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Mass singularities in light quark correlators: The strange quark case
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The correlators of light quark currents contain mass singularities of the form ln(m /Q ). It
has been known for quite some time that these mass logarithms can be absorbed into the vacuum
expectation values of other operators of appropriate dimension, provided that schemes without
normal ordering are used. We discuss in detail this procedure for the case of the mass logarithms
m ln(m /Q ), including also the mixing with the other dimension-4 operators to two-loop order.
As an application we present an improved +CD sum rule determination of the strange quark mass.
We obtain m, (1 GeV) = 171 + 15 MeV.

PACS number(s): 12.38.—t, 11.55.Hx, 14.65.Bt

I. INTRODUCTION

The method of QCD sum rules, first introduced in [I],
has become a popular and powerful technique to study
QCD in the low-energy, nonperturbative region. The
starting point is the operator product expansion (OPE)
of current correlators at short distances, suitably mod-
ified to incorporate nonperturbative effects. The latter
are parametrized by a set of vacuum expectation values of
the quark and gluon fields entering the QCD Lagrangian.
These vacuum condensates induce power corrections to
asymptotic keedom, and are responsible for the rich res-
onance structure observed at low energies. The basic
assumption here is the factorization of short and long
distance effects. The former are associated with the Wil-
son coeKcients in the OPE, and the latter with the vac-
uum condensates. While the Wilson coeKcients are in
principle calculable in perturbation theory, the vacuum
condensates cannot be calculated analytically at least at
present from first principles. Instead, they can be es-
timated in the framework of lattice QCD, or extracted
from experimental data in certain channels by means of
the QCD sum rules themselves. Next, inaking use of
the analyticity properties of the relevant Green functions,
and invoking the notion of QCD hadron duality, one re-
lates the fundamental QCD parameters entering the OPE
with a dispersive integral involving the hadronic spectral
function. In this fashion, a relation between hadronic
and QCD parameters is achieved.

An important problem which must be addressed in
connection with the factorization of short and long dis-
tance effects in the OPE is the appearance of mass singu-
larities in the coefBcient functions. They are actually a
long-distance effect and thus their presence in the coeK-
cient functions spoils the desired factorization. It is possi-

ble, however, to shift them into the vacuum condensates,
provided one is willing to accept the existence of pertur-
bative vacuum expectation values of operators. This is
equivalent to giving up the customary normal-ordering
prescription which, by definition, sets such contributions
to zero. A detailed discussion of how this can be achieved
is presented in Sec. II, including the renormalization-
group improvement. As a phenomenological application
of these results, we address in Sec. III the problem of de-
termining the value of the strange quark mass. Some time
ago [2] a redetermination of the strange quark mass was
performed in the framework of QCD sum rules, exploiting
new developments in the theoretical [3] and experimen-
tal [4] understanding of the two-point function involving
the strangeness-changing vector current divergence. This
constituted an improvement over earlier determinations
of m, [5,6]. Of particular importance was the removal of
logarithmic quark-mass singularities in two-loop quark-
mass corrections of order O(m2) and O(m ), achieved in
[3]. However, a feature of some concern was the appear-
ance of parametrically enhanced terms of order O(l/o. ,).
In this paper we remedy this problem, showing how these
terms can be effectively avoided by employing a scheme
without normal ordering. Working at the next-next-to-
leading order in perturbative QCD, and including next-
to-leading radiative corrections to the condensates, we
obtain a new expression for the current correlator. This
is then used in order to obtain an improved value of the
strange quark mass.

II. THE OPERATOR PRODUCT EXPANSION

We will be concerned in the following with the vacuum
expectation value of the following time ordered product:
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T(q) = i f dz e'q T[J(z)J (0)], Og ———'G„G "", O2 ——m, ss, O3 ——m, , (4)

where J = 0 sp u = m, siu, and the up- and down-
quark masses are neglected. Except for a sign change,
which will be given explicitly, all our results will hold also
for the divergence of the strangeness-changing axial vec-
tor current J = 0 sp p5u = m, sip5u. When sandwiched
between vacuum states, the T product (1) becomes the
corresponding two-point correlator

and the explicit expressions of the functions IID and II2
will be given later. The only terms in g which are not RG
invariant are the coefficient functions m, IID and m, II2.
They satisfy the inhomogeneous RG equations

p (mzlip) = m2pq, tu (m4II2) = m4p
dp dp

with [7,8]
(2)4(Q' n. m V) = (OIT(&)IO)

where p is the renormalization scale. Note that the po-
larization operator is not renormalization-group (RG) in-
variant as the function (0[T[J(x)Jt(0)][0) contains non-
integrable singularities in the vicinity of the point x = 0.
These cannot be removed by the quark-mass and cou-
pling constant renormalizations alone, but must be sub-
tracted independently. We write the correlator (2) as an
expansion in powers of 1/Q as

@(Q') = m.'(& (I, 0a.)Q'+ m.*II,(I,a.)

C„(L,n, ) (m, uu) p

383) n.'—6 —10—' + 3((3)—
7r 12) vr

1
y 8~2 (6)

n. &—12 —16—
8vr2 ( 7l )

The anomalous dimension p~ has been given to three-
loop order because the corresponding correction to II0 is
a priori not negligible, and it will be taken into account
in the next section. The absorptive part of @(Q2), being
an observable quantity, is invariant under the RG trans-
formations. Without any loss of generality we will work
with the second derivative @"(Q ):—d g(Q )/d(Q )
which can be seen from (3) and (5) to satisfy a homoge-
neous RG equation

where L = 1n(p /Q ) and Q2 = —q2. The upper sign
in front of the coefficient function C„corresponds to the
scalar and the lower one to the pseudoscalar case. The
operators O,. are

v —0"(Q') =o.
8p

(8)

The high-energy behavior of g"(Q2) in the deep Eu-
clidean region may be reliably evaluated in QCD by em-

ploying the operator product expansion, i.e. ,

m2
Q @"(Q,n„m„p), Kp(Q, „nmp)1L+ ) '

&
) K;(Q, n„m„p)(O~Q;(p)~0) .

n) 1 dim&; =n

(m2)" (
m,

/

'
/

ln ln
&

Q')
& -') (10)

The summation on the right-hand side (RHS) extends
over all Lorentz scalar composite operators O, of mass
dimension n & 1. We have explicitly separated the con-
tribution of the unit operator &om that of the operators
with a nontrivial dependence on the field variables. The
coefficient functions (CF's) Kp and K; depend upon the
details of the renormalization prescription for the com-
posite operators O, The usual procedure of normal or-
dering for the composite operators appearing on the RHS
of the OPE (9) becomes physically unacceptable if quark
mass corrections are to be included. This is already obvi-
ous for the unit operator, representing the usual pertur-
bative contributions if normal ordering is used, because
in general it contains mass and momentum logarithms of
the form

with n, n, and P being non-negative integers. More
specifically, one may write [9]

(Q, n„m„p)

rm.'&"' (n. &

where L = ln(p /Q ), M = ln()(), 2/m, ), and the super-
script NO is a reminder of the normal-ordering prescrip-
tion being used. The function F,i(L, M) corresponds to
the contribution of the l-loop diagrams, and is a poly-
nomial of degree not higher than l, in both L and M.
Now it is obvious that one may not choose the normal-
ization scale p in such a way that for Q )) m, both M
and L would be small. The mass logarithms signal that
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even in the framework of perturbation theory there are
effects coming from large distances of order 1/m. Fortu-
nately, it has been realized long ago [3,9—ll] that all the
mass logarithms may be neatly shifted into the vacuum
expectation values (VEV's) of nontrivial composite op-
erators appearing on the RHS of (9), provided the latter
are minimally subtracted [12].

To give a simple example, let us consider the correlator
(2) in the lowest order one-loop approximation. First, we
use the normal-ordering prescription for the composite
operators which appear into an OPE of the time ordered
product in (1). To determine the coefficients of the var-
ious operators, one possible method is to sandwich both
sides of the OPE between appropriate external states. By
choosing them to be the vacuum, only the unit operator
X will contribute on the RHS, if the normal-ordering pre-
scription is used. This means that the bare loop of Fig. 1
contributes entirely to the coeflicient Ko in (9). A simple
calculation gives [8] (in the following we neglect all terms
of order 1/Q and higher)

Kp (Q m p) = Q 0"(Q m ~. V) I-.=o

m, 1 —2
4' (L —M)

(12)

m.' & p'
(O~ss~O)~' = ', 4N. ln

16a2 ( m2 )
(13)

By inserting this into (9), the new coefficient function Ko
can be extracted, with the result

2m4:(1+L) (14)

The mass logarithms are now completely transferred Rom
the CF Ko to the VEV of the quark operator (13). The
same phenomenon continues to hold even after the o.,
corrections are taken into account for (pseudo)scalar and
(pseudo) vector correlators, independently of their ffavor
structure [3,14]. The coefficient functions of the nontriv-

This coefficient function contains mass singularities (the
M term). On the other hand, if one does not follow
the normal-ordering prescription, then the operator m, ss
develops a nontrivial vacuum expectation value even if
the quark gluon interaction is turned off by setting o,, =
0. Indeed, after minimally removing its pole singularity,
the one-loop diagram of Fig. 2 leads to [8]

FIG. 2. Vacuum diagram contributing to the perturbative
VEV of the operator ss.

p—K, (Q') =o.
Ip

This equation is satisfied trivially for (12) but not for
Ko as expressed by (14). The reason is that the operator
m, ss ceases to be RG invariant in the world without nor-
mal ordering. The vacuum diagram of Fig. 2 has a diver-
gent part which has to be removed by a new counterterm
proportional to the operator m, ]l.. In other words, m, ss
begins to mix with the "operator" m, IL [9].

To lowest order, the corresponding anomalous dimen-
sion matrix reads

& o ,s, l (. )k ') (16)

ial operators will also depend on whether or not normal
ordering is employed.

The underlying reason for this was erst established in
[15]. Here it was discovered that if the minimal sub-
traction procedure is scrupulously observed [16] then no
CF may depend on mass logarithms in every order of
perturbation theory, irrespective of the specific model
and/or OPE at hand. This implies that all the mass
logarithms lnM in Ko are transferred into the "con-
densates, " where they are hidden among various non-
perturbative contributions. This remarkable property
leads to the possibility of using the standard RG tech-
niques to study mass effects in the framework of @CD
sum rules without interference from unwanted mass sin-
gularities. On the other hand, the above nice features
of minimal subtraction come at a price: when schemes
without normal ordering are employed, then the renor-
malization properties of composite operators and CF's
become more involved. This may already be observed
in our one-loop example. Indeed, as a consequence of
(8) one can immediately infer that the CF KONO is RG
invariant and hence should obey the equation

FIG. 1. Lowest-order contribution to the correlator vP(q ).

The nonvanishing off-diagonal matrix element describes
the mixing of the two operators under renormalization
and was obtained &om the divergent part of the vacuum
diagram in Fig. 2. The diagonal matrix elements are
just the anomalous dimensions of the respective operators
in the usual normal-ordering scheme. The lower one is
equal to —4p(n, ), where p(n, ) is the strange quark mass
anomalous dimension which defines its running according
to
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)u m, = —p(n. )m. ,
dp

d
)u n, = p(n, )n, ,6p (21)

where [17] where [18]

0!s a' s 2

~( .) = ~.—+ ~2 (— +

with py = 2,

(18) p(n, ) = pl —+ p2 ~

— + ps —' +, (22)
vr (vr) (7r)

101 5
f2 = f )12 18 (19)

with

p, = ——", +-,'nf,

~, =
~

1249— 2216 160 140,')

81
32

(20)

and nf is the number of active light quarks. The running
of the coupling constant n, (p) is determined by

( 2857 5033 325
3 — + r) j 77y

2 18 54 )
The solutions of (17) and (21) can be written as

2P I L 4 &P,', Pl1+
p2 L + p2L2 p2(ln L —lnL —1) +

p1 1 k 1 ) )
(24)

m, 2p)P2 lnL 2

(-L)-. i. '
P L 'P"" A)L

+ sLz ( py'Y3 + py'Y2 + p) p2 Y2 + p1p2 Yl p) ps Yl 2plp2'Yl'Y2 + p2 Y) )
1

4 lnI 21n L+ s z (plp2Y2 p)p2Y1 Y2 + p2Y), ) + s 2 ( p)p2Y1 + pz Yl)
1 1

(25)

The expressions (24) and (25) are given to three-loop order for completeness. The simplified arguments so far will only
make use of the corresponding one-loop results. Now one can see that the operator m, 88 acquires a scale dependence,
which can be obtained from (16) and is given by [9]

3 -l l d ~ * ~yp(y)lm, ss(p) = m, ss()L)p) + exp ~ —4 — m, (pp)
27r

( l
x x ( ( ) g g )

3 (m4(p) m4(pp) \= m, ss pp
27I (4Y) + P) ) ) ns()M) ns(pp) )

(26)

A distinctive feature of this result is the appearance of
inverse powers of n, [11].Note that in the approximation
we have considered, the combination

3 m4(p)I, = (m, ss)(p) + (27)

is a RG invariant. It corresponds (but is not generally
equal) to the RG-invariant combination m, ss in the usual
normal-ordering scheme. For simplicity, we will neglect
for the moment the contributions of the dimension-4 op-
erators G and uu in the OPE (9). They will be added in

later. The lowest-order coeKcients of the operators m, ss
and m, at the scale )u = Q have the values

= 1
Cm, ss Cm4-

s

3
167t 2 (28)

We are now in a position to derive the RG improvement of
the coefficient functions appearing in the OPE (9) when
working in a scheme without normal ordering. To achieve
this, one notes from Eq. (8) that the total contribution of
the operators of dimension 4 is RG invariant and there-
fore we can choose freely the scale p. Setting the renor-
malization scale p, = Q allows us to absorb all logarithms
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ln(p, /Q ) appearing in the CF Ko into the running cou-
pling constant and the strange quark mass. On the other
hand, the matrix elements of the operators at this scale
can be expressed in terms of the same matrix elements at

a lower scale pp 1 GeV with the help of the RG equa-
tion (16). Our first result for the RG improvement of the
OPE (9), treated entirely within the minimal subtraction
prescription, reads (for ny = 3)

Q2q (q2 ) 2(q) 1 2 .(Q) l
Q'~~ 8~2 '

( Q2

i (Oi(m. ss)(p, ) iO) —— ' + — ' + O(1/Q') .
m.'(q) 3 m4(Q) 3 m4(pp) l

Q' 7~ n, (Q) 7m ri, (pp) )
(29)

This result has been essentially obtained for the first time
in [ll] (to two-loop order). There are, however, a num-
ber of differences between its interpretation as given in
[ll] (see also [3] and [14]) and the point of view we will
take in this paper. We comment brieHy on these dif-
ferences. In [ll] the vacuum expectation value of the
RG-invariant combination I, in (27) was identified with
the (RG-invariant) product m, (o~ss ~0) in the usual
scheme using normal ordering. Thus, the vacuum ma-
trix element (0~(m, ss)(y) ~0) (non-normal ordered and
RG noninvariant) was represented, to the order we are
working, as the sum of a RG-invariant part (of a nonper-
turbative origin, due to the spontaneous breaking of the
chiral symmetry in QCD) and of a perturbative part (p
dependent) which represents the sum of the leading mass
singularities of the form n, ln + (p /m ):

(0~(m, ss)(p)~0) = (o~m, ss ~0) ——
77r a, (p,)

(30)

As can be seen from (24) and (25) in the one-loop approx-
imation, the second term vanishes in the limit p —+ oo
and the distinction between the VEV of the operator
m, ss in schemes with and without normal ordering disap-
pears. It should be stressed that the above interpretation
of the relation between normal-ordered and nonordered
quark condensates relies heavily on an implicit assump-
tion which is difficult to (dis)prove. Indeed, all purely
perturbative contributions to (0~(m, ss)(p)]0) were as-
sumed to vanish in the limit p, —+ oo. Fortunately, even
if the hypothesis fails it will only spoil the applicabil-
ity of the scheme with normal ordering, but would have
no effect on other renormalization schemes such as, e.g. ,
the minimal subtraction prescription. The practical con-

sequence of this approach is a large value of the mass
correction of order m„which is enhanced by the pres-
ence of one negative power of n, (Q) [the second term in
the second line of Eq. (29)]. Note that in this approach
there is no corresponding term containing 1/n, (po) in
Eq. (29), because it can be effectively combined with the
contribution of the operator m, 88 resulting in the RG-
invariant VEV (O~I, ~O). On the other hand, considering
that a typical momentum transfer for QCD sum rules is
of about 1 GeV, we will work with the quark and gluon
condensates normalized at this "natural" scale pp = 1
GeV as our reference values. (For the case of the semi-
hadronic decay rate of the 7 lepton a similar approach
has been suggested in [19].) As mentioned above, this
point of view is equivalent to the one taken in [ll], pro-
vided the scale pp were taken to infinity. Our choice of
pp somewhere around the characteristic momentum scale
specific to the problem at hand ( 1 GeV) helps to avoid
the parametrically enhanced inverse powers of o, In-
deed, as one can see from (24) to one-loop order, one
has n/n, (q) —7r/n, (po) = —Pi ln(q/ps), which is not
particularly large.

III. DETERMINATION OF THE STRANGE
QUARK MASS

We proceed now to include the contributions from the
gluon operator t and from the light quark condensate
uu, working consistently to next-to-leading order. The
coefficient functions Ilo and II2 in (3) have, respectively,
the three-loop [20] and two-loop values [for an arbitrary
renormalization scale p, the use of the modified minimal
subtraction (MS) scheme is understood]

1
IIp ——

16vr2

n. ( 131

l�@2p2

—12 —6 ln + —' — —34 ln —6 ln +24((3)Q2 vr ( 2 Q2 Q2 )
n ~ ( 17645 511 3+ 353$(3) —Sny((3) + ny + —g(4) —50$(5)

24 18 2

10 801 p,

24 Q2
ln

19,p'&——ln
2 Q2)

—4nyg(3) ln + ny ln + 117((3) lnp 65 p
4

11 2P, p 1 3 p+nf —ln —106 ln + nf ln
3 Q2 Q' 3 Q'
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1
II2 ——

16m2

( p 2
—12 —12 ln + ——100 —64 ln —24 ln + 48$(3)

)q' ~ o' Q' (32)

1 f llasl
(33)

1 ( lln, )
(34)

The three-loop result (31) was obtained in the works
[20 while the n, terms in (31) and (32) can be found
in 8,21]. Note that the first evaluation of IIo at three-
loop level made in Ref. [22] proved to be erroneous [23].
Unfortunately, that wrong result was then used in the
work [26] to find the light quark masses in the framework
of the finite energy sum rules.

The coefEcient functions of the dimension-4 operators,
evaluated at the scale p = q, are

14n, )C„= 1+ 3' )

3 ( n.C, =, 1+ —'[8((3) —6] I .
16~2 l

(36)

The leading order contributions to (33)—(35) were com-
puted in [1]. The two-loop corrections to (33)—(36) were
evaluated in the Refs. [27], [1,21], [1,21], and [3,14], re-
spectively.

It is now a simple matter to derive the RG improve-
ment of the IIO 2 terms in (3). Solving (5) with the bound-
ary conditions (31) and (32) yields

3 m.'(Q) n. (q) ( 131 131P,
7I 7i + i (lg 7r

l(.—8((3) —2Pi ((3))l )

m,'(p) n, (p)
47r(2p, + Pi) n, (p) vr

( .(~)&'
7l

H
2 (4" +A) "(Q) - &

4+2) . . +2.(4"+A) "(P) l
+

)
(38)

where

5Pi P2
p, = ———+ ——= —2 (ny =3),

2 12 4
(39)

A P2
(ng = 3),

3 2 6 8 24
(4o)

9[7889 —432((3)] + 9[439 —1824((3)]nf —1195nf
864(—57 + 2ny)

5904((3) —8011
4896

The RG improvement of the contribution of the dimension-4 operators in (3) requires the knowledge of their mixing
under renormalization. The generalization of (16) to two-loop order, by taking also into account the mixing with the
gluon operator G2, reads [9]

p ~
msss"~l m.' )

( dP

0
0

—4n, ~
0
0

4ri, „"ro
~ ( G'

—4' m, ss
)

(42)

Here P and p were defined in (21) and (17), respectively, and po is the two-loop vacuum energy anomalous dimension,
given by



5096 CHETYRKIN, DOMINGUEZ, PIRJOL, AND SCHILCHER

3 & 4
Pp ——— 1 + —o,'

8' 2 3vr
(43)

The operator m, uu is RG invariant. The analogous anomalous dimension matrix which describes the mixing of the
dimension-5 operators in schemes without normal ordering has been calculated recently, to on-loop order, in [28].
We apply now the RG improvement of the contribution of the dimension-4 operators in (3). By taking advantage of
the fact that their total contribution is RG invariant, we choose p = Q, where the coefficient functions are given by
(33)—(36). The matrix elements of the operators Oi 2 3 can be scaled at pp 1 GeV with the help of (42), where they
are known. This procedure leads to

3

) CC7, = 1+ 14n, (Q) ~ 1 I ll p21 n, (Q) pgn, (po)m uuo+ — 1+ ——— ' + ' &i g,
37l ) 8 ( 2 pi) 7r pi'7r

+ —+
2 (6

pi l n, (Q) 7i n, (pp)
( )~2P ) ~ 2P, vr

3 ( n. (q) 47 P, l1+ ' r2+ pi ——
~ m, (Q)4~(4/i + Pi)n, (q) ( 7r 12 4 )

+ 1+n (po) +Vi+1 4( )+ 1 n, (Q) 4( ) 11 3pi
+p.)-.(~.) &

- "'
p. )

'" -'(~. +

(44)

In order to keep the expressions within a reasonable size, we will replace here the various constants by their numerical
values corresponding to nf ——3. At the same time, to help the reader who might want to reproduce our result, the nf
dependence which appears from other sources will be left explicit in the following. Thus, putting together (37) and
(44) and taking two derivatives with respect to Q2 we obtain

&"(Q') =
l

+ ' 2(m.,uu) 1 +m.'(q)

+(m, ss) ~„,
( 4n, (p,p)

9

3
7 2 8(+P)

( )

3m2(Q) lln, (Q) ~5071 35 ) (n, (q) l m2(Q) ~ 28n, (Q) )
8m 2Q2 Rr 144 2 ) ~

m ) Q2
~

37r

n (Q) i 1 n 2 t 16n (pp) 121n (Q) )
3m ) 4 7r ( 9m 18sr )
64n. (q) & 3, & ~ 1551

9' 7vr
' n, (Q) 24 )

173i 64 n, (Q)
72 ) 21~' n, (pp)

(45)

A similar relation has been previously used in a QCD sum rule determination of the strange quark mass [2], where it
was interpreted in the spirit of [ll]. As explained earlier, in the approach of [11] the normal-ordered strange quark
condensate (times m, ) is identified with the VEV of the RG-invariant combination I, defined at one-loop level in Eq.
(27). At two-loop level it has the form

I, = (m, ss)(p, ) + ' 1+ r2
3 m4(p, ) ~ n, (p) t

27I 47i + i n~ p ( 7r )
(46)

Besides this, our result (45) differs form the one in [11] (see also [14]) because there the mixing of the gluon condensate
with the other operators of dimension 4 has been neglected.

We perform the Borel transform I of @"(Q ), i.e. ,

ds e ™—1m@(s) .
0 7r

(47)

A simple calculation using the methods of [29] gives
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LW "(&')] =

where

4 I' p l
Q2 Pl

Pw ( /3)

1 n, 2 i 16n(po)l
A(po) = 2(m, uu)o + — —'G2 1+—

4 vr ( 9

3 m 1 r4 11 4p2 M1+ ——p, @1 + lnln
8~2 M2 [1 in(M2/A2)] 2»/P~ 9 inM2/A2 3 P2 A2

2 t 2 510 167 1340 2 17332 17
+ 3 +34 1 1 ——vr

81 ln (M2/A2) 6561 9 81 3

In n ~2 2 ~ I I09 2~8 ~ 4~~2 I ~ n 2 n 2 2 1~~ 2~4

m 1—2 M2 [1 in(M2/A2)] —2»/pg 9 inM2/A2 3 y~ p21+ ——2pq 2 +8—lnln

( P, l l I m.'I+
pg yl ( pg ) ) 2M [2 ln(M /A )]»/~&

&(po) + 2 2 B(po) + —pa@(3) + 4—2 ln ln 2
— 72 —7x — &(po)91M A

7vr 2M [- ln(M /A )]
—»/&~ 24 2 A 2 ( Pg

+ 12—2+ —
~

ln ln
&~) A' /3iwx ( A)

4 ns(pp) 4 3 7l f 173 n~(pp)+ m&ss p 1 —— + m pp 1—
ns po k

72 vr )
(49)

46 121 n, 2 64 4 64 ~ t 519 na(po) l
B(po) = —(m.«)p+ —'G' + —(m, ss)o+ m', (pp) I—~' n. (p ( 512 vr

1 3 i 17n, (s) l—Im@(s)~q&D = m, (s)s 1+
7t 8+2 37I

(52)

The continuum threshold is expected to be close to the
upper limit of the experimental data, i.e., 80 6—7 GeV .
In principle, though, so is a free parameter. Predictions
will be meaningful provided they do not depend strongly
on the value of this parameter.

The expression (48) represents the "theoretical" side
of the @CD sum rule. The "phenomenological" side is
given by the RHS of (47), with the (hadronic) spectral
function Im@(s) written as

Im@(s) = Im@(s)~„,0(sp —s) + Im@(s) ~qcD0(s —sp),
(»)

where the erst term above describes the contributions of
the resonances up to s = 6.8 GeV and the second term,
i.e. , the hadronic continuum, is identified as usual with
the perturbative @CD expression, which in this case is
given by

Chiral dynamics provides a strong constraint on the
behavior of the hadronic spectral function near threshold,
Viz. )

1 = 3 8& s—Im4 (s) =,ld(s+) I'
32% 8 8

(53)

with sg = (M~+M )2 and ~d(s+)
~

0.3 GeV2 Agood.
fit to the experimental data [4] is obtained by using (53),
which simulates nonresonant background, to normalize
two Breit-VA'gner forms for the Ko (1430) and Ko (1950)
resonances, with masses and widths: Mq ——1.40 + 0.01
GeV, I'q ——325 + 30 MeV, M2 ——1.94 + 0.03 GeV, and
I'2 ——450 + 100 MeV.

As for the @CD parameters, we adopt the fol-
lowing values for the nonperturbative condensates:
(uu)„, = —(0.25) GeV at a scale pp ——1 GeV and
(ss)»/(uu)~, ——0.7—1. The gluon condensate has been
extracted some time ago [30] from data on e+-e annihi-
lation and w decay, with values in the range ((n, /vr) G ) =
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0.02—0.06 GeV . The @CD scale for three flavors in
A 200—400 MeV [31,32].

The invariant strange-quark mass m, is determined by
solving the equation resulting from inserting (51) on the
RHS of (47) and using (48) on the LHS. Typical results
are shown in Fig. 3 (for A = 200 MeV) and Fig. 4 (for
A = 400 MeV), corresponding to ((n, /vr)G )„, = 0.02
GeV4. In both these figures we used (ss)„,/(uu)~, = 1.
Results are essentially unchanged if this ratio deviates
from unity by some 30%. On the theoretical side of the
sum rule, the most important contribution numerically
comes &om Iio in (3) which accounts for about 90% from
the total in the region of the Borel parameter relevant
for the sum rule. II2 contributes with an opposite sign at
the 3—5% level, and the nonperturbative contributions
together do not exceed a few percent. The latter are
rather insensitive to the precise value of the quark con-
densate and depend mostly on the value of the gluonic
condensate.

The a, corrections to the coefFicient functions of the
gluon and quark condensates may be substantial [27,33].
We have efI'ectively incorporated this uncertainty by al-
lowing rather generous error bars on the gluon conden-
sate value. Taking into account the rather small con-
tribution of the quark condensates (under 2%), the n,
correction to their CF's should not inHuence our results
noticeably.

The error on m, is determined by its variation when
all relevant parameters are changed within the ranges
indicated above. This gives, for the two extreme choices
of A,

m, = 213—222 MeV, m, (l GeV) = 171—179 MeV

(A = 200 MeV), (54)

m, [MeV]

200

180

@=6GeV2

2————q —7 GeV

4—4 =002 GeV
7K

160

2-------- q —6 GeV C ~ 4—4 =006 GeV
2 7j——8 = 7GeV

140

120

100

3
M [GeV ]

FIG. 4. Same as Fig. 3, except for A = 400 MeV.

m, = 142—147 MeV, m, (1 GeV) = 162—168 MeV

(A = 400 MeV), (55)

where the variation of the strange quark mass, for a given
value of A, reHects the uncertainties in the values of the
gluon condensate and Sp.

The results of this determination show a welcome sta-
bility in the Borel variable M, as well as in the contin-
uum threshold sp. To estimate the error induced by the
uncertainties in the hadronic spectral function, we have
varied the resonance parameters within the limits shown
above. This gives an additional error of about +7 MeV.
The final uncertainty in m, is almost exclusively due to
the inHuence of A and the gluon condensate (see Fig. 5).

ms [MeV]

250 ms (1 GeV) [MeV]

250

230
A = 200 MeV

A = 300 MeV

210 200
A = 400 Me V

190

170

150

@=6GeU2

2———- s —7GeV

2-------. q = 6 GeV

2——y = 7GeV

(X 4—G = 0.02 GeV

(X 4—G = 0.06 GeV

M [GeV ]

150

100

M [GeV ]
FIG. 3. Invariant strange quark mass m as a function of

the Borel variable M, for A = 200 MeV. The values of the
gluon condensate ((a, /7r)G )~0 and of the continuum thresh-
old so have been varied between 0.02 and 0.06 GeV and,
respectively, so ——6 and 7 GeV .

FIG. 5. Results for the running strange quark mass m, ,(1
GeV) at the scale p = 1 GeV. ( ) A = 200 MeV, (———)
A = 300 MeV, and (. ) A = 400 MeV. The continuum thresh-
old so ——6.5 GeV2.
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The effect of the three-loop radiative correction to IIO,
and hence to @", has been to reduce the value of the
invariant mass m, by 5—10%. Combining the results in
(54) and (55) into a single prediction and including the
additional error due to uncertainties in the hadronic pa-
rameters leads to

m, = 182 + 45 MeV, m, (1 GeV) = 171 + 15 MeV .

(56)

IV. CONCLUSIONS

In this paper we have discussed in detail how to absorb
mass singularities into the vacuum expectation value of
other operators of appropriate dimension, for the case of
the mass logarithms m4 ln(m2/Qz). We have also in-
cluded the mixing with other dimension-4 operators to
two-loop order. A comparison has been made with ear-
lier analyses of this problem [3,9—11]. In particular, we
have shown that in our approach it is possible to avoid
terms involving inverse powers of n, which, being para-
metrically enhanced, might lead to large corrections. We
have then used the QCD expression of the current corre-
lator involving the strangeness-changing vector current,
together with a 6t to the experimental data on the I = 2,

S-wave Kvr amplitude, to determine the strange-quark
mass through a Borel QCD sum rule. Our results for
m, are in agreement, within errors, with the determi-
nation of [2], which used the same fit to the data, but
employed the QCD approach of [3] to remove mass sin-
gularities. The errors we quote for the strange quark
mass are larger than those in [2]. This is mostly due to
the fact that in [2] the gluon condensate was fixed at the
single value ((n, /vr)G ) = 0.03 GeV, and A was allowed
to change in the narrower interval A = 100—200 MeV.

Note added. After submitting our paper for publication
we received a similar work [34] where the strange quark
mass is calculated in a similar way. Our results agree
well with those in [34].
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