 0.32

P = 57 ic=.161
I I I I I I I I I I I I I I I I

0
0 0.2 0.4 0.6

exP[- (E2- E~ )tm;„]
0.8

FIG. 14. Time-window dependence of f~ for one-state fit
and comparison with two-state fit. (See item of Fig. 13.) Also
plotted for comparison are the values obtained by extrapolat-
ing the one-state fits to t = ao, using the measured value of
the energy splitting Ez —Ei ——0.32.
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viation of each other. Similar comparison of the results
of one-state and two-state fits for other values of P and
v. give comparable agreement. Based on this agreement,
we conclude that the systematic error on our results due
to excited states has been eliminated at the level of our
present statistics.

It is worth emphasizing here that our ability to control
excited-state contamination depends crucially on the use
of the multistate fitting procedure. Although the one-
state fits were all found to lead to consistent results after
extrapolation to t = oo, an accurate extrapolation would
not have been possible without an independent determi-
nation of the splitting 4, which is only obtainable from
the two-state fit.

B. Finite volume corrections

0.154

0.157

0.158

0.159

aEi (12)
0.716(9)

[0.74]
0.675(12)

[0.92]
0.661(14)

[0.99]
0.652(21)

[0.98]
0.638(17)

[1.01]

aEi (16)
0.718(7)

[1.12]
0.679(8)

[1.01]
0.667(9)

[0.92]
0.652 (12)

[0.76]
0.643(11)

[0.92]

aEi (20)
0.719(6)

[0.87]
0.677(8)

[0.62]
0.662(9)

[0.56]
0.641(11)

[0.60]
0.634(ll)

[0.66]

TABLE VII. Volume dependence of aEi at P = 5.9. Re-
sults are obtained from a two-state fit over time window DT
= 3—10 on lattices of size 12 x 24, 16 x 32, and 20 x 40.
Numbers in square brackets are the y per degree of freedom
for each multistate fit.

Using the scales in Table I, we find that the physi-
cal volumes of the boxes for the main ensembles used in
our calculation are approximately (2.0 fm), (1.8 fm)
(1.9 fm), and (2.0 fm) for P = 5.7 (12 ), 5.9 (16 ), 6.1
(24 ), and 6.3 (32 ), respectively. Although these vol-
umes appear to be comfortably large compared to the
observed size of the ground-state B meson on the lattice,
we consider in this section the possibility of corrections
to our results due to finite volume effects and describe
our method for estimating these effects. Although our
overall conclusion is that these effects are negligible on
the lattices considered here, the estimates discussed in
this section may be useful for selecting P's and lattice
sizes in subsequent studies.

An extensive theoretical study of finite volume effects
on field-theoretic calculations has been carried out by
Luscher [40]. Consider, for example, the effect on the
mass of a particle m~. For large enough volume, the
leading effect is due to the propagation of the lightest
mass meson (e.g. , pion) "around the world, " leading to
the expression for m(L), the particle mass in an L x L x I
box,

~
—AL

mp(L) = m~(oo) + A I (39)

where the exponent A is determined by the mass of the
pion, and A is given in terms of the on-shell vrPP cou-
pling. This Gnite volume correction can be interpreted
as the effect of squeezing the pion cloud surrounding the
particle. A somewhat different situation takes place when
the particle P is a loosely bound state of constituents. In
this case, the finite-size effect is caused by the squeezing
of the bound-state wave function [41]. As pointed out
by Luscher [42], this situation falls into the same general
frainework as that which led to Eq. (39), except that, in
this case, the particle that travels around the world is
one of the constituents of the bound state. In fact;, for a
nonrelativistic bound state in a nonconfining potential,
the finite volume effect assumes exactly the same form
as (39), but in this case, the exponent A is related to the
binding energy (and hence to the spatial extent of the
bound-state wave function).

For the case P = 5.9 we have carried out a complete

TABLE VIII. Volume dependence of fn at P = 5.9. (See
caption of Table VII.)

0.154
0.157
0.158
0.159

fs(12)
0.341(21)
0.299(22)
0.284(24)
0.279(35)
0.261(29)

fa(16)
0.347(13)
0.303(14)
0.288(15)
0.271(18)
0.260(18)

fs(20)
0.346(14)
0.298 (15)
0.278(16)
0.252(17)
0.245(18)

Monte Carlo investigation of the heavy-light propagators
on lattices of three different sizes, 12 x 24, 16 x 32,
and 20 x 40 (runs e, c, and f in Table IV). With the
value a = 1.78 GeV, these three boxes are of spatial
length 1.3, 1.8, and 2.2 fm, respectively. The results for
both the ground-state energy aEi and for f~ are given
in Tables VII and VIII. They are seen to be the same,
within errors, in all three size boxes, and thus, no signif-
icant finite-size effect is observed. In order to determine
an upper limit on the finite volume corrections to our re-
sults, we will make the assumption that these effects can
be parametrized in the Luscher form (39):

—AL

aEi (L) = aEi (oo) + A ~,

fIi(L) = f~(oo) + Ay

(Note: For particle masses in full QCD in a su%ciently
large box, such an expression has been derived rigorously.
For masses in quenched approximation and for decay con-
stants, its validity is not established, but we adopt it as a
convenient ansatz. An alternative power-law form is also
discussed at the end of this section. ) For a given choice
of the exponential parameter A, a fit to Eq. (39) gives a
limit on the coefIicient A.

Our strategy is to extract an estimate of the expo-
nent A in the Luscher formula by two methods: (1) a
direct study of the finite volume effects in the relativistic
quark model, and (2) a study of the exponential falloif
of the ground-state wave function obtained in the lat-
tice QCD calculation. For both f = f~ and f = aEi,
the results from the RQM were calculated on 12, 16,
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and 20s boxes. (The relativistic Van Royen —Weisskopf
formula [37] was used to obtain f13 from the RQM wave
function. ) For the lightest quark mass studied, the RQM
estimate gives A/a = 0.9 GeV. (The results for aEi and
for fJ3 are both well fit with the same value of A. ) A
slight increase in the value of A for larger light-quark
mass is observed, but is inconsequential for our analy-
sis. A direct study of the exponential falloff of the lattice
QCD ground-state wave function (using the bound-state
interpretation of the Luscher formula) gives a similar,
but somewhat smaller estimate of A/a = 0.75 GeV for
the lightest quark mass. A smaller value of A assumes a
slower falloff with box size and thus allows for a larger
finite-size effect on the 16 and 20 lattices. Thus, in or-
der to obtain a conservative upper bound on these effects,
we have assumed a value A/a = 0.7 GeV, i.e. , slightly
smaller than the RQM and wave-function estimates. To
determine the sensitivity of the conclusions to the value
of A, we also fit the data using A/a = 0.9 GeV, which
yields an upper bound on the 16s box about 50'Fo smaller
than the A/a = 0.7 GeV fit. In Table IX, we give the re-
sults of fitting the 12, 16, and 20 lattice QCD Monte
Carlo results to the finite volume formula Eq. (39). For
aEi and f~, Table IX gives the fitted infinite volume
result, and an upper bound on the finite volume term
evaluated on 16 and 20 lattices.

From Table IX it is seen that, in all cases, the estimated
finite volume effect on both aEi and on f~ is smaller than
our statistical error by more than a factor of 2 on the
16 lattice and by more than an order of magnitude on
the 20 lattice at P = 5.9. To determine the size of finite
volume efFects on the quantities M~ —M~~ and fbi / f~
we also need to estimate the error on the slope parameters
Ei(0) and f& in Table VI. From the r dependence of the
finite volume fit parameters, we estimate an approximate
upper bound on the finite volume error for the slopes to
be (A,E')/,E'& 0.03 and (Af~)/f~ & 0.05 for the 16s

box, and by (b,Ei)/Ei & 0.005 and (6f&)/f& & 0.008
for the 20 box. Again this is about a factor of 2 below
our statistics for 16 and entirely negligible for 20 .

Recently, it has been argued [43] that, in intermedi-

ate ranges of volume where the asymptotic behavior pre-
dicted by Luscher's volume formula has not yet set in,
the volume dependence might be expected to exhibit a
power-law dependence of the form

const
m(I) = m(oo) + (42)

instead of the exponential falloff of Luscher's result. This
power-law form is also found by the authors of [43] to fit
better to their data on light hadron masses (in full QCD).
If we assume a similar power-law dependence for the
heavy-light data, we obtain extrapolated infinite volume
results and bounds on finite volume corrections which
differ from those obtained with Luscher's form. The val-
ues in Table IX which are enclosed in square brackets are
the results obtained by assuming a power-law dependence
of the form (42). Notice that the extrapolated infinite-
volume values change very little compared with the pre-
vious analysis. The bound on the finite-volume effects at
16 are somewhat larger, while those on the 20 lattice
are much larger. However, in all cases, the bound on the
finite volume effect is less than the statistical error.

To estimate finite-size efFects for the other P values, it
is reasonable to assume approximate scaling. The box
sizes for the other P's have been selected so that they
are all of about the same physical size as the 16 box at
P = 5.9 (between 1.8 and 2.0 fm). Thus, we conclude
that finite-size effects on all of our data is smaller than
our present statistical errors. In order to quote a system-
atic error on our final results (see Sec. VI A) for f~ / fry„,
M~ —M~, and f~, we have assumed that the percent-
age errors for the other P values are the same as those
obtained at P = 5.9 on the 16 box.

C. Extrapolation to v,

To investigate the sensitivity of the chirally extrapo-
lated mass and f values to the fitting range in r, we have
done a detailed study of the dependence of the results of

TABLE IX. Estimate of finite volume corrections to heavy-light results for P = 5.9. For each r. ,
results include the fitted infinite volume value for the ground-state energy and decay constant, as
well as estimated upper bounds on the finite volume corrections on 16 and 20 boxes. Unbracketed
and bracketed numbers result from fitting to a Luscher asymptotic form and to a power-law (L )
form, respectively.

aEi (oo)

a(az, ) (16)

A(a%i) (20)

fri (oo)

6fbi(16)

6f~(20)

0.154
0.719(5)
[0.719(7)]
+0.002
[+0.006]
+0.0003
[+0.003]

0.346(11)
[0.348(16)]

+0.004
[+0.013]
+0.0006
[+0.007]

0.157
0.678(6)
[0.679(9)]
+0.002
[+0.008]
+0.0004
[+o.oo4]

0.300(ll)
[0.299(17)]

+0.004
[+0.014]
+0.0007
[+o.oo7]

0.158
0.664(7)

[0.664(11)]
+0.003
[60.008]
+0.0004
[+o.oo5]

O.283(12)
[0.280(19)]

+0.004
[+0.015]
+0.0007
[+0.008]

0.159
0.645(9)

[0.638(13)]
+0.004
[+0.012]
+0.0006
[+0.006]

0.257(14)
[0.248(23)]

+0.006
[+0.006]
+0.0011
[+0.011]

0.638(9)
[0.636(13)]

+0.003
[+0.011]
+0.0005
[+o.oo6]

0.246(14)
[0.244(21)]

+0.005
[+0.005]
+0.0008
[+o.oo9]
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TABLE X. Estimate of systematic effects in chiral extrapolation. Listed are the values at v. and
slopes (as a function of r, —r., ) of the ground-state energy and decay constant obtained from a
fit to subsets of the five ~ values, 0.154, 0.156, 0.157, 0.158, and 0.159. First column indicates the
set of r's used by listing the last digit of each K included.

K range
467
678
789
89

6789
46789

Er (0)
0.643(10)
0.645(10)
0.642 (13)
0.640(15)
0.643(12)
0.643(11)

E,'(0)
0.319(22)
0.303(36)
0.332(72)
0.385(123)
0.321(52)
0.320 (33)

fry (0)
0.464(29)
0.463 (29)
0.458 (36)
0.453(41)
0.459(33)
0.460(31)

fa(0)
0.689(68)
0.698(110)
0.744(202)
0.832 (346)
0.72 5 (146)
0.700 (95)

y /dof
1.03
0.96
0.87
0.84
0.89
0.92

the global (in K) y2 fit (26) on the K values chosen, for
the case P = 5.9 on a 16 lattice. For this run, cor-
relators were studied at K values of 0.154, 0.156, 0.157,
0.158, and 0.159 (with the critical r, = 0.15975). The
fits were done using a Euclidean time window T& ——3,
T& ——10. By taking various subsets of v values to per-
form the chiral fit (cf. discussion at end of Sec. III), we
can probe the sensitivity of our results to the assumption
of linearity of mass and f values in r i. The central val-
ues obtained from the fit (together with the associated
statistical errors) are displayed in Table X. The range of
K values used in the fit is indicated. in the first column
using the abbreviated notation K = 0.15x -+ z (thus, 467
indicates that the extrapolation to v. was made using K

values 0.154, 0.156, and 0.157).
Referring to Table X, we see that the variation in the

extrapolated ground-state mass and f value obtained by
choosing three sliding windows of adjacent r values are in
every case considerably smaller than the associated sta-
tistical errors. For the mass, the central values vary by
about 50% of the statistical error, while for the f value
the variation is 20—25% of the statistical error. Even to-
tally nonoverlapping fits (row 467 and 89) give central
values lying well within the statistical errors. The sta-
tistical errors of course tend to increase as we approach
v, ; it is more diKcult to detect a systematic trend in
the central values because the dominant errors are sta-
tistical. For the slopes (derivatives with respect to K )
needed for the extraction of B, properties, the situation
is similar. Aside from the 89 fit, which gives a poor de-
termination of the slopes, the central values for all the
subsets of e's are well within a standard deviation of the
full fit to all five v values.

We may conclude from the preceding that, as in the
case of finite volume corrections, nonlinearities in the chi-
ral extrapolation are not an important source of system-
atic error in our results. In order to arrive at an actual
estimate of the chiral extrapolation contribution to the
total systematic error we have taken the variation in the
three-r fits in Table X (i.e. , rows labeled 467, 678, and
789) which have a reasonable lever arm 1/r, and fairly
small statistical errors, as an indication of the extrapola-
tion error to r, (i.e., in fry and M~ ). As we measure
quite close to v, (at r, = 0.157), there is efFectively no
extrapolation error in the strange quark quantities. We
assume that the chiral extrapolation at P = 5.9 is typical
of other P values. In this way a chiral extrapolation part

of the total systematic errors quoted in Sec. VI A can be
obtained.

D. Scale errors

In order to quote physical values of masses and de-
cay constants, one must select a particular dimensionful
quantity to define the scale. In our discussion, we have
taken the values of a obtained from the 1P-1S char-
monium splitting [44] at P = 5.7, 5.9, and 6.1. Our
choice of a at P = 6.3 is obtained by evolving from
P = 6.1 via one-loop asymptotic freedom. (The same
value of a = 3.08 is also obtained from our value for
m~. ) Other possible choices for the scale-defining pa-
rarneter include string tension, p mass, and f Since.
the quoted values of the decay constant f& include a fac-
tor of a ~, it is particularly important to estimate the
possible systematic error in our results arising from un-
certainty in the overall scale at each P value. In Fig. 15
we have plotted the scale obtained from m~ (open circles

1.2
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1.1
2
0
m

~Q 0 96$
CC

+ xBS
x

~ p GF11
0 p
o f„

~c

II
I 4t

e
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0.8

5.6 5.8
I I I I I I I I I I I I I

6 6.2 6.4

FIG. 15. Scales obtained from m~ (open circles and solid
circles), f (squares), string tension (open diamonds and solid
diamonds), and deconfinement temperature T, (solid squares)
relative to the scales in Table I. Our data are denoted by open
symbols.
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and solid circles), f (squares), and string tension (open
diamonds and solid diamonds) relative to the scales cho-
sen in this paper (Table I). Also included on the plot are
points (solid squares) obtained from lattice calculations
of the deconfinement temperature T, [45]. Since the ex-
perimental value of T, is not known, these calculations
only give a relative determination of the scale at different
P's. (The absolute scale for these points has been chosen
to be equal to that in Table I at P = 6.3, which cor-
responds to a deconfinement temperature of kT, = 264
MeV. ) The values for m~ are from GF11 [46] (solid cir-
cles) and from our data (Table XIV) (circles), while the
string tension is a combination of our results at 5.7, 5.9,
and 6.1 (diamonds) and those of [47] at 6.0, 6.2, and 6.4
(solid diamonds). For the latter points, the charmonium
scales were estimated from Table I by linear interpolation
in lna. The values for f are taken from Table XIV.

The trend exhibited by the data in Fig. 15 indicates
a signilicant scale discrepancy in the range P = 5.7—6.0,
with the m~ scale being about 10—20% higher and the
string-tension scale about 10—15% lower than charmo-
nium. For P & 6.2, the scales appear to converge to
much better agreement, with deviations of ( 5%. This
suggests that much of the discrepancy at lower P is due to
finite lattice spacing effects, as opposed to being an effect
of the quenched approximation. (Discrepancies which do
not go away in the scaling limit can be ascribed to the ne-
glect of closed quark loops. ) The data shown in Fig. 15
illustrate that, over the entire range of P, the charmo-
nium scale differs little from a weighted average of the
other choices. This provides some additional confidence
in our choice of scales. To estimate the scale error on our
heavy-light results, we have used the charmonium scale
errors quoted in [44] (which include both statistics and
systematics). For P = 6.3 we have taken a conservative
scale error estimate of 5%, based on the spread of values
shown in Fig. 15.

Our Anal results for M~ —M~ and f~ (f~./f~„ is
dimensionless) quoted below are therefore subject to a 5
and 7% error, respectively, assuming that continuum ex-
trapolated objects are determined primarily by the larger
P values where the scale discrepancy is small. The larger
error for fIi arises from the fact that the quantity com-
puted on the lattice scales like a /' .

E. Extrapolation to the continuum

By far the largest systematic error in our calculations
arises in the extrapolation of the f~ results to zero lattice
spacing. In comparison, the systematic errors incurred
from working on a finite volume lattice, at finite light
quark mass, or even (very probably) the neglect of quark
loops are negligible. The diKculties here are both intrin-
sic and practical. On the one hand, the detailed form of
the lattice spacing dependence of lattice quantities is gen-
erally rather complicated (involving logarithmic as well
as power dependence on the lattice spacing), in contrast
to the relatively well-understood structure of the chiral
or finite volume extrapolations. On the other hand, re-
duction of the lattice spacing by a factor of 2 requires in-

creasing the lattice volume 16-fold (if we maintain fixed
physical space-time volume) .

These issues are particularly important in the case of
heavy meson decay constants. We find that the lattice
spacing dependence for f~ in the static limit is consider-
ably stronger than for f T.his is illustrated in Fig. 16.
Although our calculations have led to reasonably pre-
cise results at finite a, quoting a systematic error on the
continuum extrapolated result clearly requires an inves-
tigation of the variation induced by alternative fitting
procedures.

We have investigated this variation by fitting the f~
results at finite P to various functional forms for the fi-

nite a correction. In Table XI we show the extrapolated
continuum result for f~ and the y per degree of freedom
for the alternatives that the finite lattice spacing correc-
tion is of order a and of order a . The linear and square
fits are, explicitly,

f~ (a) = 188(23)[1 + 0.51(19)a] MeV,
f~(a) = 214(13)(1+ [0.60(ll)a] }MeV,

(43)
(44)

where a is in GeV . For M~ —M~, the fits are

and

f~ /f~ (a) = 1.216(41)[1—0.02(6)a],
f~ /f~„(a) = 1.213(23)(1—[0.16(31)a]

(47)
(48)

These fits are shown with the data in Fig. 16. It is clear
from this graph that it would be very dificult to distin-
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FIG. 16. f~ at r = m, as a function of lattice spacing.
The scales and renormalization constants used are given in
Table I. The solid line is the best linear Gt. The dashed line
is a quadratic (a ) fit used to estimate systematic error in
a ~ 0 extrapolation. (See Sec. VE.)

M& —Mz (a) = 85.8(11.7)[1 —0.24(22)a] MeV, (45)

M~ —M~ (a) = 80.1(6.7)(1 —[0.47(40)a] j MeV,
(46)
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Mg. —Mg„
86(12)
80(7)

Co + CyA

Co + CyCL
2

TABLE XI. Comparison of continuum values for a linear vs a quadratic fit to the a dependence
of physical quantities. Values shown are the fitted a = 0 values of fB, MB, —MB„, and fB./fB„,
and the y per degree of freedom for each 6t. Errors shown are extrapolated statistical errors.

I it fB (MeV) y /dof X'/dof fB./fB. X'/do&

188(23) 0.46/2 2.4/2 1.22(4) 2.4/2
214(13) 0.40/2 2.3/2 1.21(2) 2.2/2

guish between these two possibilities by calculations in
the range P = 5.7—6.3, even with improved statistics and
additional P values. In the absence of more precise data
at much larger P or a complete control of all O(a) lattice
efFects, we will take the variation of the extrapolated re-
sults in Table XI as an estimate of the systematic error
associated with extrapolating to a = 0. In our final re-
sult for fB, we quote the continuum value obtained from
the linear fit with asymmetric errors of +26 and —0 to
allow for this extrapolation uncertainty.

fB = 188 + 23(stat) 6 15(syst)+o (extrap)
+14(renorm) MeV . (51)

B. Comparison with other results

rections to Z at the two- and higher-loop level. These
additional systematic errors are quoted separately in our
final result:

VI. PHYSICAL RESULTS AND DISCUSSION

A. Final results

In this final section, we collect our results for fB / fB
MB —MB, and fB at each lattice spacing calculated
and then present the results extrapolated to the contin-
uum. The summary of results for each of the four lattice
spacings studied are collected in Table XII. A compari-
son with other recently reported results follows immedi-
ately. In all cases the first error quoted is a statistical
error obtained by the jackknife procedure described pre-
viously.

The source of systematic errors varies somewhat with
the quantity being computed. For fB /fB, the uncer-
tainty in the scale cancels, as the ratio is a dimensionless
quantity. Thus, for this quantity, the quoted systematic
error includes finite volume and chiral extrapolation er-
rors. The lattice spacing dependence of this quantity (see
Fig. 7) is very small, so we have not included a continuum
extrapolation error. The result is

fB /fB = 1.216+ 0.041(stat) + 0.016(syst) . (49)

For the mass splitting M~ —M@ the systematic er-
rors include finite volume eKects, the chiral extrapolation
(to determine MB ), and an estimate of the scale error.
For the continuum extrapolation, we quote the result ob-
tained from the linear fit in a, and take the diR'erence
between the two fits shown in Table XI as an estimate
of our extrapolation error (+0 to —6). Combining the
extrapolation error with our other systematic errors, we
obtain the result

There have been several recently reported studies of
the heavy-light meson system in the static limit of
quenched lattice QCD. In this section we will assess
the results reported here in comparison with these other
studies. We will consider four quantities, Ez, the heavy-
light ground-state energy, the M~ —M~ mass split-
ting, fB the ground-state decay constant, and the ratio
fB./f& . Even before the present study, there has been
some apparent disagreement among diferent groups over
the size of fB Some of.these discrepancies can be traced
to difFerent choices of P and r, different definitions of the
QCD length scale, and difFerent evaluations of the pertur-
bative renormalization constant Z. Since our data have
provided a more accurate determination of the depen-
dence on K and P, we are able to interpolate our data in
both variables and make a direct comparison with other
groups.

The focus of this subsection is on the lattice measure-
ment of the ground-state energy eigenvalue Eq and its
matrix element with the unrenormalized local axial cur-
rent operator on the lattice, fB = vi [cf., Eq. (22)].
These are the quantities that are extracted directly from
the lattice heavy-light meson propagators and, for given

P and r, , are independent of the choices for length scale
and renormalization constant.

First consider the ground-state energy Ei. In
Sec. IV A, it was shown that the K and a dependences
of E~ are most easily described by introducing the naive
quark mass mq ——(2Ka) —(2r, a) i. The values of r
for P = 5.74 and 6.26 are taken from [14] while that at

TABLE XII. Final results at fixed P (lattice spacing) for
fB, MB, —MB„, and fB, /fB„ in the static approximation.
The 6rst error is statistical and the second is systematic.

MB. —M&„= 86 + 12(stat)+9(syst) MeV . (50)

Finally, for fB itself, there is, in addition to the usual
finite volume and chiral extrapolation errors, a substan-
tial (not necessarily linear) lattice spacing dependence,
as well as the possibility of sizable renormalization cor-

p fB (MeV)
5.7 271 + 13 + 20
5.9 241 + 13 + 13
6.1 215-+ 21 + 14
6.3 225 + 17 + 14

MB MB (M«)
66+7+6
74+5+6
87+9+ 7

68 + 10 + 5

fB./fB.
1.181 + 0.030 + 0.012
1.211 + 0.018 + 0.014
1.226 + 0.027 + 0.016
1.172 + 0.031 + 0.011
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P = 6.0 is taken from [12]. The z, values for P = 5.7, 5.9,
6.1, and 6.3 are from our own data. The values for the
scale a are subject to somewhat more uncertainty. For
5.7, 5.9, 6.1, and 6.3, the scales we have used are given
in Table I. In order to have a reasonably self-consistent
set of scales, the remaining values for a are obtained
from those at 5.7, 5.9, and 6.1 by a simple linear inter-
polation or extrapolation in lna. Note that we are only
using the value of a here to define the naive quark
mass m~. The numerical values of Ei and f~ are ob-
tained directly from the lattice propagators and do not
depend. on choice of scale. Thus, our comparison of data
is insensitive to an overall, uniform change of scales. The
values for the ground-state energy Ei (in lattice units),
extrapolated to r, from the various studies are plotted
in Fig. 17. We conclude from these plots that all the
data are in reasonable agreement, both on the magni-
tude of Eq and on its a dependence. This is not surprising
since, for any reasonably well-chosen smearing function,
the value of Ez is obtained fairly unambiguously from
the smeared-smeared correlator. Our multistate analysis
provides a value of Eq with considerably smaller errors
than a single-channel analysis (note the much smaller er-
ror bars for the ACPMAPS results), but the results are
completely consistent with previous calculations.

Results from various groups for the M~ —M~ split-
ting are compared with ours in Fig. 18. Again, the ac-
curate determination of the slope of the ground-state en-
ergy with respect to I/K is the key to the much smaller
error bars shown for the ACPMAPS results. However,
the results are basically consistent within errors. For this
quantity, the lattice spacing dependence is very mild.

Results from various groups for the ratio of decay con-
stants f~. /f~ are compared with ours in Fig. 19. In
contrast with the situation for Eq or M~ —M~, there
is significant disagreement on the value of f~ among the
various studies, even after correcting for the diferent val-
ues of K and p. Results from [48,38,12,14,49] are com-

pared with our data in Fig. 20. This is a plot of f~a
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FIG. 19. Comparison of f~. /fs„vs lattice spacing for
present results and other recent works. Points at the same
a have been slightly displaced for readability.

FIG. 18. Mass splitting, Mz. —Mz„, in physical units,
vs lattice spacing. Points at the same a have been slightly
displaced for readability.
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against lattice spacing a, so that we can compare "raw"
lattice results without renormalization factors. The re-
sults of [12] (at P = 6.3) and [49] are in good agreement
with ours, while [48,38,14] report substantially larger val-
ues.

We believe that the discrepancies can be traced primar-
ily to the incomplete isolation of the ground state with
the sources chosen. Observe in particular that the result
in [49], where a variational method is used to isolate the
ground state, is in good agreement with us. Sensitivity
of the apparent value of f~ to the form of the source has
been emphasized in [50].

C. Future studies

We have presented results for the decay constant f~
and for masses of low-lying heavy-light states in the
static approximation. The analysis procedure introduces
several improvements over previous smearing methods.
First, the success of the RQM in reproducing the mea-
sured lattice wave functions is exploited by using the
RQM to construct not only an accurate ground-state
wave function, but also a set of orthonormal excited state
smearing functions. Second, we make full use of the in-
formation contained in the matrix of smeared-smeared
and smeared-local correlators, including both ground-
state and excited-state smearing functions at each end.
Our method provides much greater control over system-
atic errors from higher-state contamination, because of
the fact that the source smearing functions are tuned di-
rectly to the lattice wave functions, without regard to the
behavior of the efI'ective-mass plots. The appearance of
long plateaus in the SS and SL plots at the same value of
effective mass is thus strong evidence that the systematic
error from higher states has been largely eliminated. We
will report the application of our methods for heavy-light
mesons to the spectrum of radial and orbital excitations
for heavy-light systems and the B parameter in forth-
coming papers.

We expect to be able to improve the accuracy of the
present results for the M~ —M~ and f~ /f~ by using
larger ensembles. This will allow an evaluation of the
full correlator matrix including all time and state corre-
lations. There are two other sources of systematic un-
certainty in our results for f~. Use of the Wilson action
for the light quarks implies lattice spacing corrections in
O(a) and the large one-loop renormalization for the ax-
ial current suggests that the two-loop correction may be
sizable. Study of these eKects will be required to sub-
stantially improve the error on f~.
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APPENDIX A: LIGHT HADRON RESULTS

In this appendix we report the results for the light-
quark sector which we have used to set the parameters
for the heavy-light meson properties. First consider the
light-light pseudoscalar meson mass as a function of the
light-quark hopping parameters. This serves to deter-
mine the critical hopping parameter at each value of P
studied. Using the physical K mass, we also establish the
correct hopping parameter for the strange quark. (The
small e8'ect from the nonzero up- or down-quark mass
has also been included in our results. ) In addition to de-
termining the light-quark hopping parameters from the
pseudoscalar meson masses, the meson propagators have
also been analyzed to obtain the values of f and m~.
All of the results discussed here for the light hadron pa-
rameters have been extracted from local qq operators. An
analysis of light meson parameters using smeared sources
in Coulomb gauge is in progress and will be reported else-
where.

Let the hopping parameters for the two valence quarks
in the light meson be denoted by v z and r 2, and denote
the pseudoscalar meson mass by m~. All of our data
are consistent with a linear dependence of m& on K,z

and r2 . The results can be expressed in terms of the
parameters C and K. of the linear fit

(m~a) = C(K, + r2 —2r, ') . (Al)

The results for the four P values studied are given in
Table XIII. Using the scales in Table I, the naive quark
masses, defined by

mq
2K,a 2K,a

(A2)

are also listed in Table XIII. (Here, up and down quarks
are taken to be degenerate in mass. ) A plot of m& versus
quark mass [defined in Eq. (A2)] is shown in Fig. 21. For
P = 5.7, 6.1, and 6.3 the values of m~a were obtained
using equal quark masses, ri ——Kz. For P = 5.9 several
combinations of unequal quark mass values (open circles
in Fig. 21) were used to check the validity of Eq. (Al).
For P = 5.9, in addition to the main run on a 16s x
32 lattice, in order to investigate finite volume efI'ects,
we have also carried out Monte Carlo runs on 12 x 24
and 20s x 40 lattices. The results labeled 5.9(oo) are
the infinite volume values obtained by Btting all three
box sizes to the functional form derived by Luscher, as
discussed in Sec. VB.

In Table XIII, the values for C and r, are independent
of the scale chosen for a . The remaining columns are
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No. DE-AC02-76CHO3000.
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TABLE XIII. Light-quark hopping parameters obtained from light pseudoscalar meson mass
measurements. Values are shown for each run, as well as the infinite volume extrapolated value at
P = 5.9. C is the slope of the pseudoscalar (mass) as a function of r . The last two columns
give the strange and up quark masses x2a. Errors are statistical.

Run
b 5.7

5.9
5.9
5.9

5.9(~)
6.1
6.3

0.169 14(10)
0.159 72 (14)
0.159 75(6)
0.159 81(4)
0.159 80(4)
0.154 96(3)
0.15178(4)

C
0.703(10)
0.615(14)
0.609(9)
0.591(8)
0.597(7)
0.480(11)
0.395(10)

0.253 3(36)
0.120 9(27)
0.122 1(18)
0.125 8(17)
0.124 5 (14)
0.083 2(19)
0.061 3(15)

0.010 24(15)
0.004 89(11)
0.004 94(7)
0.005 09(7)
0.005 04(6)
0.003 36(8)
0.002 48(6)

computed using the scales in Table I. The errors quoted
in Table XIII are statistical only, and do not include the
uncertainty associated with the choice of a . The un-
certainty arising from the scale determination, along with
other sources of error, are discussed in Sec. V.

Although they are not used in the body of the paper,
we also briefly discuss our results for the p mass and
the pion decay constant. We again emphasize that all of
the results discussed here are obtained from light-quark
propagators with b-function sources. The results are thus
subject to possible systematic errors from higher-state
contamination. This is not a problem in measuring the
pion and kaon masses discussed above, but it becomes
more of a difficulty for m~ and f measurements. In order
to determine f, one must calculate both the propaga-
tor with a pseudoscalar (qpsq) source at each end (PP),
and the propagator with a pseudoscalar source at one
end and an axial vector (qpspoq) source at the other end
(PA). (Note: One may also use the AA propagator with
an axial vector source at both ends. However, since the

1.5,

cn 1
I
O
+

CO

CD

0 5

vacuum to one pion matrix element of the axial-vector
source contains an explicit factor of m, the pion pole
residue in the AA propagator vanishes more rapidly than
that of the PA propagator in the chiral limit, making it
more difficult to measure accurately. ) The PP and PA
propagators are fit to a single exponential in the time
ranges shown. Table XIV summarizes our results for
light hadron parameters. Again, the errors quoted are
purely statistical. Some systematic errors are expected
particularly for f, for which a stable mass plateau in the
PA propagator with the same mass as the PP propaga-
tor was not generally achieved. An attempt was made to
compensate for this by fitting the PA propagator with
the mass fixed to be equal to that of the PP propaga-
tor. It is clear from these results that a much better
determination of f from our data will be possible when
smeared operators are employed. The p propagators ex-
hibit reasonable plateaus in the time intervals shown in
Table XIV, but a study of the variation of the results
with different LT windows indicates that a systematic
error of from 1 to 2 times the statistical errors cannot be
ruled out. The values of f a given in Table XIV include
the perturbative renormalization constants computed in
[20]. For P = 5.9, the results in Table XIV are the in-
finite volume extrapolated results from the three Monte
Carlo runs on 12 (e), 16 (c), and 20 (f) boxes (except
for r = 0.156 which was done only on the 16s box). The
results on each size box are listed separately in Table XV.
In the main analysis of this paper, the only light meson
parameters we will use are the hopping parameters de-
termined from the pseudoscalar masses. Since the PP
propagator always exhibits a stable mass plateau, these
parameters are well determined and should be relatively
free of systematic error from higher states.

0.05 0.1 0.15
naive quark mass (GeV)

0.2

FIG. 21. m vs naive quark mass for P = 5.7, 5.9, 6.1,
and 6.3. The vertical scales for 5.9, 6.1, and 6.3 are o8'set by
multiples of 0.2 for display purposes. Points labeled 5.9e and
5.9u represent mesons with equal and unequal quark masses,
respectively. Values with unequal quark mass are plotted at
the average mass (mi + m2)/2.

AP PENDIX B: MUI TISTATE EXTRACTION
OF MESON %'AVE FUNCTIONS

A particularly graphic illustration of the power of the
smearing technique in reducing the contamination of
higher states is obtained by examining the time devel-
opment of the Coulomb gauge Bethe-Salpeter wave func-
tion of a static light meson beginning with either (a) the
RQM smeared source defined in Eq. (17), or (b) a cube
smeared source [38]. In the first case, we extract
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TABLE XIV. Results for light-light mesons. Meson propagators were fit to a single exponential
over time window AT. Result for f includes a tadpole improved renormalization factor, computed
in [20].

5.7

5.9

6.1

6.3

10-16

12-18

0.161
0.165
0.1667
0.168

0.154
0.156
0.157
0.158
0.159

0.151
0.153
0.154
0.1545

0.1500
0.1510
0.1513
0.1515

m a
0.649(3)
0.456(5)
0.351(8)

O.237(13)
0

O.527(2)
0.426(3)
0.360(2)
0.288(3)
0.195(4)

0
0.409(3)
0.276(4)
0.196(3)
O.137(5)

0
0.249(3)
G. 160(6)
0.126(6)
0.099(5)

0

m~a
0.787(2)
O.675(5)
0.629(15)
0.586(44)
0.566(11)
0.619(2)
0.546(3)
O.513(3)
0.479(5)
0.444(12)
0.418(4)
0.482(3)
0.401(4)
0.361(8)
0.341(19)
G.324(8)
0.331(3)
0.283(5)
0.269(7)
0.260(11)
0.246(8)

f a
0.145(3)
0.133(4)
0.115(6)
0.102(11)
0.108(14)
0.104(2)
0.093(2)
0.086 (2)
0.078(2)
0.072(4)
0.067(2)
0.081(2)
0.069(2)
0.061(2)
0.056(4)
0.055(2)
0.054(2)
o.o45(4)
0.041(4)
0.038(11)
o.o37(3)

e»(R, T) = (0[q(a, T)q(0, T)[C( j, o)

for the ground state (a = 1) at small Euclidean times.
We have done the coinparison for the case P = 5.9, r. =
0.159, on a 16 lattice. In Fig. 22, the evolution of the
wave function using a source smeared with the ground-
state wave function of the RQM (with constituent mass
p = 0.12) is shown for Euclidean times T = 1, 2, and
4. It is apparent that the wave function has reached
its asymptotic value to very good accuracy already at
time slice 2, with little further change at T = 4 (in fact,
the overlap of the wave function at T = 2 with that at
T = 4 is 0.9986!). In Fig. 23, the corresponding evolution

(again for Euclidean times T = 1, 2, and 4) is shown for
a source smeared over a cube of width 7 lattice spacings.
Here the convergence is much slower, with the pointwise
convergence near the origin particularly tardy.

Although the use of a single smearing function ob-
tained from the RQM is adequate to the task of extract-
ing the ground-state Bethe-Salpeter wave function, even
the improved smearing given by the RQM is not suffi-
cient if we wish to do the same for the higher excited
states in a given channel. In Sec. IV, we showed how to
define optimized smeared states ~4 ) in which the ad-
mixture of all but one (the Ath) of the first M-meson
states in a given channel is tuned to zero. For example,
taking M = 3 at P = 5.9, v = 0.159 on a 16 lattice, one

TABLE XV. Light-light meson results at P = 5.9 for lattice sizes 12 x 24 (e), 16 x 32 (c), and
20 x 40 (f). Result for f includes the tadpole-improved renormalization factor, computed in [20].

5.9(e)

5.9(c)

5 9(f)

AT
8-12

8-12

8-12

0.154
0.157
0.158
0.159

0.154
0.157
0.158
0.159

0.154
0.157
0.158
0.159

m a
O.535(4)
0.364(4)
o.3o6(9)
0.198(33)

0.534(3)
0.364(4)
0.292(4)
0.188(8)

0
0.525(2)
0.358(3)
0.288(3)
0.196(4)

0

m~a
0.618(4)
0.505(7)

0.475(15)
O.375(77)
0.403(14)
0.622(2)
0.508(5)
0.469(8)
0.440 (27)
0.407(8)
0.617(2)
0.515(4)
0.482(5)
0.442(12)
0.423(5)

0.105(3)
0.083(4)
0.080(4)
0.075(17)
0.067(5j
o.lo6(3)
0.087(3)
o.o79(4)
0.067(8)
0.067(4)
0.103(2)
0.085(2)
0.078(3)
0.073(4)
0.068(2)
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0.16

0.12

T=1

T=2

o T-4
0.3

0.08

0.06

0.2C
0

CO
CV

T=6

0.04 0.1

0.02

0
8 10 12 14

a

88 8
i'mn

FIG. 22. Time evolution of the ground-state heavy-light
wave function for P = 5.9, r = 0.159, using a source smeared
with the ground-state wave function of the RQM with con-
stituent mass parameter IM = 0.12.

finds that the choice of smearing function [cf. Sec. III B,
Eq. (23)]

produces an optimized first excited state in the sense that
admixtures of the ground and second excited state are
tuned out [based on a fit of form (22)] with T& ——2,
T& ——7). The use of such an optimized sinearing is cru-
cial if we wish to extract the correct Bethe-Salpeter wave
function of the first radial excited state near the origin.
Any sizable admixture of the exact meson ground-state
will otherwise dominate the small r region of the wave-
function at large Euclidean time, before the higher (sec-

4 6 8 10 12 14

FIG. 24. Time evolution of the first excited-state (2S)
heavy-light wave function for P = 5.9, r = 0.159, using a
source smeared over the 2S RQM wave function.

ond, third, etc.) states have decayed away. In Fig. 24
we show this phenomenon with a Bethe-Salpeter wave
function @Bs(B,T) defined as

(B3)

The wave function (renormalized to unit norm) is plot-
ted for Euclidean times T = 1, 2, 4, and 6. There is a
steady upward drift of the wave function at the origin
as T increases to 4, but by time slice 6 the inhuence of
the ground state is clearly apparent as the latter begins

0.4

0.14

0.12

0.1
UJ
CQ

0.08

CC
0.06

~ 1
Vk

T=1

T=2

T=4 0 3O
LU
N

CL0 0.2

CC

0.1

T=2

T=3

0.04

0.02

0 I

Raar r

mam~~
I I I I I

6 8 10 12 14

8 10 12 14

FIG. 23. Time evolution of the ground-state heavy-light
wave function for P = 5.9, K = 0.159, using a source smeared
over a cube of width 7 lattice spacings.

FIG. 25. Time evolution of the first excited-state (2S)
wave function using a three-state Gt and selecting the op-
timized combination of RQM smearing functions tuned to be
orthogonal to the ground state and second excited state. A
Bethe-Salpeter wave function and optimized smearing.
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to dominate the evolved meson state. It would clearly
be very difBcult to draw any firm conclusions about the
behavior of the excited-state wave function close to the
origin from these measurements.

On the other hand, using the optimized smearing found
above (B2), and computing

one finds (Fig. 25 shows the optimized wave function for

times T = 1, 2, 3) a rapid convergence to an asymptotic
shape by the third time slice, giving a value for the wave
function at the origin 0.44, as compared to a maximal
value 0.36 obtained. at T = 4 from Eq. (B3) before
convergence is lost. Eventually, of course, the ground
state will dominate in this case also, but by using the
optimized state, we correctly extract the exact Bethe-
Salpeter wave function for the excited state before the
ground-state contamination has a chance to become siz-
able.
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