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Observations on the potential confinement of a light fermion
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We consider possible dynamical models for a light fermion confined by a potential field. With
the Dirac equation only Lorentz scalar confinement yields normalizable wave functions, while with
the no pair variant of the Dirac equation only Lorentz vector confinement has normal Regge behav-
ior. A systematic investigation of Regge properties and phenomenological properties is carried out,
including calculations of the Isgur-Wise (IW) function. We point out that the Isgur-Wise function
provides a sensitive test of confinement models. In particular, the slope of the IW function at the
zero recoil point is found to be ('(1) —0.90 for the Dirac equation with scalar confinement and
('(1) —1.20 for the no pair equation with vector confinement. Using heavy-light meson data alone
we argue against scalar confinement.

PACS number(s): 12.39.Pn, 12.38.Aw, 12.39.Hg, 12.40.Nn

I. INTRODUCTION

The description of the dynamical confinement of a light
fermion by a central force requires an examination of
various wave equations. For example, the direct appli-
cation of the Dirac equation with Lorentz vector confine-
ment leads to pair production on hadronic time scales
which is not observed. In this case the "no pair" (NP)
or "quenched" variant of the Dirac equation is used to
obtain a physical and "well posed" result.

In this paper we survey the solutions of the Dirac and
NP equations for both Lorentz vector and scalar confin-
ing potentials. We use the results in each case to compare
to heavy-light meson data. Dirac scalar confinement and
NP vector confinement are capable of accounting for the
measured meson masses as well as the Isgur-Wise func-
tion. The values of the parameters resulting ft. om the
fits, however, provide interesting clues to the correct form
of the confinement. In particular we will argue against
scalar confinement on the basis of heavy-light meson data
alone.

We begin in Sec. II with a brief discussion of one-
particle fermionic wave equations and their properties.
Classical arguments reveal the Regge behavior and cat-
egorize the efFects of the negative energy states on the
positive energy solutions. In Sec. III we discuss our nu-
merical method and reproduce the pure Coulomb NP so-
lution of Hardekopf and Sucher [1]. We then successively
consider scalar and vector confined mesons with Dirac
and NP equations in Sec. IV and we summarize our find-
ings in Sec. V.

[Hp+ P —E]g(r) = 0,
where the free particle Dirac Hamiltonian is

Ho ——cr p+ Pm (2)

P(r) = V(r) + PS(rj .

E is the energy of the light degrees of freedom and n and
P are the usual Dirac matrices [2].

When one attempts to use the Dirac equation to solve
the helium atom one finds [1, 3] that no normalizable
solutions are possible. This "continuum dissociation" is
a form of the Klein paradox when the negative energy
states mix with the positive energy states. Since helium
clearly exists, one must rephrase the Dirac equation to
suppress this mixing. The result is the NP equation [1].

An analogous phenomenon occurs for a single particle
moving in an increasing (confining) Lorentz vector po-
tential. For a very long time [4] it has been realized that
there are no normalizable solutions to the Dirac equation
in this case. This again is an example of the Klein para-
dox [5]. For a potential which rises sufficiently fast and
a sufBciently small quark mass, the states corresponding
to the free negative and positive energies mix resulting in
the loss of normalizability. In both these cases a simple
alteration to the Dirac equation avoids this mixing. The
free Dirac Casimir projection operators [2] are

Ep+ Hp
)

II. WAVE EQUATIONS

The time-independent Dirac equation for a quark of
mass rn moving in a Lorentz scalar potential S(r) and
the time component of a Lorentz vector potential V(r) is

where

Eo ——gp +m2.
These projection operators have the well-known proper-
ties
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A~~ ——A~, A+A = A A+ ——0,
A+ + A = 1, A~HO ——HpA~

If A+ acts on the Dirac equation (1) &om the left-hand
side we obtain by use of (6)

E+

A+(Ho+ P —E)Q
= [HpA+ + A+P(A+ + A ) —EA+)g
=0. (7)

The A g term represents pair production in the interac-
tion [1]. The NP approximation is obtained by dropping
the A @ term. Defining a new wave function

ar

the resulting NP equation is

(Ho + P+ —E)P = 0,
where

(9)

P+ ——A+PA+ . (io)

A. Classical turning points E

The S-wave classical turning points provide valuable
insight into the structure of these wave equations. By
inspection, some vital properties of the solutions will be
evident. The S-wave turning points are defined by p = 0
in (1) and (9). The turning point condition for the Dirac
equation (1) is

P(m+S)+V = E.
There are two turning points: one bounding the posi-
tive energy states (P = 1) and the other bounding the
negative energy states when P = —1. They are

E+ ——m+ S(r) + V(r),
E = —m —S(r) + V(r) .

We consider in turn scalar confinement [V = 0, S = ar]
and vector confinement [V = ar, S = 0]. The S-wave
turning points given in (12) and (13) are plotted in Figs.
1 and 2 for scalar and vector confI.nement, respectively.
The two cases are dramatically diferent. The scalar con-
Gnement turning points ensure separation of the posi-
tive and negative state regions resulting in a well-de6ned
mathematical problem. The vector con6nement turning
points plotted in Fig. 2 allow the free negative energy
states to rise into the positive energy region causing mix-
ing for a given positive energy. This mixing is known as
the Klein paradox [5]. In principle this means there are
no normalizable bound states although for heavy quarks
the mixing effect is negligible.

At the S-wave turning point we have

FIG. 1. S-wave classical turning points for the Dirac equa-
tion with scalar confinement.

E+

E

ar

(14)

and the NP turning points &om (9) are given by

E+ ——m + S(r) + V(r),
FIG. 2. S-wave classical turning points for the Dirac equa-

tion with vector confinement.
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(16)

These are plotted in Fig. 3 and are the same for scalar
and vector confinement. From this point of view vec-
tor confinement has become a well-defined concept since
normalizable bound states are now expected to exist.

(f"
(h, +P —EX)

~

~„~=0, (22)

which can be verified by integration by parts. We com-
mute the Y matrix to the left-hand. side to obtain the
standard coupled radial equations

B. Spherical solutions where

Because of spherical symmetry we look for the solution
in the form [2]

(,) ~&
f, ( )&," ( )

&~

q~g,"(r)&, "(r))

(~i )
where

&y, 0

&
o '&,-")

and P are the spherical spinors. Using the identity

(19)

where

6
(D+ —m )
(V+8 0

0 V—

(23)

(24)

The quantum number k labels the meson and is defined
by

k =+(j+ —,'), (25)

(26)

where the + sign means l = j + 2 or A: = l, the —sign
means l = j —

2 or k = —(l + 1), and hence l(l + 1) =
k(k + 1).

An analogous pair of coupled first-order radial equa-
tions can be obtained for the NP equation (9). We de6ne

k (d liD~=+—+
(

—+-
/&dr r) (20) where E0+" is to be evaluated using orbital angular mo-

mentum l according to (25), i.e. ,

and

D = —D+~

E+

(21)

The identity

with

+ "'""+-
r2 (27)

(28)

( a , '„D)—L=
(D+ „

A )
then gives the radial NP equation

(f"l
(n, + LPL —Za)

~ g ~

= 0 .
hagi )

(29)

-m E

It should be noted from (21) and (29) that I.t = I..
The radial equations for the Dirac case (22) or the NP

case (30) are solved in a similar manner as discussed in
Sec. III. The NP equation can of course be thought of
as a Dirac equation with a coordinate and momentum-
dependent potential.

C. Regge behavior

FIG. 3. S-wave classical turning points for the no pair
equation. Note that there is no difference between the scalar
and the vector con6nement.

In the ultrarelativistic limit one aspect of the Dirac
solutions can be inferred immediately without any de-
tailed calculation. For large orbital angular Inomenta the
Regge trajectories become linear for linear confinement
and have a slope that is characteristic of the Lorentz na-
ture of the confinement. The result that the single light
quark Regge slopes are exactly double the corresponding
two light quark Regge slopes should be noted [6], where
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in each case the energy in the Regge slope is identified
as the excitation energy (i.e. , meson energy minus heavy
quark mass).

We consider high rotation ~k~ )) 1 and nearly circular
orbits. The radial Dirac equation (22) then implies

(31)

We note that although the origin of the NP equation
lies in nearly nonrelativistic atomic physics it retains vec-
tor confinement in the ultrarelativistic limit. The status
of scalar confinement is drastically diBerent. The situa-
tion here is reminiscent of the scalar confinement catas-
trophe which occurs in the momentum space formulation
[7] where confinement is lost

which becomes

(E —V) —S r2 (32)

The state of the lowest energy for a fixed k satisfies
~~~~„=O, or

k2
(E —V)V'+ SS' = —.

III. DESCRIPTION OF THE NUMERICAL
METHOD

Instead of solving (22) by integrating difFerential equa-
tions we choose a variational (Galerkin) method [8]. We
expand f" and g" in terms of a complete set of basis
states P(r), and truncate the expansion to the lowest K
basis functions, i.e.,

The two cases we are considering are: scalar confinement;
S = ar, V = 0, for which

N

f,"(r) = ).c 4'~i(i)
n=1

(41)

/k/

E 2a (34)

and vector confinement; S = 0, V = ar, giving a Regge
slope of

g~ (r) ) c~ 4'nl(k) (42)

/k/

E2 4a (35)
Substituting these expressions into (22) or (30), and then
multiplying from the left-hand side by

The Regge behavior of the NP equation proceeds sim-
ilarly. By (20), (26), and (27) the high ~k~ )) 1 limit
implies that

dry'rnl(k)
2

we end up with 2N x 2N matrix equation in the form

)L,(~k[»1) = —
~

.1 ( lk)
2 &»j

Hi] Hi 2

(c j (H2i H22j pc~ j (44)

where k =
~&~,

and the NP equation potential term is

1 (1k) (V+S 0 t (1k&
4 (klj ( 0 V —Sj (klj

(37)

g- —E+ -Vk 1
2 2

i(~"~ + -', v)
—E+ —V (38)

The solutions are E = and a positive solution

E= V(r)+ —.

For the positive solution the minimum E for a fixed k
condition then gives

[k/ 1
E2 4a (4o)

This is identical to the Dirac vector confinement slope
(35).

We first note that the scalar potential cancels in this
limit and hence the universal Regge behavior is lost with
NP scalar confinement. The radial equation (30) then
yields

S(r) = 0,
V(r) = ——", (45)

(46)

Here, H;~ are symmetric N x N matrices and H12 ——H21.
Diagonalizing the Hamiltonian matrix yields energies and
eigenvectors in terms of the basis states. The lowest N
energies and eigenvectors correspond to negative energy
states, while the N + 1 to 2N states describe positive
energy states. Basis states, and therefore energies and
eigenvectors of H, depend on the variational size param-
eter P. The dependence on P of the lowest positive en-
ergy states (as well as the highest negative energy states)
should vanish with increasing number N of basis states
used. The pseudo-Coulombic basis states and all matrix
elements used are described in the Appendix.

The Galerkin finite basis method will approach the
true eigenvalues from above if the Hamiltonian matrix
is positive definite. Although the Hamiltonians which we
are considering here are not positive definite they still ex-
hibit plateaus in P, which become wider as the number
of basis states increases. In those cases where analytic or
alternative numerical solutions are available our Galerkin
plateaus correspond to the correct eigenvalues.

In order to see how the variational method works with
the Dirac equation, we first solve pure Coulomb poten-
tial,
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In Fig. 5 we illustrate the scaled energy of the ground
state,

v m
as a function of the Coulomb constant ~. The solid line
shows the exact analytic Dirac result

0.95

0.9

0.85

and also our numerical solution which is the same to high
accuracy, even for values of K close to one. The dashed
line is the Coulomb NP equation ground-state energy. As
Hardekopf and Sucher [1] found, the NP and Dirac solu-
tions are nearly the same for small K. Our NP Coulomb
solution is consistent with that obtained by Hardekopf
and Sucher [1].

0.8
IV. RESULTS

for which the analytical solution is known [2]. In Fig. 4
we show dependence of the three lowest positive energy
states (for m = 1 GeV, K = 0.5, k = —1, and j = 2)
on the variational parameter P. The solid lines represent
the exact analytic solution of the Dirac equation. As we
increase the number of basis states, the plateau region of
P where the eigenvalues of H are the same as the exact
energies enlarges. The variational scheme works well in
this case.

-0.4

-0.45
Exact
No pair

-0.5

-0.55

-0.6

-0.65

-0.7

-0.75

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

FIG. 5. Scaled eigenvalue e for the ground state (j
Ie = —1). We used m = 1 GeV and 1V = 25 basis states.

The no pair equation result is shown by the dashed line, while
the Dirac equation result is shown by the solid line.

P [Gev]

FIG. 4. Dependence on P of the three lowest positive en-
ergy states for the pure Coulomb ease with m = 1 GeV
K = 0.5, k = —1, and j =

~ . Exact solutions of the Dirac
equation are shown by solid lines, while our variational so-
lutions are shown by dashed lines (shorter for N = 15 and
longer for N = 25 basis states used).

A. Dirac equation vrith scalar confinement

Properties of the spectrum of the Dirac equation with
scalar confinement and a short-range Coulomb interac-
tion have already been investigated in [9]. These authors
also report results of their numerical calculations, which
we have used as another check of our method. With
N = 25 basis states we were able to reproduce all of
their numerical results for the eigenvalues to their given
accuracy of four decimal places.

As in [9] we take

= 0.300 GeV (fixed),
= 0.463 GeV,
= 1.301 GeV,
= 4.639 GeV,
= 0.308 GeV
= 0.579 .

mQ

ms

As seen &om the Table I, the agreement with experi-
mental data is excellent, and values of parameters are all
reasonable, except for the value of the tension a.

From the universal Regge slope o.' 0.8 GeV one
expects a to be

but here we go a little bit further in investigating the
use of the Dirac equation with scalar confinement in the
description of heavy-light mesons. First, we make sure
that nothing in our final result depends on the value of
variational parameter P. In Fig. 6 we show the three
lowest positive energy states and the three highest nega-
tive energy states for mq 0 3 GeV, a = 0.2 GeV, K =
0.5, k = —1, and j = 2. Clearly, with N = 15 we have a
large region where the eigenvalues do not depend on P.

Next, we perform a systematic fit to the observed spin
averaged heavy-light meson states. We fix the light quark
mass to be m„p——0.3 GeV, and vary all the other param-
eters of the model to best account for the experimental
data. In Table I we show the results of this fit, with
parameters
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2,
N = 25
N —15

scalar confinement is o.' = 2, so that tension necessary/ 1

to account for the spin averaged meson masses must be
about a factor of 2 larger than the one expected from
light-light meson spectroscopies and the Nambu slope
(51). Indeed, if we divide the value of n &om (50) by
2, we get 0.2, as we expected.

As we have already mentioned, the Regge slope for the
Dirac equation with scalar confinement is expected to be
o.' =

2 . In order to verify this numerically we fix a to
be 0.2 GeV, choose mq ——0, and then plot dependence
of j with respect to 2 . As seen in Fig. 7, the slope of
the Regge trajectories is one, as expected.

Once the wave functions are known for a heavy-
hght meson the Isgur-Wise (IW) function, describing the
semileptonic B —+ D~ ~ decay distribution, can be evalu-
ated [10, 11]. Using

II I I I I I I I I

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

P [Gevj

2 . f td —1
&(~) = jo 2Eq r

~+1 ( +1 (52)

1
0.2 GeV

27t o.' (51)

and this is consistent with the value found from analyses
of heavy quarkonia spectroscopies [8]. However, as we
saw in (34), the Regge slope for the Dirac equation with

FIG. 6. Dependence on P of the three lowest positive
energy states and the three highest negative energy states
for the Dirac equation with scalar confinement, with mq
0.3 GeV, a = 0.2 GeV, K = 0.5, k = —1, and j = 2. Solid
lines correspond to N = 25 and dashed lines correspond to
N = 15 basis states used.

where

dr r R(r)A(r)B(r), (53)

we find the IW function that this model predicts. As
shown in Fig. 8, the agreement with ARGUS [12] and
CLEO [13] data is reasonable. To calculate the slope we
use the expression [11]

For the range of light quark masses from 0 to 350 MeV

TABLE I. Heavy-light spin averaged states. Theoretical results are obtained from the Dirac
equation with scalar confinement. Spin-averaged masses are calculated in the usual way, by taking

(s) of the triplet and — ( —) of the singlet mass for the S(P) waves. An estimate for the B," was
taken to be 5421 MeV, in order to make the splittings B* —B and B," —B, the same.

State
cu, cd quarks
D (1867)
D' (2010)

0 1S
Sg

Spectroscopic label
JP 2s+1 L J

Spin-averaged Quantum number
mass (MeV) k

1S (1974)

Theory
(MeV)

1975

Error
(MeV)

Dg (2423)
D* (2457)
c8 quarks

D, (1969)
D,* (2110)

0

1P
'P2

Sp
S

1P (2444)

1S (2075)

2444

2074

D„(2535)
D., (2573)
bu, , bd quarks
B (5279)
B' (5325)
b8 quarks

B, (5375)
B,* (5421)

1+
2+

0

1P
P

Sp

Sp
Sg

1P (2559)

1S (5314)

1S (5410)

2559

5313

5411
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/

/ r
/

/

r
rI

S(r) = 0, V(r) = ——+ ar, (56)

C. NP equation with scalar confinement

the Dirac equation has no normalizable solutions. As we
mentioned earlier this has been known to be the case for
over 60 years [4]. The origin of the problem is in the
mixing between positive and negative energy states as
shown in Fig. 2. Since the basis wave functions are all
normalizable in our variational method it is of interest
to see how this problem is manifest. In Fig. 9 we show
the P plot with vector confinement for the three lowest
positive and the three highest negative energy states. We
see how the three states mix in the region ofP where there
should be a plateau. It is interesting to note, however,
that if one extends the apparent plateaus through the
level repulsions a consistent result is obtained which is
not too difkrent &om the NP result below. The largest
difFerence is in the ground state where the Dirac and NP
results are about 50 MeV apart.

FIG. 7. Regge trajectories for the Dirac equation with
scalar confinement. We have chosen m„,g ——0, a = 0.2 GeV,
and II, = 0.5. Solid lines correspond to A: = —(j + —) and2
dashed lines to k = j + —. To ensure that all calculated
energies are correct we used N = 100 basis states, and kept
first 15 states.

We observed in (37) that for large orbital excitation the
NP scalar interaction cancels from the NP equation. The
consequent loss of linear Regge trajectories eliminates
any conventional discussion of meson states in terms of
scalar confinement in the NP framework.

we obtain

('(1) = —0.90 + 0.02 . (55)

B. Dirac equation with vector confinement

If a fermion is con6ned by a Lorentz vector interaction,
1.e.)

D. NP equation with vector confinement

There is reason to hope that the NP equation with vec-
tor confinement (56) will eliminate this xnixing and hence
reestablish a one-particle wave equation. Comparing the
S-wave turning point structure of the NP equation in Fig.
3 with the Dirac equation shown in Fig. 2 we observe that

3

1.2

o ARGUS
~ CLEO 2

0.8 0

06

04

0,2

-2

I I I I I I I I I

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

FIG. 8. IW function for B decays calculated from the
Dirac equation with scalar confinement. Values for the light
quark mass m„,g, tension a, and short-range potential con-
stant II are taken from the (50). For the sake of clarity, error
bars are shown only for the CI EO data.

(i ÃeVi

FIG. 9. Dependence on P of the three lowest positive
energy states and the three highest negative energy states
for the Dirac equation with vector confinement, with m, ~ =
0.3GeV, a=0.2GeV, ~=0.5, k= —l, and j = ~. We
used N = 15 basis states. The mixing between positive and
negative states is evident.
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FIG. 11. Regge trajectories for the no pair equation with
vector confinement. We have chosen m„,g = 0.3 GeV, a =
0.2 GeV, and e = 0.5. Solid lines correspond to k = —(j+ 2)
and dashed lines to k = j + —.To ensure that all calculated
energies are correct we used N = 50 basis states, and kept
first 10 states.

('(1) = —1.20 + 0.03, (58)

where the error is estimated Rom the variation of the
light quark mass 0.25 & m„p & 0.35 GeV. We observe
that this slope is significantly more negative than the one
found &om the Dirac equation with scalar con6nement
(55), even though the same set of spin averaged heavy-

1.4

1.2

o ARGUS
~ CLEO

1 ~l I

0.8 -
e

~O
0.6-

0.4

0.2

I I I I

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

FIG. 12. IW function for B decays calculated from the no
pair equation with vector confinement. Values for the light
quark mass m„z, tension a, and short-range potential con-
stant K are taken from (57). For the sake of clarity, error bars
are shown only for the CLEO data.

light meson masses were used in the fit. However, if we
compare Figs. 8 and 12 we see that Isgur-Wise function
obtained from the NP equation agrees with the data a bit
better than the one calculated from the Dirac equation
with scalar confinement.

V. CONCLUSIONS

We have considered here the motion of a fermion in a
central 6eld. The interaction that we have emphasized is
scalar or vector linear confinement. We are particularly
interested in this problem because of its application to
the description of heavy-light mesons. The wave equa-
tions considered are the Dirac equation and the "no pair"
equation. Although the properties of the Dirac equation
are well known we reconsider them in the light of a con-
fining interaction and also to serve as a benchmark for the
related NP equation. Our main results are the following.

(1) Dirac equation with scalar linear confinement. This
is the most straightforward confinement model for a
fermion. We find that it is a well-posed problem with
a unique solution and that by adjusting quark masses,
Coulomb constant K, and tension a, an excellent fit to
heavy-light meson masses can be found. The tension
found (a 0.31 GeV) is larger than normally obtained
from heavy quarkonia fits and this may be viewed as ev-
idence against scalar con6nement. The origin of this dis-
crepancy is the scalar confinement Regge slope a' =

2
The slope is 6xed by the p-wave heavy-light states and
yields a tension about 50'Fo larger than the usual value.
If we force the tension to be 0.2 GeV then although
the fit to the energy levels is still good, the Isgur-Wise
function becomes shallow with a slope ('(1) —0.70 and
does not fit the experimental data well. We conclude
that although scalar confinement gives mathematically
consistent solutions, it does not seem to agree well with
experiment.

(2) Dirac equation with vector confinement. There are
no normalizable bound-state solutions in this case.

(3) NP equation with scalar confinement. Scalar con-
finement in the no pair equation does not yield normal
quasilinear Regge trajectories and hence does not corre-
spond to the universal Regge behavior.

(4) NP equation with vector confinement. This model
of fermionic con6nement also is viable. Vector NP con-
6nement, along with an attractive Coulombic short-range
interaction, again gives good fits to the data. Vector con-
6nement yields a Regge slope of o.' = 4, one half of the
scalar value.

There are thus two alternative confinement models
yielding linear Regge trajectories: scalar Dirac and vector
NP. They both account for the data well. The differences
though are interesting. The parameters, most notably
the tension, are different when fitted to the data.

As we observed in Sec. IIC the Regge slope for scalar
and vector confinement differ by a factor of 2. Since the
tension appears both in S-wave dynamics and in rota-
tional states experimental data will ultimately decide the
correct result. The tension preferred by heavy quarko-
nia actually lies between the scalar Dirac and vector NP
heavy-light values. As we have pointed out [14, 15) the
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heavy-light Regge slope n' = —obtained in the relativis-
tic Hux tube model is consistent with the heavy quarkonia
value.

Another piece of information which should soon shed
additional light on the proper model of confinement is
the Isgur-Wise function. Both by experiment and &om
the lattice simulation of @CD, accurate values of the IW
function (or its slope at zero recoil point) will be avail-
able. The Isgur-Wise function appears to depend fairly
sensitively on the confinement model. As we have seen,
Dirac scalar confinement yields ('(I) = —0.9, while NP
vector confinement gives ('(I) = —1.2. Both of these
models provide excellent fits to the same data set.

Finally, we should mention that we have been led into
these questions by our investigation of the relativistic Hux
tube model [14—16]. For low orbital angular momentum
states the Hux tube model is similar to vector confine-
ment. It appears &om the results presented here that an
NP-type equation will be appropriate for the Hux tube
with one light fermion.

APPENDIX: BASIS STATES

The pseudo-Coulombic radial basis states are those
used in previous calculations [8, 14, 15],

R,t(r) = N;tP&(2Pr)'e ~'L, '+
(2P. r), (A1)

where

8(i!)
(i+ 2l + 2)! (A2)

76ER00881 and DE-AC05-84ER40150, the National Sci-
ence Foundation under Grant No. HRD9154080, and in
part by the University of Wisconsin Research Committee
with funds granted by the Wisconsin Alumni Research
Foundation.

ACKNOW'LED GMENTS

This work was supported in part by the U.S. De-
partment of Energy under Contracts Nos. DE-AC02-

In these equations we assume 0 & i & N —1. For com-
putational precision and eKciency, the matrix represen-
tation of all operators have been calculated analytically

8[17]. For p2 = ——
&,, r, r, „-,and —„,we have

Nst —l(2l + 3)(j —i) + (I + 1)(2i+ 2l + 3)
r s ss (2l + 1)(2l + 3)

(r),s = (2i+ 2l+ 3)b, s
—v j(j+2l+ 2)b;,s i —v i(i+ 2l+ 2)b';,s+i I

r,2
/+1 N

( [(2l + 1)(j—i) + 2j + 2l + 3]

(A4)

(A5)

(A6)

where we assume i & j, while results for i ) j can be obtained by simple reHection due to the symmetry of operators.
The only other matrix element used was

Or, l+ 1

—(l+ 2) ~i ( j,
)Nii ~ ) jN~] '

(A7)
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