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Determination of SU(6) Clebsch-Gordan coefBcients and
baryon mass and electromagnetic moment relations
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We develop a new method to compute and tabulate the Clebsch-Gordan coefficients of the SU(6)
p SU(3) x SU(2) product 56 S 56, which are relevant to the nonrelativistic spin-ffavor symmetry
of the lightest baryons. Under the assumption that the largest representation in this product, the
2695, gives rise to operators in a chiral expansion that produce numerically small efFects, we obtain
a set of relations among the masses of the baryons, as well as among their magnetic dipole and higher
multipole moments. We compare the mass relations to experiment, and find numerical predictions
for the Z -A mass mixing parameter and 18 of the 27 magnetic moments in the 56.

PACS number(s): 11.30.Hv, 12.40.Yx, 13.40.Dk, 13.40.Em

I. INTRODUCTION

A generation ago, during the mid 1960s, the highly
successful SU(3) model of light fiavors developed by Gell-
Mann and Ne'eman [1] was generalized to include the
spin symmetry SU(2) in an enlarged spin-fiavor symme-
try group, SU(6) [2]. The increased predictive power of
SU(6) over independent SU{3) x SU(2) symmetries im-
mediately produced a number of intriguing results for the
baryons, most notably the relative closeness of baryon
octet and decuplet masses, the axial current coeKcient
ratio F/D = 2/3, and the famous magnetic moment ratio
p~/pn = —3/2, which is experimentally true to 3%.

Yet two problems with the theory ultimately brought
about its demise. The first was that mesons did not seem
to fit as well as baryons into the theory; for example, why
are the baryon octet and decuplet relatively close in mass,
whereas the vector mesons are 2—5 times heavier than
their pseudoscalar partners? Clearly SU(6) is somehow
special to baryons. The other problem was much more
serious, and in retrospect seems almost obvious: Mixing
the compact, purely internal Bavor symmetry with the
noncompact Poincare symmetry of spin angular momen-
tum must and did ultimately lead to some nonsensical re-
sults. Such considerations gave rise to the various no-go
theorems of the late 1960s, culminating in the celebrated
Coleman-Mandula theorem [3], all forbidding such hybrid
symmetries.

Nevertheless, there still exists the troubling matter of
the p„/p ratio and other baryonic "coincidences. " Why
should such good predictions exist? Although the no-go
theorems tell us that SU(6) cannot be an exact symmetry
of nature, there is nothing forbidding it &om being a very
good approximate symmetry. If this is the case, we may
expect that a true symmetry of the universe generates
predictions which are very similar to those of SU(6).

*Electronic address: rlebedoucsd. edu

A promising candidate for such a symmetry is pro-
vided by large-N @CD [4]. It has recently been shown
that the baryon sector of large-&, @CD possesses a con-
tracted spin-fiavor symmetry [5—7] which is similar, but
not identical, to the SU(6) spin-fiavor symmetry. Re-
sults obtained from a consistent expansion in powers of
1/N, allow one to explain certain results of chiral pertur-
bation theory [which in turn relies on SU(3) symmetry]
that are diKcult to understand otherwise. It is a phe-
nomenological fact that combinations of hadronic fields
transforming under the largest representations of SU(3)
or SU(6) tend to give rise to numerically small results,
which is the origin of relations between hadron parame-
ters. Often, but not always, this can be explained by the
fact that the largest representations are accompanied by
several powers of small chiral symmetry-breaking factors
and are thus suppressed. In the large-N contracted spin-
Qavor symmetry, on the other hand, operators transform-
ing under larger representations tend to be accompanied
by more powers of 1/N, [8]; thus we have a well-defined
prescription for identifying theoretically suppressed com-
binations of baryonic parameters or, in other words, re-
lations among the baryons.

It is therefore a highly relevant problem to analyze the
group theory of the large-N contracted spin-Aavor sym-
metry in order to find and test relations among baryon
parameters, namely, masses, electromagnetic moments,
and eventually decay widths and scattering amplitudes.
Interesting new results have been obtained in this the-
ory [7,9,10], but the full analysis has not yet been com-
pleted. It is also important to uncover, as is done in this
work, the analogous relations within the related symme-
try of SU(6), so that one can compare them to the large-
N, results [11]. A detailed comparison of the relation-
ships between physical quantities ultimately helps us to
determine how accurately each symmetry rejects reality.

In SU(6) the well-known octet and decuplet of baryons
fill a single irreducible representation, the 56; thus the
operators we consider, bilinears in the baryon fields, are
exactly those within the product of this representation
with its conjugate. The associated Clebsch-Gordan co-
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efficients for this and other SU(6) products appear in
the literature [12], and were computed using the usual
method of creation and destruction operators. In this
paper we develop an alternate, comparatively simple
and convenient method by which such group-theoretical
factors may be generated. Once this is accomplished,
we possess all possible information leading to relations
among the baryons that depend only on SU(6) symme-
try. We then need to decide only which product repre-
sentations may be neglected in order to obtain the de-
sired relations, and test their validity with experimental
inputs.

This paper is organized as follows: In Sec. II, we begin
with a discussion of SU(3) and its well-known Clebsch-
Gordan coeKcients, and how we may use them to build
up the corresponding coefficients for SU(6). As a warm-

up, we review the derivation of SU(3) mass relations us-
ing these coeKcients in Sec. III. The purpose of Secs. II
and III is pedagogical, to present the old SU(3) results
in the language of pure group theory and to establish
the notation we use for SU(6). We explain in Sec. IV the
new method of computation of the SU(6) coefficients and
their classification by additional SU(3) and isospin quan-
tum numbers. Tables of the SU(6) Clebsch-Gordan co-
efFicients, and the means by which relations are derived,
are presented in Sec. V. The baryon relations for masses
(equivalent forms of which have appeared previously in
the literature) and magnetic dipole, electric quadrupole,
and magnetic octupole moments (new to this work) are
collected in Sec. VI, distinguished for the first time by
their SU(3) and isospin content. We then use experimen-
tal values to evaluate these relations wherever possible,
and estimate the size of neglected terms. Throughout
this paper we stress which methods and results are old,
and which are new to this work. We summarize our new
results in Sec. VII.

II. SU(3) STRUCTURE OF BARYONS

We begin with a systematic classification of SU(3) rep-
resentations (hereafter reps) of the octet and decuplet
baryon field bilinears. This section is a new presentation
of well-known results that serves to establish a simple
common notation for describing group-theoretical quan-
tities. Consider, within the efFective Lagrangian, any
term connecting single initial and final baryons respec-
tively transforming under Ri- and R2-dimensional reps:

bZ = R2ORg,

where 0 is some operator. The pattern of SU(3) breaking
by this term is exhibited by the decomposition of (R2 x
Bi) into combinations transforming under all possible
irreducible reps. For the octet and decuplet, these reps
are

88 = 18, 8, 101027, (2)

8(310 = 8@10@27@35 (3)

(and its conjugate form 10 8), and

10 (S 10 = 1 g 8 g 27 @64.

M =Ca,
Mg ——Cgb,

M, =Cc,
M —, =C—,c,

where

The projections of 0 forming the coeKcients of these
combinations can be labeled with the SU(3) indices of
the corresponding bilinear combinations. We may then
loosely speak of 0 as transforming under some rep, al-
though in fact only the baryon field bilinears transform.
This analysis is, of course, not restricted to SU(3); its
verity relies only on negligible mixing from heavier states
possessing the same quantum numbers.

A restriction we now place on the baryon terms in the
Lagrangian is that they originate only in the strong and
electromagnetic but not the weak interactions. That is,
we consider only bilinears that conserve strangeness as
well as electric charge or, equivalently, those with the
properties AI3 ——0 and AY = 0. Note that these include
"mixing" terms for any states with the same values of I3
and Y; every octet state mixes with exactly one decuplet
state, and within the octet, Z -A mixing can occur.

It remains only to distinguish degenerate LI3 ——AY =
0 operators within a rep. As usual, we assume the stan-
dard notation of labeling with the isospin Casimir invari-
ant I(I + 1), so that x& (where x is a generic coeKcient
name) specifies a unique "chiral coefficient" within the
rep R. It then becomes a straightforward exercise with
the well-known SU(3) Clebsch-Gordan coefficients (see,
e.g. , Ref. [13])to decompose bilinear terms into the forms
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Here the 8 (3 8 reps 81 2 are distinguished by the sym-
metry properties of their components under reflection
through the origin in weight space (i.e. , exchanging the
component transforming with quantum numbers (I,Is,Y)
with that transforming under (I,—Is, —Y)). 8i 2 is sym-
metric (antisymmetric) under this exchange, giving, for
instance, the same (opposite) contributions to the bilin-
ears of the p and:"

With the above normalization of the chiral coefficients
a, b, c, and c, the matrices C are orthogonal. This, of
course, must be the the case, for we are merely describing
the bilinears in a different basis. Because the matrices are
orthogonal, we may alter the sign of any row or column
and still maintain orthogonality. The phase conventions
exhibited above have been chosen ultimately to match
well-known quark-model results; for example, each octet
term has the same singlet coefficient ao /2v 2. We are
thus fixing the phases of the lowest-weight reps, the direct
opposite of the usual Condon-Shortley convention.

It is easy to understand the number of chiral coef-
6cients appearing in the octet and decuplet products.
With arbitrary SU(3) breaking, one may clearly supply
each bilinear with a distinct arbitrary coefficient; hence
the decuplet product must have ten chiral coefficients,
the decuplet-octet product eight, and the octet product
ten, because the octet supports Z -A mixing. But such
mixing requires only one parameter, a mixing angle 0. In
the above matrices there are two, corresponding to the
bilinears ZoA and AZo. However, Hermiticity (or time-
reversal invariance) of the Lagrangian reduces these to
one, imposing the physical constraint a1 ———a1 . Later
we find a similar constraint between cI and cr .

Complete knowledge of the SU(3) group-theoretical
factors already tells us a great deal about the correspond-
ing factors for SU(6), for the quantum numbers of the lat-
ter symmetry group are assigned via the decomposition
SU(6) D SU(3) x SU(2), and the ffavor and spin groups
commute. Thus a chiral coeKcient of any rep N of SU(6),
distinguished by its decomposition into an B-dimensional
rep of SU(3) and isospin I (henceforth denoted by d~' )
must be some linear combination of all existing chiral co-
efficients aI, bI, cI, and cI . For example, because spin
and flavor commute, the bilinear combination a1' still
transforms as the I = 1 component of an octet regard-
less of how we insert spins on the baryon indices. Thus,
since the combinations a1', a1', b1, c» and c1 span the

entire subspace of I = 1 octets formed from the baryon
octet and decuplet bilinears, each d~ must be a linear
combination of these.

III. EXAMPLE: SU(3) BARTON MASS
RELATIONS

As a preliminary to SU(6), let us consider how to ob-
tain relations between baryons using only SU(3) group
theory. Again, these derivations must ultimately be the
same as the original ones (since both rely on group the-
ory alone), but are designed to express the old results
in a new and clearer way and pave the way for the
SU(6) results. Because SU(3) multiplets take into ac-
count only flavor symmetry, we do not expect to learn
anything about quantities in which the individual spin
states are important (e.g. , magnetic moment relations).
However, we can learn about the masses. First we assume
that mixing between multiplets is negligible, so that the
physical baryons truly live in octet and decuplet reps
of SU(3). In the usual chiral Lagrangian, SU(3) break-
ing is accomplished by an expansion in the quark mass

(Mz) and charge (Q~) operators; in terms of ffavor in-
dices, these are 3 x 3 matrices (with u, d, and s diagonal
entries), and such operators X may be decomposed into
octet [2C —s(TrX)l] and singlet [(TrA)1] portions. At
first order in SU(3) breaking only these singlet and octet
operators are present; at second order, operators in the
reps of Eq. (2) appear.

An important reason for the success of the chiral La-
grangian formalism is that the operators Mv and Q~
enter into the Lagrangian as operators with perturba-
tively small coefficients; in the case of Mq, contributions
are suppressed by at least m, /Ax 0.2, where m, is
the strange quark mass, and Az is the chiral symmetry-
breaking scale. Terms involving only m g are suppressed
by another factor of 20 or so. For Q~, the suppression
comes through powers of e —0.3, although in mass re-
lations, charge conjugation symmetry of the strong and
electromagnetic interactions permits factors of Q~ only
in even numbers; there is a further suppressions of 16~
because such Inass terms come from photon loop effects
in the @CD Lagrangian. Thus the true suppression is by
n/4vr 6 x 10

So now we can see explicitly why the coefficients associ-
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ated with the largest reps are suppressed: Larger reps re-
quire more powers of the small symmetry-breaking reps,
which in turn bring in more numerical suppressions.

Let us consider some examples, first supposing that
splittings within isospin multiplets are negligible. Then
all chiral coeKcients of the form x& with I & 0 must also
be negligible. In this case, the only independent octet
masses are N, Z, A, and:-, whereas the only nontrivial
chiral coeKcients are a0, az', az', and a0 . If we only
work to first order in SU(3) breaking, the last of these is
identically zero, and we find

1+GMO a,," = -', A+ —,'Z —
—,'(N+ =) = 0,

(6)

the Gell-Mann —Okubo relation [14]. For the decuplet,
the independent masses are 4, E*, :-*, and 0, whereas
the nontrivial chiral coefficients are b0, b0, 0, and b0 .
To first order in SU(3) breaking, the vanishing of the
last two coefBcients gives rise to two nontrivial relations,
which may be written

0 = 5(2b + bs ) = (b, —Z*) — (Z* —=*)
0 = io(b, :-2b:, ) = (Z*-=-*) — (n-=:*),

' (')

Gell-Mann's famous equal-spacing rule [15].
On the other hand, if we consider only I = 2 operators

[which we expect to be numerically well suppressed by
n/4m. or (m —mg) /A ], the octet provides us with the

Z equal-spacing rule [16]:

~, = ~6aP = (Z+ —Z') — (Z' —Z-). (8)

We caution that Z in this equation refers to the isospin
I = 1 eigenstate rather than the mass eigenstate. In fact,
we display in Sec. VI a new SU(6) relation for the mixing
parameter.

Now consider second-order terms in SU(3) breaking.
A priori we might expect to find that all of the repre-
sentations within the product 8 8 occur, but we show
that this is not the case. Because of charge conjugation
symmetry of the strong interaction, the mass Lagrangian
contains no terms with an odd number of Qz factors.
Thus the only second-order terms in SU(3) breaking are
of the forms (M~ x Mz) and (Q~ x Qz). Consider the
product of two identical arbitrary matrices: (X x X);~.",
which contains such terms as X,"Xz, X, X~", and var-
ious traces of X, where i, j, k, t are flavor indices in the
usual notation. It is readily seen that this product has
no piece transforming under a 10, for such a tensor with
the given indices has the form A,~ e ", and is sym-
metric under permutation of (i, j, m j. If we attempt to
construct a product with these symmetry properties from
two identical matrices, we quickly see that such a term
vanishes. Similarly, the product of two identical matrices
may contain no piece of a 10.

We conclude that, to second order in SU(3) break-
ing, the octet chiral coefBcients a& ——az are zero. The
baryon mass relation corresponding to the vanishing of
these coeKcients is

~c~ =-2&3,"=( -I)+(Z+ —Z ) —(=-' —=- ) =0,

the Coleman-Glashow relation [16]. For the decuplet, the analysis is even easier: 8 8 contains no 64 for arbitrary
pairs of 3 x 3 matrices, and so we have four mass relations good to second order in SU(3) breaking, corresponding to
the vanishing of b0 ~ 2 3.

20b,"=
28b64

6(7b64 b64)

35b,"=

0++ —36+ + 3A' —4-
(Z ++ —~+ —a'+ ~-) —2 (Z*+ —2m*'+ Z' ),
(~ -~') -(~'-~'-)+(=-"-=-'-)
1 0 y 3 ~g0
4
—(a+++a++a'+a ) —(z'++K" +&' ) + —(=-*'+=' )

—~
2

(1o)
(11)

(»)
(i3)

are four vanishing combinations. Notice that the first
three of these are isospin breaking, and only the fourth
remains in the limit that isospin is a good symmetry.
The Gell-Mann —Okubo, Coleman-Glashow, and Z equal-
spacing relations and their violations were explored in
chiral perturbation theory in Ref. [17], whereas simi-
lar computations for Eqs. (10)—(13) were performed in
Ref. [18].

The approach of identifying relations with large, highly
suppressed reps of course applies to any symmetry group,
and we now proceed to apply it to SU(6). First, however,
we must find the orthogonal matrix of spin-flavor baryon
bilinears analogous to those in Eq. (5).

IV. DETERMINATION OF SU(6)
CLEBSCH-GORDAN COEFFICIENTS

The orthogonal matrix of SU(6) group-theoretical fac-
tors can be determined most easily using tensor methods,
in a manner similar to that in which we identified SU(3)
mass relations in the previous section. In this case the
basic reps in SU(6) breaking are no longer octets, but
6 x 6 traceless matrices, the 35 (adjoint) rep. The spin-
1/2 octet (16 states) and spin-3/2 decuplet (40 states) of
baryons neatly fill out the 56 rep, and thus the relevant
products for our analysis are
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5656 = 1 354052695
and

35 35 = 1 35' 35' 189 280 280 405.

In particular, since the 2695 rep does not occur in the
latter product, combinations transforming under this rep
give rise to relations broken only at third order.

The most straightforward approach to computing the
necessary

coefficients

is to use the standard Wigner
method of starting with the highest-weight state of the
56 @ 56 product (which is 4,A++) and applying suc-

cessive SU(6) lowering operators, orthogonalizing degen-
erate states as necessary. Such an approach gives us not
only the AI~ ——LY = 0 bilinears, but all 56 = 3132
of them. This method was employed by Cook and Mur-
taza [12], in a work which presents the coefficients for
56 56 and other SU(6) products.

This is vastly more efFort than we need to expend. To
demonstrate the point, let us perform a counting of the
bilinears we need: In addition to AI~ ——LY = 0, we
also impose AJ~ ——0, where J is the total spin of the
bilinear. Using again that spin and Havor commute in
SU(6), we can obtain any AJs g 0 by means of the
simple SU(2) Wigner-Eckart theorem. Because the octet
is spin 1/2 and the decuplet spin 3/2, octet-octet bilin-
ears may appear only with J = 0, 1, octet-decuplet bilin-
ears with J = 1, 2, and decuplet-decuplet bilinears with
J = 0, 1,2, 3, and each J multiplet possesses a unique
J~ ——0 state. Recalling &om the previous section that
the number of independent ffavor bilinears (not counting
Hermiticity) in the 8 8, 8 10, 10 8, and 10 10
products are 10, 8, 8, and 10, respectively, we find

10(1 + 1) + 8(1 + 1) + 8(1 + 1) + 10(1 + 1 + 1 + 1) = 92

independent baryon bilinears with LIq ——LY = 4Jq ——

0. The central thrust of this section, therefore, is the
computation of a 92 x 92 orthogonal matrix.

In fact this task is simplified by the observation that
the combinations of physical relevance are actually those
with a well-defined J quantum number: J = 0 provides
us with information about the baryon masses (also their
"electric monopole moments" or charges, although this

I

J=0

6g 6=1@35, (16)

whereas for SU(3) and SU(2) the corresponding products
are

3g 3=1@8, (17)
22= 13. (»)

So writing SU(3) x SU(2) content reps as (R, 2I + 1),
we have

1= (1, 1), 35 = (1,3) + (8, 1) + (8, 3). (19)

As long as we construct products one fundamental index
at a time, there is never an ambiguity about how to assign
content reps (at least for the 56 56 product). We find
the following decomposition for each value of J:

information is of course trivial), J = 1 tells us about
their magnetic dipole moments, and J = 2, 3 about their
electric quadrupole and magnetic octupole moments, re-
spectively. This approach block-diagonalizes the 92 x 92
matrix according to values of J. Performing the count-
ing above including only the single J~ operator relevant
to each value of J, we find that the J = 0, 1, 2, 3 blocks
are, respectively, square matrices with 20, 36, 26, and
10 elements on a side. This is certainly a far cry &om
the full matrix of all bilinears, which has 56 entries —on
each side.

There are yet further simplifications to this approach.
Many of the entries will be related by means of Hermitic-
ity of the Lagrangian. We have seen already in SU(3) how
this relates the two Z -A bilinears; the same must be true
for bilinears like pL+ and 4+p. Consequently, the chi-
ral coeKcients of octet-decuplet mixing appear only in
certain characteristic combinations. We find that, of the
92 parameters at our disposal, the Hermiticity constraint
reduces this number to 74.

The next task is to find the SU(3) x SU(2) content of
the SU(6) multiplets. This can be accomplished by form-
ing the products of the Young tableaux for SU(3) and
SU(2) in parallel with those for SU(6), adding one block
(i.e. , fundamental rep index) at a time for each symme-
try group. Then the content of an SU(6) rep must be
such that the sum of the products of SU(3) and SU(2)-
rep multiplicities adds up to the multiplicity of the SU(6)
rep. As a simple example, in SU(6) the product of fun-
damental conjugate and fundamental reps is

SU(6) rep

1
35

405
2695

SU(3) content reps

1

1,8, 27
8, 10, 10,27, 84 (20)

SU(6) rep
35

405
2695

SU(3) content reps

1,8
8, 8, 10,10)27
1,8, 8, 10, 10,27, 27, 27, 35, 35, 64 (21)
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SU(6) rep
405

2695

SU(3) content reps

1,8) 27
8, 8, 10, 10, 27, 27, 35, 35, 64 (22)

SU(6) rep

2695
SU(3) content reps

1,8, 27, 64 . (23)

p

—~A)
(24)0

The baryon decuplet in this notation, a 3 x 3 x 3 array, may be represented as a collection of three matrices:

Using that the SU(3) reps 1, 8, 10, 10, 2T, 85, 35, and 64, respectively, have 1, 2, 1, 1, 3, 2, 2, and 4 states with
LI3 ——LY = 0, we count 92 chiral coefFicients in total, as expected, and numbers for each value of J that agree with
the block-diagonalization counting for baryon bilinears given above.

The central feature that allows us to implement tensor methods is that we have explicit tensor forms for both the
35 and 56. As previously stated, the 35 may be represented as a traceless 6 x 6 matrix; however, the trace adds only
a harmless singlet to our analysis, and so to obtain arbitrary second-order SU(6) breaking, we require two arbitrary
SU(6) matrices X and Z. The quantity we must compute is BBXZ, where B is the tensor form of the 56, and
SU(6) indices are contracted in all possible ways. In fact, the very useful tensor B constructed below appears in the
literature [19].

We first define the familiar SU(3) tensors. For the baryon octet,

(~Z +~A
Z

Tabc
( ~++

1 ~+
~3

&A~*+

1 Q+
~3

1 ~p
~3
1 pep

~6

1 pep

3=*')
1 y+0

1 y+0
~6
1

1
~3

(25)

One may assign any particular permutation of indices a, b, c to denote row, column, and submatrix in this represen-
tation, because the decuplet is completely symmetric under rearrangement of Havor indices.

Using the notation tl, g, $, JJ. to denote Js ——+2, +2, —2, —2, the SU(2) spin tensors for spin 1/2 and spin 3/2
assume the forms

(26)

and

ijk (~t ~g&
&~t ~") (27)

where the latter tensor is symmetric under exchange of indices.
Then, with the use of the Levi-Civita symbols e'~ and e'~", we construct the 56 tensor:

gaibjck ijkrabc ij k abd c j k i bcd a ki j cad b1
(28)

Note that B is completely symmetric under the exchange of pairs of indices &om SU(3) x SU(2), as the 56 is a
symmetric rep of SU(6). The 1/3~2 guarantees the singlet normalization:

B 'sg.iB""'"= ptp t+plpl+&~tl'& 0+&~t& t+ . (29)

Because we are interested in bilinear combinations with
definite J, we also require a table of SU(2) Clebsch-
Gordan coeKcients; however, since we have abandoned
the Condon-Shortley phase convention for the SU(3) co-
efficients, we must do likewise for their SU(2) analogues.
Starting with Clebsch-Gordan coeKcients in the Condon-
Shortley convention, we choose all Clebsch-Gordan coef-

I

ficients (00~s + m; s —m) to be the same regardless of
m, and both values of (10~ —+m; 2

—m) to be positive.
The SU(2) relation

(ji + mi, j2 + m2~ j + m) = (j2 —m2, ji —mi
~j —m)

(3o)
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relates the —x —and —x —Clebsch-Gordan tables.2 2 2 2
To obtain the SU(6) Clebsch-Gordan coefficients in the

35 rep, we simply compute the quantity BBXZ with X
traceless and Z = 1. To decompose into the component
SU(3) x SU(2) quantum numbers, we choose A to consist
of the basis operators 1 (3 cr3, Y(3 1, I3 (3 1, Y(3o3, and
I3(T3. The SU(6) rep 1 is even more trivial: X = Z = 1.

One may use a similar approach for 405 and 2695
operators as well, but then one must render the prod-
ucts of 6 x 6 matrices completely traceless under any
contraction, and this procedure tends to be tedious for
larger reps in SU(3) x SU(2) notation. A much better
approach is to find the 2695 combinations by observ-
ing that it is exactly these combinations that vanish in
the quantity BBXZ. We know from the SU(3) x SU(2)
contents which reps appear, and we know from Sec. II
that a particular SU(6) chiral coefficient d~' is simply
a linear combination of SU(3) chiral coefficients with the
same quantum numbers A, I. Therefore, we form an ar-
bitrary linear combination of the desired SU(3) chiral co-
eKcients and seek out values of the coefBcients for which
this combination vanishes from BBXZ; such a combi-
nation transforms under the 2695 rep. If there is more
than one, we arbitrarily choose an orthogonalization to
lift the degeneracy. Finally, we And the chiral coeKcients
d4ps by their orthogonality to d2695 d35 and di ' .

This procedure gives us all of the SU(6) Clebsch-
Gordan coeKcients for product states in 56 (3 56 with
AI3 ——LY = LJ3 ——0. As we have pointed out, the
restriction LJ3 ——0 is of no great consequence, for we
may use the Wigner-Eckart theorem to obtain coefFi-

I

cients with A J3 g 0. AI3, AY g 0 are not much harder;
because SU(3) Clebsch-Gordan coefficients are also well
known, we may use the SU(3) version of the Wigner-
Eckart theorem to obtain the others. Thus all coe%cients
of this product are now known. The great advantage of
this approach is that similar techniques may be applied
to other product reps and other symmetry groups. The
key requirement of this method is that one needs an ex-
plicit tensor representation of all fields under considera-
tion; since these tensors are usually constructed to satisfy
a specific particle content, such tensors are readily avail-
able. In our case, the SU(6) information is encapsulated
in the tensor B.

V. EXHIBITION OF SU(6) CLEBSCH-GORDIAN
CORP FICIENTS

Here we collect the mathematical results of the pro-
cedure just described in a compact notation. Rather
than exhibiting the gigantic 92 x 92 matrix or even the
smaller diagonal blocks, we present subblocks associated
with each SU(3) rep R. Note especially that the chiral
coeKcients d~', for a given B and N, are independent of
the particular value of I. On the other hand, these coef-
Gcients depend implicitly upon J; when confusion could
arise, we write d~'&. These results, apart &om the use
of our chiral coefBcient notation and different phase con-
ventions already mentioned, are identical to Table V of
Cook and Murtaza [12]:

( g1,0 ) (+
i,o( d4o5 ) ) &")'

2V, I
~~ d405

2695 ) —~i„) 4 bI )

(d,", ) ( 0 1

82
~io &b:)

~3 +~i5)

~10,1 10
d269s —~1 ~

~10,1 10
~2695 +1

64 I 64
2695 ~I (3I)

d1,0

2695 )
(+ ~ +

5 ~~ I bi
(+3V3 3~~) 0 ')

(d" l
d81,I

405
8g,I
405

&81sI

&d: ')

v

1
~io
0

2+ ~5
(+,~

3~3
0
0
0

3~3

+ 3~6
1

+~2
0

+ ~s
3~3

1
~s
1+
1

~io

3~15

+3'
1

~s
1

+ ~10

3~15 )

6I
C8

& l)
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dlo, 1

4 d2695 )

2695
g27g, I

2695

( d2Tg, I )

(+~2 +~
3+5

+~ 0

~ ~v
3~5
0 0

+ '
3~5

1
~io

+ ~14
3~5

+~

+,~l
1

~io
+ ~14

( dlo, i
405
10,1

& d2595 )

( aI
I
27 7

~-,2r )

~35,I 35
2695 I ~35,I —35

~2695 CI
64,I 64.
2695 I I (32)

J=2
1,0 1

d405 —bo~

(" ', l

( d2695 )

2 1
f ~5 v 10

+—1~s
0 +~

+~10 )
2 8

) (cI)
~1011 10
d2695 ~1 ~

~10,1 —10
269S = ~1

~
d2V, I

~
g27g, I

2695

( d27g, I )

+~ +~)
) &l')

~35,I
~2695 I &

~35,I —35
2695 cI ~

64,I 64
~2695 bI ~

(33)

R,I R
d269s = br for R = 1, 8, g7, 64. (34)

(JO~si —min(si, s2); s2 + min(si, s2)). (35)

A number of chiral coeKcients contain redundant in-
formation because of symmetry under conjugation (e.g. ,

10,1 10,1 Sg,I
div J and div '& ) . Others (e.g. , d405 1) necessarily vanish
once we impose Hermiticity. These are the counterparts
to the degrees of freedom lost from demanding only Her-
mitian combinations of bilinears like (AZ'0+ Z* A), and
one finds, as expected, exactly 74 physically independent
chiral coefIicients.

In order to obtain baryon relations, we must take into
account the particular matrix elements used in defining
the mass and electromagnetic moments. The matrices
above are defined by bilinears in eigenstates of total J,
but the various moments are defined as matrix elements
connecting the states with highest weight in the spin-
projection quantum number. The magnetic dipole mo-
ment of a particle with spin 8, for example, is defined as
the matrix element with angular momentum structure
(10~s —s; s + s). In the case of transitions between par-
ticles with difI'erent spins 81 and s2, however, the conven-
tion is not so universal. We adopt the choice that the two
particles are taken to be in the highest-weight spin states
such that their combined value is still zero; that is, the
spin-J multipole moment transition is defined through
the matrix element

I

Note that the J = 0 matrix elements, which give rise to
masses (or electric charges), do not depend on this choice
because of our previous choice of the Clebsch-Gordan
convention; here the physical fact of the independence
of baryon masses on individual spin states becomes most
clear. The matrix elements for all multipole moments
can now be obtained trivially from the SU(6) matrices
by use of the SU(2) Wigner-Eckart theorem.

VI. BARYON RELATIONS

A. Estimating relation-breaking terms

As in Sec. III for the case of SU(3), we argue that the
largest reps of SU(6) give rise to the inost experimentally
accurate relations. SU(6)-breaking operators appear in
the small 35 rep; the largest rep, the 2695, requires a
product of three of these, and so the 2695 chiral coef-
ficients contain all relations third order in SU(6) break-
ing. The neglect of the 2695 to obtain mass relations
is quite an old approach [20]; we attempt here to jus-
tify this assumption in the modern language of efFective
Lagrangians. The only statement that must be verified
is that all of the 35 operators possess numerically small
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= 0.2.
fAQO I8

2(m, o + ms)
(36)

We use this to estimate the spin-Hip coefFicient conser-
vatively as 0.3. Therefore, I = 0 operators in the 2695
contribute an amount to each baryon mass of order

coefFicients. Certainly the quark mass and charge opera-
tors, now written in SU(3) x SU(2) notation as M~ 1
and Q~ 1, are still small, as are the corresponding oper-
ators with with spin Rips, M~cmas and Q~os. The only
other physical operator to consider is the pure spin flip
1 (3 03. A priori we see no reason this operator should
have a small coefBcient, but it is precisely this opera-
tor that explains the relative smallness of the breaking
between the average octet and decuplet baryon masses.
Thus even this operator must possess a numerically small
coeKcient.

In order to judge the quality of the following relations,
we must be able to estimate the coeKcients of these 2695
operators. Fortunately, this is a matter of simple naive
dimensional analysis; we assume that any unknown di-
mensionless parameters are of order 1. For simplicity,
let us consider the mass relations only. The numerical
breaking of average octet and decuplet masses can be
characterized by the number

A~(0.3) = 25 MeV. (37)

B. Masses

Here we exhibit the mass combinations associated with
each chiral coeKcient in the 2695. There are 19 inde-
pendent parameters in the J = 0 sector, corresponding
to the octet and decuplet masses and the E -A mixing
parameter, which we denote by P. The ten J = 0 chi-
ral coefficients in the 2695, characterized by their SU(3)
decompositions, are the following:

Isospin-breaking operators are much more heavily sup-
pressed. Each unit of isospin breaking contributes an
additional factor (mg —m )/A~ 0.005; alternately, for
each two units of isospin breaking, a factor of n/4vr can
appear (operators with single powers of e are forbidden in
masses by charge conjugation symmetry). Typical num-
bers are 0.5, 0.2, and 0.003 MeV for I = 1, 2, and 3,
respectively. Note that these naive estimates apply to
individual baryons, and large coeKcients in the relations
presented below must be taken into account to obtain
reliable numbers. Similar arguments apply to the elec-
tromagnetic moment relations.

(SU(3), I)
(8, o)

(8 1)

(27, o)

(27, 1)
(27, 2)

(10, 1), (10, 1)
(64, 0)
(64, 1)
(64, 2)

(64, 3) (38)

mass combination,

+ ( + )+3(Z++ Z'+ Z ) —3A —4(:-'+ = ) —(A~+ 2++ 4'+ 4 )+ (:-*'+=* )+20
+7(p —n) +5(Z+ —Z ) —2(:-' —:-) —6~SP
—(3A~ a+ —a' —3a-) —2(Z*+ —Z*-) —(:-*'—:-*-),
+ 7[3(p+ ) —(Z+ + Z'+ Z ) —9A+ 3(:-'+= )]
—2[3(A~+ 4+ + A' + 4 ) —5(Z*+ + Z*' + Z*

) —3(:-*'+=*
) + 90 ],

+ 7[(p — ) —(:-' —:-) + 2~3p] —(3b,™+ A+ —4' —3A ) + 3(Z*+ —Z* ) + 4(:-*' —:-*),
7(Z+ —2Z'+ Z ) —3(A~ —4+ —4'+ A

—
) —(Z'+ —2Z*'+ Z* ),

+(& — )
—(Z+ —Z )+(=-' —=- )

+(A~+A++A +A ) —4(Z'++Z* +Z* )+6(:-* +=* ) —4&

+ (3~~ + 4+ —A —3A ) —10(Z*+ —Z* ) + 10(:-* —:-*),
+ (A~ —4+ —A + A ) —2(Z*+ —2Z' + Z* ),
+ A~ —32++ 3L' —4-.

It is interesting to note that the last Ave of these are also
SU(3) relations as well, because the SU(3) reps 10 and 10
do not appear in the decuplet-decuplet product, and 64
does not appear in the octet-octet product. In fact, since
the 64 rep appears in neither 810 nor 108, we have
the curious result that the these combinations of decuplet
bilinears give not only mass but dipole, quadrupole, and
octupole moment relations with the same coefFicients.

We also point out that the three I = 0 relations,
for which we may neglect mass differences within each
isospin multiplet, are equivalent to the three relations de-
rived by Dashen, Jenkins, and Manohar [7] in the large-
N contracted spin-Havor symmetry. This is an excellent (39)

illustration of the similarity between the two symmetries.
As I = 0 SU(6) relations, these three expressions may be
obtained from the calculation of Harari and Rashid [20].

We now exhibit numerical values for these combina-
tions. In all cases we use Particle Data Group (PDG) [21]
values for the masses, with the following exceptions.
First, the unknown parameter P is eliminated between
the (8, 1) and (27, 1) combinations. Next, the A mass
differences have notoriously large uncertainties; we adopt
the arguments in Ref. [18] that a set consistent with chi-
ral loop calculations is

—L~ = 1.3 + 0.5 MeV,
A+ = 1231.5 + 0.3 MeV.
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From the same reference, we 6x the 4 mass, which has
never been directly determined, by means of the (64, 3)
relation; its corrections, including loop effects, are de-
termined to be negligible. The results are presented in
Table I. In all cases, the naive estimates of 2695 opera-
tors explain the experimental relation breakings.

The set of nine relations after the elimination of P is
equivalent to the set derived by Rubinstein, Scheck, and
Socolow [22], who used very similar reasoning to that
above; their neglect of "three-body operators" is equiva-
lent to the neglect of the 2695. The difference is that the
earlier authors did not distinguish the relations by SU(3)
content, which is important to researchers who wish to
organize renormalization effects [17,18] or other operator
expansions (for example, large-&, @CD [11]).On the one
hand, the SU(3) decomposition of the 2695 in Ref. [22]
is missing the (10, 1) and (10, 1) terms (one independent

TABLE I. Experimental values for SU(6) mass relations
(MeV).

(8,0)
-'(27, 1) ——(8,1)

+208.2 + 3.5
—15.4 + 12.7

(64,0)
(64,1)

+5.9 + 1.7
+0.5 + 1.1

(10,1), (10,1)
(27,0)
(27,2)

+0.3 + 0.6
—278.5 + 23.2

+9.1 + 5.5

(64,2)
(64,3)

—5.2 + 4.5
0

paraineter), and on the other hand the Zo-A mixing is
neglected; thus they count only nine relations.

This brings us to the tenth relation, that which pre-
dicts P. We choose the unique sum of (8, 1) and (27, 1)
that eliminates the troublesome 4 masses, and obtain
the pretty result

n = +, , [(~+ —~-) + (=-'- =--) —(~'+ —~'-) —(=-" —=-'-)]

= —0.99 + 0.15 MeV. (40)

Equivalent relations to this were first obtained in Ref. [23]
by means of neglecting three-body quark operators; thus
their relations for P lie within the linear span of our ten
mass relations. A naive estimate of the 2695 breaking of
this relation produces a further uncertainty of order 0.2—
0.3 MeV. It is important to recognize that the masses
above labeled Z and A are actually eigenvalues associ-
ated with isospin eigenstates; to obtain the mass eigen-
values, we must diagonalize a 2 x 2 matrix including the
mixing terms. If we define the mass eigenvalues (labeled
by rA) via

where

1e= —tan '
(z' —a )*

(43)

The difFerence (Z —Z ) = —(A —A) turns out to be a
mere 13+ 4 keV, and. thus we lose nothing by using mass
eigenvalues for Z and A in the other mass relations.

(41)

then we find

0 = —0.013 + 0.002 rad (—0.74' + 0.11'), (42)

�

&K l ('+cos8 +sin8) &Zm &-""' +'"'r ~ A r
'

C. Magnetic dipole moments

The J = 1 sector is characterized by 27 parameters,
which may be thought of as the magnetic dipole mo-
ments of the octet and decuplet baryons, the eight pos-
sible transition moments between these Inultiplets, and
the Z -A transition moment. There are 18 independent
chiral coefBcients in the 2695, given as follows:

(SU(3) I)
(1,0)

(81,0)

(81, 1)

(8., 0)

(8„1)

magnetic dipole moment combination,

+ 15[(P, + P-) + (Pz+ + Pz + Pz- ) + P~ + (P=- + P=-- )]
—4[(Pz++ + Pr+ + P~o + P~ )+ (Pz + + P-z' + Pz. -) + (P=-' + P=- ~ )+ Pn ]~--
+ [(Vp+P-) —2(Pz++Pz +Pz-)+2P~+(P=- +P=--)]
+ V 2[(Pz+z.+ + Pzoz' + Pz-z. —) + (P=-o=- ~ o + P=--=- ~ —)]
+ 3[(P —P-) —(P=- —P=--)] —4~~P ~

~&[2(Pr ~+ + P ~o) + (Pz+z.+ —Pz-z. —) + ~~P~z. o + (P=o=.o —P=--=-.—-)],-
+ 3[»(P&+ P-) —(Pz+ + Pzo + Pz-) + P~ —»(P=-o + P=--)]
—5[(P~++ + P~+ + P~o + Pa ) —(P=-' + P=-. ) —-2Pn-]-
—6~2[(pz+ z + + Pzo zeo + Pz —z~ —) + (P-o- o + P ———)]&

+ 3[»(Pp —P-) +»(Pz+ —Pz- ) + 14(P=- —P=- )+ 2~~uz ~]-
—5[(3P~ + P~+ —P~ —3P~-) + 2(Pz. —Pz.-) + (P=-' —P=-.-)]
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(10, 1), (10, 1)

(27', 0)

(27', 1)

(27', 2)

(27„0)

(272, 1)

(272, 2)

(3S, 1), (3S, 1)
(3S, 2), (3S, 2)

(64, 0)
(64, 1)
(64, 2)

(64, 3)

—6~2[2(P ~+ + Pn~o) + (Pz+z + —Pz-z. —) + ~3P~z 0 + (P=0-= ~-0 —P=- =- -)]-
+ 2[(P~ —P-) —(Vz+ —Pz-) + (P=- —P=--)]
—v 2[(P„~+ + P.n. ) —(Pz+ z + —Pz- z - ) —(V=- =-' —P=-- =- -)]
+ [3(Pp + P-) —(Pz+ + Vz + Pz-) —9P~ + 3(P=- + P=--)]
—v 2[2(Pz+z + + Pz'z'+ Pz-z. -) —3(P=-'=-'+ V=--=- -)1
+ 2[(P, —P-) —(P=- —V=--) + 2~3Pz ~]
—S~~[(P ~+ + P.~ ) + 3(vz+ z + —Pz- z.-) —2~~P~z' —2(P=- =-' —P=-- =-.- )],
+4[vz+ —2Vz +Pz-] —v2[3(P ~+ —P ~ )+(Vz+z.+ —2Pz z'+Pz-z -)]
+»[3(P~ + P-) —(Pz +» +»-) —9P~+ 3(P=- + P=--)]
—20[3{Pe+++ Pz+ + Pn' + Pn. ) —S(-Pz*+ + Pz' + Pz--) —3(P=-' + P=-. )+ 9P-~-]

+ 84V2[2(vz+z. + + Pzoz" + Pz-z. -) —3(P=-0=-'+ P=- =- ~ )]--
+ 21[(P —P )

—(P=- —P=- )+ 2~-~P ' ]
—10[(3P~++ + P~+ —Pn, o —3Pn- ) —3(vz + —Pz. ) —4(P—=-' P=. )]-—
+»~2[(P,~+ + J -2 ) + 3(Pz z.+ —Pz-z. -) —2~3P~z' —2(P=- =-' —P=--=- -)]
+»[Pz+ —2Pz + Pz-] —10[3(P~~ —P~+ —P~o + P~ )+ (Pz-.+ —2Pz" + Pz*- )]
+ 21' 2[3(P&z+ —P ~o) + (Pz+z. + —2Pzoz. o + Pz z.-)]-
+ (P ~+ + P ~0) —(Pz+z.+ —Pz-z. -) —2~~P~z' + 2(P=-'=-' —P=- =-. )--
+ (Ppr+ —P») —(Pz+z.+ —2Pzoz' + Pz-z. -)
+ (Pa++ + P~+ + Pr 0 + P~ ) —4(Pz.-+ + Pz.o + Pz )+ 6(P=- -0 + P=- ~ ) —4Pn- -~

+ (3P~~ + P~+ —P~ —3P~-) —10(Pz + —Pz. -) + 1o(v=-' —V=-.-),
+ (PA++ —PA+ PA' + PA )2(Pz +-2Pz' + Pz. -)
+ p~++ —3@~+ + 3p~o —P~ —. (44)

(At + ~3A3) mp
)

mQ+
(4s)

Ideally, because the decuplet and octet-decuplet dipole
moments are largely unknown (although see comments
in the next section), it would be preferable to have re-
lations written in terms of the octet only. However, the
only reps distinct to a particular SU(3) product in the
J = 1 sector are 35 and its conjugate (octet-decuplet
transitions) and 64 (decuplet moments), and so such a
reduction is impossible. However, once we assume the
relations, there are only 27 —18 = 9 free moments, and
exactly this many are well known; these are p~- and all
octet moments, including p~o~, but not p~o. In terms of
these, all 18 poorly known or unknown moments may be
written. The predictions are presented in Table II.

Our prediction for the A~ dipole moment of (5.42+
0.49)p~ is certainly consistent with the PDG estimate
p,~~ ——3.7 to 7.5@~. The only other known dipole mo-
ment is pp~+, which may be extracted from PDG values
for photon helicity amplitudes A1 3. The relation is2)2

where k, the photon momentum in the decay, is fixed
by kinematics. This formula is obtained by comparing
the amplitude for the decay in terms of p„n+ (see, e.g. ,
Ref. [22]) to the same amplitude in terms of helicity am-
plitudes (see, e.g. , Ref. [24]). The PDG value is calcu-
lated to be (3.53 + 0.09)p~, in unfavorable comparison
with our prediction of (2.52+0.23)p~. The quark model,
on the other hand, predicts 2.66@~, whereas the large-
K, contracted symmetry predicts [10] the much closer
3.33p~ (both of these predictions are functions of p,„
only, and therefore have negligible uncertainties). That
the SU(6) prediction is not closer to the experimental
value than the quark-model prediction is surprising, be-
cause SU(6) contains the quark model, in a sense, as its
lowest-order terms. We now describe this identification.

Neglecting only the 2695 means, of course, that the
fit to dipole moments is made using only the 35 and 405
[the SU(6) singlet is absent for J = 1]. We make this
restatement in order to compare to the nonrelativistic
quark model (NREM) results, which are obtained using
only the 35. To see this, note that the quark magnetic
moment operator (eQ~/2M') as, for arbitrary values of

TABLE II. Magnetic moment predictions (in p~).

Pzo
p ~++
Pa+
IJ ao
P&—

Pz~+

0.86 + 0.30
5.42 + 0.49
3.10 + 0.46
0.16 + 0.45

—3.41 + 0.50
3.05 + 0.04

PZs P

Pz-
P~ ~P

@~s,

@pa+
Pnao

0.37 + 0.45
—2.94 + 0.06

0.60 + 0.22
—2.46 + 0.23

2.52 + 0.23
2.81 + 0.23

Pz+ z~+
Pzoz o

Pz- z-
Pwz. o

p=o=»o

2.05 + 0.04
1.04 + 0.21

—0.26 + 0.04
2.22 + 0.09
2.07 + 0.12

—0.26 + 0.12
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k
P~ = + (P + P~+ P.)3

k
p =+ (p. +p. -2p. ),6

k
pi. = + (p —p~),

2
(46)

where k is a proportionality constant that is undeter-
mined, because group theory alone does not set overall
scales. The constraint m„= mg becomes p„= —2pg, or

~6P1 + SPY PIo (47)

On the other hand, one may read OK directly from the
SU(6) Clebsch-Gordan tables:

m„g „not only 6ts into the 35 rep, but contains as many
independent parameters (3) as the J = 1 part of the 35.
The NREM results when, in addition, we set m = mg,
so that the number of independent parameters reduces
to 2.

To illustrate this point, let the three initially indepen-
dent parameters in the J = 1 part of the 35 be labeled
p~, py. , and pl, to indicate their SU(3) content. In order
to relate these parameters to quark magnetic moments,
one must adopt normalizations consistent with those of
the corresponding SU(3) generators:

1
pI,„——+ (~6p&+ ~3pv 6 5pi, )18 2

(48)

and between these two equations one immediately ob-
tains p„/p„= —3/2.

D. Higher multipole moments

Virtually none of the electric quadrupole or magnetic
octupole moments are measured at this time; experimen-
tal values exist only for the transition quadrupole mo-
ment Q„~+, and so a numerical analysis of the SU(6) re-
lations would be meaningless. A discussion of the feasibil-
ity of measuring more 4-N dipole and quadrupole tran-
sitions continues to appear in the recent literature [25];
the moments appear to be accessible in dedicated exper-
iments, particularly those involving polarized electropro-
duction. The quadrupole moment of the 0 may soon
be obtained through its spin oscillations when passing
through a crystal [26]. Even the transition moments of
the Z* and:-*, for which neither parent nor daughter
baryon is long lived, may be accessible through the Pri-
makoff interactions in high-energy hyperon beams [27].

Both for mathematical completeness and for the ben-
e6t of future researchers, we display here the quadrupole
moment relations. In this sector there are 18 independent
parameters (10 decuplet moments and 8 octet-decuplet
transitions) and 12 parameters associated with the 2695
rep. The 12 relations are given as follows:

(SU(3), I)
(8., o)

(8„1)

(10, 1), (10, 1)
(27/, 0)

(27~, 1)

(27', 2)

(35, 1), (35, 1)
(35, 2), (35, 2)

(64, 0)
(64, 1)
(64, 2)
(64, 3)

electric quadrupole moment combination,

+ [(Q~~ + Q~+ + Q~ + Q~-) —(Q=-' + Q=-*-) —2Qn-]
—2~2[(Qz+z. + + Qzoz' + Qz- z -) + (Q=-o=-*o + Q=--=-.-)]
+ [(3Q~~ + Q~+ —Qz ~ —3Q~-) + 2(Qz. + —Qz. -) + (Q=-' —Q=-.-)]
—2v 2[2(Q,~+ + Q ~o) + (Qz+z. + —Qz-z. -) + ~3Q~z'+ (Q=-o=-' —Q=--=-.-)]
+ (Q,~+ + Q ~ ) —(Qz+z. + —Qz-z -) —(Q=- =-' —Q=--=- ~ -)
+ 4[3(Q~~ + Q~+ + Q~ + Q~-) —5(Qz.+ + Qz' + Qz. -) —3(Q=-' + Q=-.-) + 9Qn-]
+ 7~2[2(Qz+z-+ + Qz z'+ Qz-z. -) —3(Q=- =-'+ Q=--=- ~ -)]
+ 8[(3Q~~ + Q~+ —Q~ —3Q~-) —3(Qz-+ —Qz. —) —4(Q=-' —Q=- ~ —)]
—7~&[(Q b, + + Q b. ) + 3(Qz+z. + —Qz-z. -) —2~&QAz' —2(Q=- =-' —Q=--=- -)],
+ 8[3(Q~~ —Q~+ —Q~ + Q~-) + (Qz.+ —2Qz' + Qz. -)]
—7~2[3(Q,~+ —Q.~ ) + (Qz+z. + —2Qz z'+ Qz-z. -)],
+ (Q,~+ + Q ~ ) —(Qz+z. + —Qz-z. -) —2~3Q~z'+ 2(Q=- =-' —=--=-.-)
+ (Q,~+ —Q ~ ) —(Qz+z. + —2Qz z'+ Qz-z. -)
+ (Qa++ + Qa+ + Qa' + Qa-) 4(Qz. + + Qz*' + Qz -) + 6(Q=-.o + Q=.-) —4Qn-,
+ (3Q~++ + Q~+ —Q~o —3Q~ —) —10(Qz.+ —Qz —) + 10(Q= o —Q-.—),
+ (Q~~ —Q~+ —Q~o + Q~ ) —2(Qz. + —2Qz. o + Qz. ),
+ Q~~ —3Q~+ + 3Qz ~ —Q~- (49)

The situation for the octupole moments is in fact trivial. There are ten parameters and ten relations, because the
J = 3 block of the 92 x 92 orthogonal matrix is identical to the pure SU(3) matrix Cg. This in turn follows because
the only combinations with J = 3 originate in decuplet-decuplet bilinears. The interpretation of this result is tha
only the 2695 rep contributes to octupole moments and so these moments if they are ever measured should be
numerically uniformly tiny.
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VII. CONCLUSIONS

To summarize our findings, we have exhibited a new
method to compute conveniently all Clebsch-Gordan co-
efBcients associated with the product 56 56 (as well
as other products), and we have displayed these co-
efFicients for the particular bilinear combinations with
4I3 ——A Y = 4J3 ——0. All the others, useful for baryon
decay processes, can be obtained from those in this paper
by means of the SU(2) or SU(3) Wigner-Eckart theorem.

From the coefBcients we have compiled all baryon mass
and electromagnetic moment relations resulting from ig-
noring the 2695 component in SU(6). Violations of the
mass relations can be explained with naive estimates of
the neglected operators, and we have obtained a predic-
tion for the size of Z -A mixing. We have shown that
enough magnetic dipole moments are experimentally well

known to predict the others, and have used these rela-
tions to show agreement with the experimental value for
p~++ but disagreement for p&~+. The latter result may
be an indication of the superiority of the large-N, predic-
tions in general; the verification of this statement awaits
the systematic analysis of the large-1V contracted spin-
Qavor symmetry.
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