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A new representation of quantum gravity is developed. This formulation is based on an extension
of the group of loops. The enlarged group that we call the extended loop group behaves locally as
an in6nite dimensional Lie group. Quantum gravity can be realized on the state space of extended
loop-dependent wave functions. The extended representation generalizes the loop representation
and contains this representation as a particular case. The resulting difFeomorphism and Hamilto-
nian constraints take a very simple form and allow us to apply functional methods and simplify the
loop calculus. In particular we show that the constraints are linear in the momenta. The nonde-
generate solutions known in the loop representation are also solutions of the constraints in the new
representation. An approach to the regularization problems associated with the formal calculus is
performed. We show that the solutions are generalized knot invariants, smooth in the extended
variables, and any framing is unnecessary.

PACS number(s): 04.60.Ds, 11.15.Tk

I. INTRODUCTION

The formulation of general relativity in terms of the
Ashtekar variables has opened new perspectives in the
canonical quantization program of gravity [1,2]. The
new set of canonical variables introduced by Ashtekar
are the triads E, (the projections of the tetrads onto
a three-surface) and a complex SU(2) connection A'
The fundamental result of this approach is that the con-
straint equations emerging &om the Hamiltonian formu-
lation of general relativity become polynomial functions
of the variables. In addition, the formalisxn (that uses
a connection as the configuration variable) casts general
relativity in a fashion that closely resembles Yang-Mills
theories. This fact allows to import several useful tech-
niques &om Yang-Mills theories into general relativity.
One of particular importance is the loop representation
[8-51

The loop representation provides a geometric descrip-
tion of the Hamiltonian formulation of the theory (gauge
theories and quantuxn gravity) in terxns of loops. The
loop representation can be constructed by means of the
noncanonical algebra of a complete set of gauge-invariant
operators that act on a state space of loop wave functions

@(p) [3,4]. Once the complete set of invariant operators
is realized on the space of loops, the action of any other
gauge-invariant operator (such as the Hamiltonian) can
be obtained &om them. Another equivalent way to ob-
tain the loop representation is through the loop trans-
form. The loop transform connects the states between
the connection and the loop representation and choos-
ing a factor ordering, the quantum operators acting in
the connection state space can be translated to the loop
wave functions. This procedure explicitly shows the role
of holonomies as the basic building blocks of any loop

dependent object.
The introduction of the loop representation for quan-

tum gravity allows us to immediately code the invari-
ance under spatial diffeomorphisms in the requirement
of knot invariance. Also for the erst time a large class
of solutions to the Wheeler-DeWitt equation has been
found in terms of nonintersecting knot invariants [4]. It
is not clear however how to make these solutions corre-
spond to nondegenerate metrics [6] (a possible solution
is the idea of "weaves" [7]). Another alternative is to
consider knot invariants of intersecting loops and solve
the Wheeler-DeWitt equation in loop space [5]. The def-
inition of many of these states is complicated by regu-
larization ambiguities. Since loops are one-dimensional
objects living in a three-dimensional manifold, they nat-
urally lead to the appearance of distributional expres-
sions. In particular the few knot invariants for which we
have analytic expressions require the introduction of reg-
ularizations (framings) in the case of intersecting knots.
Some invariants even require a regularization for smooth
loops [8,9].

There are good reasons to consider an extension of the
loop representation. Prom a mathematical point of view,
the group of loops is not a I ie group and it is'not even
known how to give a manifold structure to the loop space.
An extension of the loop space with the structure of an
in6nite dimensional Lie group has been recently proposed
[10]. The usual group of loops is a subgroup of this ex-
tended group and generalized holonomies may be defined
in the extended space. Moreover, since the extended rep-
resentation uses Belds instead of distributional objects,
the regularization diKculties associated with the wave
functions in the loop representation disappear. On the
other side, Marolf [11] has recently studied the equiva-
lence between the connection and the loop representation
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in the case of 2+1 gravity. More precisely, he has shown
that some problems and ambiguities arise in the kernel of
the loop transform. For instance, in the boost sector the
loop transform has a very large nontrivial kernel. He also
noticed that the introduction of extended loops allow us
to remove many of these problems. Even though the in-
troduction of the extended representation is not manda-
tory in this case (the equivalence may be recovered in the
loop representation by introducing a nontrivial measure
in the loop transforin [12]), extended loops seem to give
a very simple and natural solution to this problem.

In this paper we develop a formalism that allows us
to represent quantum general relativity in the extended
space. The general ideas of the extended representation
have been discussed in Ref. [13]. This representation can
be viewed as a genera1ization of the loop representation.
As we will show, there are di8erent relevant groups that
can be introduced in the extended space. We choose one
of them to develop a representation of quantum gravity,
the group called 'Vo. In this sense, the representation
developed here is the most simple and general of all pos-
sibles extended representations that can be constructed
for quantum gravity. This representation has the char-
acteristic to present the constraint equations in a very
simple form. Moreover, the regularization problem asso-
ciated with the formal action of the constraint operators
simplifies considerably, being the most relevant result the
removal of the typical ambiguities associated with the
&aming dependence that the knot invariants have in the
conventional loop representation.

We organize the paper as follows: in Sec. II we make
a brief review of the definition and properties of the loop
coordinates, that preceded and motivated the definition
of the extended group. In Sec. III the extended loop
group is introduced in a formal way. We only do here
a quick review of the loop coordinates and the extended
loop group in order to make the article moderately self
contained. A more complete treatment of these subjects
can be found in Ref. [10]. Section IV is dedicated to
the construction of the extended loop representation of
quantum gravity. In first place we analyze the general
properties of the wave functions and the operators in the
extended representation. We show that the constraints
are linear in the momenta. In Sec. IVA the difFeomor-
phism constraint is formulated in the extended space. In
Sec. IVB we consider the realization of the Hamiltonian
constraint. The reduction of the extended Hamiltonian
constraint to the corresponding in the loop representa-

I

tion is performed in Sec. IVC. This procedure allows
us to clarify the meaning of some of the new ingredients
that appear in the extended Hamiltonian constraint. In
Sec. V we develop the formal calculus considering the
action of the Hamiltonian on the second coefIicient of
the Alexander-Conway generalized knot polynomial. We
will verify that this state is annihilated by the extended
Hamiltonian constraint. The issue of the regularization
is considered in Sec. VI. In Sec. VIA we show that the
wave functions are smooth functionals of the extended
variables (in a restricted diKeomorphism invariant do-
main). The regulated diffeomorphism and Hamiltonian
constraints are analyzed in Sec. VIB. Some conclusions
and Anal comments are included in Sec. VII.

II. THE LOOP COORDINATES

Because of their simple behavior under gauge trans-
formations, holonomies have been widely used in the de-
scription of gauge theories. Holonomies can be viewed as
an homomorphism going Rom a group structure de6ned
in terms of equivalence classes of closed curves onto a Lie
group G. Each equivalence class is called a loop and the
group structure de6ned by them is called the group of
loops. The group of loops is the basic underlying struc-
ture to all the nonlocal formulations of gauge theories in
terms of holonomies [3].

As it was just mentioned, among these formulations
we 6nd the loop representation, based on a quantum rep-
resentation of the Hamiltonian gauge theory in terms of
loops. In the loop representation wave functions are func-
tionals of loops and they are connected with the states
in the connection representation by the loop transform

@(&) = f ~r I+)&(&)~~(&)

where

W~(p) = Tr[H~(p)]

=Tr Pe px~ dy A (y) ~

(

is the Wilson loop functional. All the gauge invariant
information present in the theory can be retrieved &om
the holonomy. This means that the only information we
really need to know &om loops is the one used in the
definition of H~(p). One can write the holonomy as

where the loop dependent objects X are given by
— -(*, , *.;~) = $&u.-" ]du,"~(*.—v-) ~(* —v )e.(~ u, " ~-) (4)

The 0 function orders the points along the contour start-
ing at the origin of the loop o. These relationships define
the X objects of "rank" n, that we call the multitangents
of the loop p. They behave as multivector densities un-

]

der general coordinate transformations. The fundamen-
tal property is that no more information &om the loop is
needed in order to compute the holonomy than what is
present in the multitangents fields of all rank.
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It is convenient to introduce the following notation for
the multitangent fields:

X '"' "(z z p)—:X ' ' " " "(p)

X41'"4le4la+1 ' 4' —Q X+%(41'"4n)

&l

= X"'"4"X"'+'""" (s)

—Xiii" 'li»
(p)

=—X"(p).
The boldface index p, indicates the set of indices
(yq, . . . , y, ) and y„. represents the pair of variables
(a;, x;), with a, = 1,2, 3 and x; 6 Rs.

The X's are not independent quantities, they obey two
kinds of constraints: the algebraic and differential con-
straints.

The algebraic constraints arise &om the properties of
the 0 function under the interchange of the order of the
indices and have the general form

where the sum gives over all the permutations of the p,
variables which preserve the ordering of (pq, . . . , pl, ) and
the (pl, +q, . . . , y, ) among themselves. Por example, for
the rank three component we have

X41X4~4s

The difFerential constraints ensure that H~(p) has the
correct transformation properties under gauge transfor-
mations and can be derived directly from the definition
of the multitangent fields as line integrals of distributions
along closed curves. They are given by

Xldi'"ldi"'lA» [h(~ ~. ) g(~. ~. )]Xldx' ldi —alii+i"" lA»

where 8„, = 8/Bx, '. Notice that the diff'erential constraint carries information about the origin of the loop because
for i = 1 or i = n, the points xo and x +1 have to be taken as the base point o of the loop.

The 6rst idea was to 6nd a set of independent quantities that completely specify the loop dependent information
contained in the holonomy. The solution of the constraints can be outlined in the following way:

X fields ++ &„"',"„s && ++ F fields ++ solving DC ~ V fields,

X"(~) = (exp[+(~)l)" &"(~) = ~"-&"(~)
F"(~) = [in X(~)j" &"(~) = 6-I""(~)

where a generalized Einstein convention of sum over repeated indices is assumed, given by

oo 3 3

A„B":=) ) . . ) f z, d. fd AT„, . .. B''„„
n=O a1 ——1 a„=1

or, in shorthand,

A. B —= A B" = A4, ...4 B4' """

41" 4ra $ $ 41 . . .$4ra
V1 ' 'V~ A)fA T V1 T Vaa )

~T-a, = ~ *a, —4 *y,a,

where P is any suitable function that satisfies

(12)
(»)

with

3

A„B" := ) ,.jd'~x;A, , B "'.
a;=1

(z4)

The matrix o is nondiagonal and generates nontrivial
representations of the diffeomorphism group. It can be
de6ned by the recursive expression

The E's are multivector density 6elds that satisfy the
homogeneous algebraic constraint and the differential
constraint. The Y's satisfy both homogeneous algebraic
and differential constraints and de6ne the loop coordi-
nates associated with the loop p. bT is the projector on
the space of the transverse functions

bT4'" ""„...„„ if m = n,0"' "" = Q""'""" O.l" "P"-' if m ( nV1 ' 'Vrra P1"'Pea —1 V1 "'Vna

0 ifm&n,

with

n
al1 ' an —Q ga1&1'' aj —1+j—1 (~ajzj gajzj ~g aj+1zj+1 -.a z

1y1'''Cn —lyn —1 & C1 JJ1' 'Cj —1 JJj —1 4+y~ +yj 1 J TCjyj 'Cra —lyra —1

j=1
(is)
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For the rank two component, the relation between the
E's and the Y's fields is

Faaby yaaby + yam yby
gaby

yaa

yaa yby y cz + y[by gaa] (17)

The function P fixes a prescription for the decomposition
of the multitensors in transverse and longitudinal parts.
The quantities o have definite transversal properties

We see that the x product is an extension of the compo-
sition law between the algebraic &ee coordinates intro-
duced before that includes the zero rank component of
the vector. In fact, it can be written as

(E X E )pI, " p~ + Ep1. "psE+ +i P
1 2g

i=o

with the convention
bT 0 =hz,
o- - bz —o.,

(18)
(19)

EP1" Qo EP~+1." P~ (27)

and under a change of the prescription Pz„
have

= o 2 o

The definition of the exponential and the inverse oper-
ation that connects the multitangent fields with the alge-
braic &ee coordinates involves a particular composition
law between the components of the fields. Explicitly,

(exp[F(~)])":=):&, [F x " x F]"
k.

with

The product law is associative and distributive with
respect to the addition of vectors. It has a null element
(the null vector) and an identity element, given by

I = (1,0, . . . , 0, . . .).

An inverse element exists for all vectors with nonvanish-
ing zero rank component. It is given by

E = E I + ) (—1)'E ' (E —EI)*

such that

(22)
ExE =E xE=I. (30)

This composition law is associative and has the impor-
tant property that satisfies the differential constraint if
all E's do.

The loop coordinates have several interesting applica-
tions at the level of the loop representation of gauge theo-
ries and quantum gravity. What is more important, they
allow us to show that there is a local I.ie group structure
associated with the loop space. We will now proceed to
introduce this group.

III. THE EXTENDED LOOP GROUP

Consider a set of arbitrary multitensor densities of any
rank and construct with them the following vectorlike
object E:

(E Evi Evi' v»
) = (E"E)

where E is a real number and E"'"v" (for any n g '0)
is an arbitrary multivector density not restricted by any
constraint. The set of all E's has the structure of a vector
space, d.enoted as E'.

We can introduce a product law in E' in the following
way: given two vectors Eg and E2 we define Eg x E2 as
the vector with components

El x E2 = (E1E2)E1E2 + E1E2 + El X E2))

where Eq x E2 is given by

n —1

x E )g1" P,„~ EP1 "P,Eve+1 "P~

The set of all vectors with nonvanishing zero rank com-
ponent forms a group with the x product law.

Consider now a subset X C 8 whose elements X =
(X, X') obey some supplementary conditions related to
the differential and algebraic constraints. Introducing
different types of conditions one can define difFerent
subgroups. We consider here the following three base
pointed subgroups of the extended. group, denoted by

and Lp. They are defined in the following
way: Bo ~ X satisfies the differential constraint and
X g 0; Mo -+ X satisfies the differential constraint and
[X ]"'"v" = (—1) X'"""'"' and X = 1; rl'0 -+ X satis-
fies the differential and algebraic constraints and X = 1.
For each of these sets one can check that they are closed
under the group composition law. It is straightforward
to see that the algebraic constraint also implies the con-
dition satisfied by the elements of Mo. These groups
satisfy then the inclusion relation

Zo c Mo C 170.

Furthermore, the group of loops is a subgroup of the
group Xo, since any multitangent field X(p) is contained
in A'0 and they obey the relationship

X(P~ og2) = X(Pg) x X(P2),

where the circle indicates the group product between
loops.

An important property of the constraints is that any
multitensor density X~ that satisfies them can be used
to generate a gauge covariant quantity

H~(X) = A . X = AvXv,
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where A is the following object constructed with the con-
nections: A = (I, A„, , . . . , A~, ...„,. . .), with A~, ...~

stricted to the multitangents X(p) associated with loops,
the resulting object is the holonomy. It is this property
that allows us to extend loops to a more general struc-
ture. One can in general deal with arbitrary multitensor
densities I (not necessarily related to loops) and con-
struct with them gauge invariant objects. The multiten-
sor densities need not to be distributional functions as
the multitangents associated with a loop. They could be
ordinary functions on the manifold.

Matrix representations of the above groups can be
generated through the generalized holonomies associated
with a general connection A . They satisfy

with

WA(X) = Tr[A„]X". (36)

WA(X1 x X2) = WA(X2 x X1) (37)

while taking into account the specific properties of the
SU(2) algebra, one gets

WA(X) = WA(X) (38)

The generalized Wilson functional satisfies a set of identi-
ties that correspond to the Mandelstam identities for the
SU(2) algebra. The cyclic property of the traces implies

HA (Xl )HA (X1) HA(X1 x X2) (34)

The difFerential constraint imposed on X assures HA(X)
to be a gauge covariant quantity. The trace of the ex-
tended holonomy, that defines a generalized Wilson func-
tional, is a gauge invariant quantity for any X p Vp.
Since one can represent any gauge invariant object using
the X's, one can represent the theory entirely in terms
of X''s.

An extended representation may be introduced for
any subgroup of the larger constrained group 'Vp. In
each case we will obtain a gauge invariant representa-
tion of a theory with particular properties derived &om
the constraints. For quantum gravity [where the con-
nections are elements of the SU(2) algebra] the matrices
HA(X) would belong to the general group GL(2, c) when
X p Pp whereas for the other subgroups the general-
ized holonomies would be elements of the SU(2) group
{in fact, the condition satisfied by the elements of Mo
is the weakest for this property to hold). We shall con-
sider here the simplest case of a representation with wave
functions defined on the larger group 17p. However it is
important to notice that more restricted representations
could be relevant and it is still unclear which of them
behaves as the dual of the connection representation.

WA(X1)WA(X2) = WA(X1 x X2) + WA(X1 x X2) )

(»)
where

g(X1 x X2) = @(X2 x X1),
'(P(X) = @(X),

(4I)
(42)

g(X1 x X2 x Xs) + @(X, x X, x Xs)

= @(X2 X X1 X Xs) + @(X2 X X1 X Xs). (43)

Notice that due to the cyclic property of the traces any
reference to the base point o is lost in @. Furthermore,
Eqs. (38) and (42) imply that WA and @ are functions
of the combination

1»[~Py"'P+(»I)nxP»" Pt] (44)

where the R's satisfy the following symmetry property
under the inversion of the indices:

(4o)

The identities satisfied by the Wilson functional are car-
ried over the wave functions in a direct way. We get

IV. THE EXTENDED LOOP REPRESENTATION
OF QUANTUM GRAVITY QPx" P»

( I)~~V» (45)

Let us start by considering some general properties of
the wave functions in the extended representation. These
wave functions are related to the states in the connec-
tion representation through the generalized (formal) loop
transform @(X)= D„X". (46)

The linearity of the extended holonomy in the multi-
vector components X~'" "" induces the same property
on the wave functions. This means that Q(X) takes the
general form

@(X)= f d„[A[@(A)W&(X) (35)
The coeKcients Dpy p contain all the information
about @(X) and satisfy a set of constraints that may
be derived from the Maldestam identities. They are

Iji".P (gi-"p )

D~. ~. =(—i)"D~. ~.
(47)
(48)

D ~qk+ (—) D„„„,„„,„=k D(„,. ..„„).„..„,.. . .. .+ (—I) k D(„„...„,) „, , .. .„ for all k, (49)
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where c indicates the cyclic combination of indexes. The
linearity is a remarkable property of the wave functions
in the extended representation. Notice that aB the wave
functions known in the loop representation for quantum
gravity have this property when they are written in terms
of the multitangents fields. Moreover, this property will
be inherited also by the operators that we can construct
in the extended representation. In general, the linearity
over the wave functions could be imposed by means of
the "linearity constraint" 8:

$2
C(X')@(X)—:X'&" @(X)= 0, (50)

where X' is any object that satisfies the differential con-
straints. Any observable of the theory has to commute
with the linearity constraint.

In the quantum version of the canonical formulation of
general relativity, the classical variables are promoted to
operators that act on wave functionals of the connection
in the following way:

A' @(A) = A' @(A),

E, g(A) = . @(A).
ax

(51)

(52)

The difFeomorphism and Hamiltonian constraint in this
representation are

b
~-* =

b ; Fi.(x)
bAb

&(x) = &""
i, Ft',.(*)

(53)

(54)

Notice that we choose the factor ordering that puts the
triads to the left. It is &om this factor ordering that one
can obtain the loop representation via the loop transform
in a simple way. One can see that with this factor order-
ing the regularized diffeomorphism constraint generates
infinitesimal diffeomorphism transformations on the wave
functions [17].

We now analyze how to go from the connection to the
extended representation by means of the loop transform.
In spite that the extended loop transform is only formally
defined, one can use it as an heuristic method to gener-
ate the constraints. In particular, the algebra of a set
of operators in the connection representation can be cor-
rectly implemented in the linear space of extended wave
functions using the formal transform. The same thing
happens in the loop representation.

A complete set of gauge invariant operators (the
Rovelli-Smolin operators) can be implemented in the ex-
tended space and it is possible to construct any other
gauge invariant operator from them. In what follows we
shall restrict to consider only the diffeomorphism and.
Hamiltonian operators.

tions Q(R) is defined by the expression

C d(K) = J d„(A]W~(K)(C d(A)]. (55)

The constraint acting on @(A) can be applied on the
generalized Wilson functional integrating (formally) by
parts. So

C d(K) = f d„(A]g(A) ] P'~(x), W~(K) ]. (56)
b

In order to calculate the quantity in brackets in the last
equation we introduce some suitable notation. Let b& be
defined as

bp' . . .bp" if n(n) = n(P) = n & 1,
bp

—— 1 if n(n) = n(P) = 0,
0 in other case,

(57)

where n(n) is the number of indexes of the set n Th.e
functional derivative of any product of A's can be written
as

(A ) = A„7'A„b'" *",
bAb

(58)

where the 2's are the generators of the SU(2) algebra.
Taking the trace in the above expression we get

, T [A.] = T [~'Ap]bp„b *"
bAb

= Tr[~*Ap]b'( *P)'.

The curvature tensor can be written as

(59)

F i, (x) = A„X b" (x), (60)

where T b represents the following element of the algebra
of the group:

X g .(x) = bi ( )X g '(x) + b2 ( )X s ' (x) (61)

with

X b
' '(x) = b s"Ogb(xi —x), (62)

6512'1 )6522'2 (x) b651652 b(x x)b (x x) (63)

Using (59) and (60) we obtain the following expression
for the action of the diffeomorphism constraint on the
generalized Wilson functional:

F'q(x),. Tr[A ]R = Tr[F ],(x)Ap]b( P) R
b~

= Tr[A ]b W (x)"R(s P) (64)

A. The diffeomorphism constraint The b matrix allows us to write the group product defined
in (26) as

Let us consider first the diffeomorphism constraint op-
erator. The action of this constraint on the wave func- (Ei x E2) = b„pEi E2. (65)
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Notice that, in particular,

(h„x hp)P = hPp, (66)

'R(x)g(R)

d„[A]@(A)e'~" Fb (x), „W~(R) ~

. (69)hA"

where h is the "vector" with components (h )P = hP.
Introducing then (64) in (56) and using (65) we obtain From (59) we get the following expression for the second

functional derivative:

C@,(R) = f d„]A]g(A)Tr(Ap]]X g(x) x R~~ ~]~

= y(~.,(x) x R(b*)),

where

(67)

T[A.]= T " A, h(.*».

= Tr[~"A„~ A ]h" *"h'

= Tr[~"A„~'A„]h( *"*") .

[R(»)]p R(b*)p . R(b*p).

The diffeomorphism constraint reduces to evaluate the
wave function on a new object given by the group product
between an element of the algebra and a cyclic combina-
tion of elements of the group. This combination satisfies
the differential constraint with respect to the p, indexes
base pointed at x.

In order to include this result in (69) we need the follow-
ing well-known property of the SU(2) matrices:

e'~"Tr [~"A„~~A„]

= T [~'A„]T [A„]—T.[A„]T [~'A„]. (71)

The product between traces of SU(2) matrices can be
merged in a combination of traces in the following way:

B. The Hamiltonian constraint
Tr[A„]Tr[A„]= Tr[A„A„]+ (—1)"(")Tr[A„A„-i], (72)

where if v = (vq, . . . , v ), then v ~ = (vn, . . . , vq). This
fact enables us to write the above result in the form

A similar procedure can be followed to build up the
Hamiltonian constraint in the extended representation.
In this case we have to use the properties of the SU(2)
algebra in order to take into account the two derivatives
that appear in 'R(x). We have now

t Tl [T AIA'r Av] = (—1) Tr['r AuAp z]—
—(—1)"" Tr[~'A„-.A„].

We then have

(73)

ijb~i
( ) T [A ] ( 1)n(p)T y ( )A ](h(amp bau),

(
1)n(p+v)h(aapbav )

bA',

1)n(p)T [p ( )A ]~h(bzvazp ), + ( 1)n(p+v)h(passu bz)

= (—1)"("Tr[Ap„„]XbP(x)8( "*" ) (h + (—1)"( )h ). (74)

So

I b (x) . „~~(~)= 2(—1)"")Tr[Ap„„]XbP(x)b(
bA'.

= 2(—1)"(")Tr[A ]bp X P(x)[hP„R( "»& ).
]

where in the first step we have used the symmetry prop-
erty (45) of the R's under the inversion of the indexes.
The expression between the square brackets defines a spe-
cific combination of R's that we denote

[R(aa,ba)]p

R(aa, ba) p ( 1)n(p) R(ba, aa) p

Equation (75) can then be written

(78)

I

An important fact is that this combination satisfies the
differential constraint with respect to the p indexes base
pointed at x. In addition, it satisfies the property

R(aa, ba) p . (h x h )p( 1)n(p) R(aaubap ), (76)

Explicitly

R(a b )pa"ap»ag ( 1)n—kR(amp'" pa»p pg+q)» (77)
A:=0

b be'~"Eb (x) . „W~(R)bA~

= 2Tr[A ](hp x hp) XPb(x)R( *

= 2 T [A.](~.. a( *'*))- (79)
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and &om it we conclude

'R(x)@(R) = 2@(X (x) x R( ' )). (so)

Also in this case the action of the Hamiltonian constraint
reduces to evaluate the wave function on a new element.
As it was just mentioned, this is a general property of
the operators in the extended representation due to the
linearity of the wave functions. In fact, the last expres-
sion can be written in terms of the functional derivative
with respect to the K variables:

()op()o ~ ~ op( ) (82)

here in detail the case of the Hamiltonian constraint.
It is a well-known fact that the Hamiltonian constraint

in the loop representation has only a nontrivial action on
intersecting loops [4—6]. We suppose then that at the
point x the loop p intersects itself p times; that is to say,
p has "multiplicity" p at z. We start with some suitable
notation to take into account this fact.

If the loop p has multiplicity p at x one can write it as

'R(x)@(R) = 2[% b(x) x R( )]" g(R). (s1)
We denote by [p ],

'+~ the following composition of loops
base pointed at x:

Notice that in order for this expression to be well defined
it is necessary that the term contracted with the func-
tional derivative satisfy the differential constraint, as it
happens in this case. This result explicitly shows that the
Hamiltonian is linear in the "momenta" P»—:l)/bR».

The new object where the wave function is evaluated
involves a combination of Inultivector density fields with
two indexes fixed at the point where the Hamiltonian is
acting and the other indexes having a specific alternating
order. We will show in the next section that this alter-
nating order of the indexes is related to the reroutings
of a loop when the above expression is particularized to
loops. The appearance of a rerouting is typical of the
loop representation and plays a crucial role in the quan-
tum gravity case [14].

C. Prom the extended to the loop representation

[p ]'.+~ = p(') o . . op(*+~).

Let us suppose that the loop named p contains the(i)

origin o of the loops. Then

Here, p~ represents the portion of p~ ~ &om the origin
o to the point x. The loop p is completely described
by the multitangent fields X»(p ) of all ranks. As we
know, these fields satisfy both algebraic and differential
constraints. Besides, these objects have another prop-
erty related to the possibility of writing a loop as the
composition of open paths. In general

X»1' »n (~ )"
As it was shown in Sec. III, the group of loops Zo

is a subgroup of the extended group 17O. The extended
version of the constraints (67) and (80) can be particular-
ized to Eo simply by substituting R ~ R(p). We analyze

I

dz ib(z, —z)X"' »' '(p')X»"*+' -»" (p ). (85"')~ ~ ~ ~ ~ ~

Yo

Suppose now that the index p; is fixed at the point x.
Then

p
X»1" »i &»ia+ »1n (p ') —) 'X»1"'»i (p( ) o [p ] )T X»i+1" »n ([~ ]& p p'( ) )

m=1
(s6)

where T is the tangent at x when the loop passes the time m to this point and the following convention is assumed:

[p ] +i --i, with i the null path. The above expression can be easily generalized to the case of any number of
indexes fixed at 2:.

In order to evaluate R( b )(p ) we have to use the explicit expression of this object in terms of the inultitangents
fields. We have

~(a~,bx) gg " p,

k=o

k

) ( 1 )a b [X»l+1'' »kb&» ''»k+1 a&»1 ' '»I
i

L=O

+ ( 1)11XW"»1aa»k+1"'» ba'&»k" W+1]'

+)
k=o

(87)( I)a (i[XW' »k+1 aa»1'''»kba"» '' »l+1 + (
1)aX'»1+1' '» ba»k'' »la+»k+1 »I]'

1=k

One can write the above expression in a more compact and useful form introducing the following combinations of X's:

X(az,ba)» ) ( 1)a—bX(aa»1 "»kha» ".»k+1)

k=o

and
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X(ax,bx)P ) ( 1)bX(axPg ~ "~qbxPII+q" P. )

I =o
(89)

These objects satisfy definite symmetry properties under the inversion of the indexes. In term of these combinations,
R( ' ~ simply reads

~(a~, &~)gs 1 [~(a~,b~)~ + ( g)n(gs) X(a~,bm) p
2L (90)

We are now ready to calculate R( 'b )(p ). We have

u —1 uX'*'*)"(7.) = ). ) [T'*T;*X"([~-] o 8' *] 6 *]", )
m=1 q=m+1

+(—1)"'"'T-T,'*X" (h- ]1 ~ h-] +1 [~**]",+1)) (91)

where [p ] +~
——p( ) o o p

+ and p indicates the loop p with opposite orientation. The inversion of the
orientation of the loop (rerouting) in (91) comes &om the following property of the multitangent fields:

X"'"""(p) ='(—1) X"" "'(p). "
(92)

This property is a direct consequence of the algebraic constraint satisfied by the multitangent fields. The reciprocal
is not true in general. Notice that (92) is the condition imposed on the elements of the group M .

For the other term in (90) we find

( 1)n(g)X(ax, bx)P
( )

X(ax,be)P( ) (93)

Then

@I&-~(*)«'""'(~-)I = f & (~I@(~)~I& I&-~(*) ~' "'"(~-)
u —1 p) ~-""T f &~I&l@(&)T A'~(*)~~(~(I~-*)V ' h-) +i 5'-);+i))). (94)
m=1 q=m+1

But

T [+ b(&)~~(R(&**))1= & b(~)Tr[~~(R(& )kl

where 4 b(z) is the loop derivative [15]. We conclude

J —1 u

&(~)&(~-) =4). ). T'*'»-b(*)&(h**] oh**] oh'**l", ).
m=1 q=m+1

(96)

This expression corresponds to the usual Hamiltonian
constraint of quantum gravity in the loop representa-
tion [5,16]. For the diffeomorphism constraint we ob-
tain a similar result. Equation (67) reduces to the usual
expression of the diKeomorphism constraint in the loop
representation when one particularizes this constraint to
the case of loops.

It is important to stress the relationship between the
solutions of the constraints in both representations. Since
loops are a particular case of multitensors, any solution
found in the extended representation can be particular-
ized to loops and would yield in the limit a solution to
the usual constraints of quantum gravity in the loop rep-
resentation. The converse is not necessarily true. Given
a solution in the loop representation, it may not gener-
alize to a solution in the extended representation. An

example are the solutions to the Hamiltonian based on
smooth nonintersecting loops, which find no analogue in
the extended representation.

V. THE FORMAL CALCULUS

We see that the constraint equations in the ex-
tended representation take a very compact form and they
amount, in both cases, to evaluate the wave function on
a new object given by the group product between an ele-
ment of the algebra and a combination of elements of the
group. A point to stress is that these equations become
also operatives. We can make calculations with them and
the calculus turns out to be relatively simple. In this
section we shall illustrate this point considering the ap-
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@z (A) = exp
~

—— q 'Tr[A c)bA, + 3A AbA, ] ~A

and we have

'R&@~cs(A) = R+ —det(q) 4c~s(A) = 0,
6

(98)

where A is the cosmological constant and q the three-
metric. The loop transform of this state is related to the
expectation value of the Wilson loop [17]:

plication of the Haxniltonian constraint over a particular
member of a family of solutions in the loop representation
which have a generalization to the extended representa-
tion. We 6rst analyze the nature of these solutions.

In the connection representation based on the Ashtekar
variables, the exponential of the Chem-Simons form built
with the Ashtekar connection is a solution of all the con-
straints of quantum gravity with cosmological constant
[21]. This state is given by

1 (x —y)
gabby = &abc

4m /2: —y/3

= -e b, B'V' 'b'(x —y) (1o1)

~1 .~sos (~)

the &ee propagator of Chem-Simons theory. p[p] and
+[7] are the first coefficients of an expansion of the Jones
polynomial in the variable exp(A/6) that can be explic-
itly written as linear functions of the multitangents with
coefBcients constructed &om g

The action of the Hamiltonian constraint with cos-
mological constant can be evaluated over the Kauffman
brackets polynomial and the analysis of the resulting
equations order by order in A leads to the conjecture that
the Jones polynomial may be a state of vacuum quantum
gravity [20]. This conjecture was explicitly confirmed for
the first candidate p[p] in the loop representation [18,19]
through a laborious (formal) computation. The expres-
sion of this knot invariant in terms of the multitangent
6elds is

~&102gs P4+gP1Ps gP2P4 7 (102)

where

(gg)
with

Q1Q2QS
P1P2Ps gP1Q1 gP2Q2gP3QS (103)

The resulting loop wave function is the Kauffman brack-
ets knot polynomial which is a phase factor times the
Jones polynomial. Evaluating the loop transform (99) us-
ing perturbative techniques of Chem-Sixnons theory [9],
explicit expression for the Kauffman brackets coefBcients
can be found. In particular, the phase factor is propor-
tional to the Gauss self-linking number: ai[p] = —4rp[p]
with

d tb zg —t 8 z2 —t b zs —t . 104

P[P] = P[X(7)] m P(X), (Io5)

The generalization of this knot invariant to extended
loops is straightforward:

being

&[&] = g ~X (7)X (p), (1oo)

where X is now an element of the extended group Bo.
We now analyze the application of the Hamiltonian con-
straint over this state in the extended representation. By
(80) we have

'R(z)P(R) = 2h „„[Xb"'(x)R *' "'"' + P b"'"2(z)R *' * "']
+2g g [+ baal (~)R(ae be)p2psp4 + ~ bl 1V2 (&)R(ae b&)psi44] (106)

We can compute the action of T b over the propagators. The following results are obtained:

+ab (&)gyzgs &abas~(2' T3) Oasgaebes r

P1P2 ( (108)

def [~ ab (&)~~yzpsgss ggs[aegbe]ps + (gae bes gae bes)ggssgss + 2gae bz& [ pgdzsa~segefzsy gd s~zase gfezs]) (109)

(11o)

In the last term of Eq. (109) an integral in z is assumed. The derivatives that appear in the above expressions can be
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applied over the K's integrating by parts, and using the differential constraint we generate &om them terms of lower
rank. For example &om (107) we have

D(a~b~) p2 ps p4 ( & n(a~ b~}p~s4
gp, p4asgard b~s " —gp, 2p, 4 (gax bx2 gax bx4 J~&

Performing these calculations, the following partial results are obtained for each of the four expressions quoted above:

(1) —&-b-g~, ~.&'*'»)""*"'—{g-*b-, —g- b-, )g~„,&'*'*)"'"',

(2) g g ~(aa,»)s ivz

(
zp(aa bx) p,

gpss

~(ax, b~}p j.p, g de f ~(aa, bx) p13) gpss [aagba]yz A" + (gax bx1 gaÃ b%2 )gp, 1 p.g ~ ~ gax bzgp1dzgex fz~"

(4) 2~, a& *'*)"

Some contributions cancel each other and we finally obtain

R(X)P(R) = 2eabcgizi pz R ' + 2[2haa ba ~i & gaa bzgggdzgca fz]+ (112)

In the above expression, the quantity in square brackets
vanishes identically because the second term is nothing
else that other form to express the first one. One can
easily check this fact. Developing B( ' )"' "' we get

g(az, bx)pycx pg 2/(ax bxp1ca p2)c + /(cx ax p]bx pg)c

+g(bx cx p.1am pg)c

and the contribution of the rank five term vanishes due
to symmetry considerations. We conclude

tended wave functions are smooth functionals of the vari-
ables. In what concerns the regularization of the con-
straints we shall limitate the analysis to the case of wave
functions with a totally specified analytical dependence.
More precisely, we shall study the action of the regu-
larized. Hamiltonian constraint over the wave functions
that are formally annihilated by the constraint. A more
general discussion of the regularization and renormaliza-
tion of the constraints as well as the consistency of their
algebra will be given elsewhere [26].

R(x)p(R) = 0.
A. The smoothness of the extended wave functions

VI. THE ISSUE OF THE REGULARIZATION

The extended representation provides a new scenario
to analyze the regularization problem in quantum grav-
ity. In the loop representation regularization ambiguities
appear both at the level of quantum operators and of
the quantum states associated with the knot invariants.
Whereas the first problem is common to all the represen-
tations that one can construct for quantum gravity (and
lies in the fact that the constraints involve the product
of operators evaluated at the same point), the second is
typical of the loop representation. In the case of quan-
tum gravity the loop wavefunctions are knot invariants
and their analytic expressions require the introduction of
a regularization (framing) [23]. This difficulty not only
arises for the gravitational case, even in the simple case
of a free Maxwell field [24], it is known that the quan-
tum states in the loop representation (associated to real
connections [25]) are ill defined and a regularization is
needed.

In the extended representation the second difficulty
can be solved. We are going to show that with an ad-
equate restriction of the domain of dependence, the ex-

In the loop representation the coeKcients of the ex-
pansion (99) of the expectation value of the Wilson loop
in terms of the cosmological constant are knot invariants.
It is easy to see that their generalization to the extended
representation are also diffeomorphism invariants. For
that, consider the extended loop transform of the expo-
nential of the Chem-Simons form

(X) = jd„[A]e ~" Te[A X)

=) [I[").x]~",
n=O

where the dot indicates the contraction of indexes. As
the measure of integration and the Chem-Simons action
are diffeomorphism invariants we have

Ze(X) = /de[Ac]e "~ ~Te[Ap. Ae. X], (116)

where AD . X and A~ ——A . AD-1 are the transformed
quantities under the diffeomorphism x' = D (x). A~
is in another gauge. Because of the fact that the mea-
sure of integration, the Chem-Simons action and the
trace of the extended holonomy are invariant under gauge



51 EXTENDED LOOP REPRESENTATION OF QUANTUM GRAVITY 513

transformations connected with the identity, we conclude
4'~(X) = 4~(AD X). From (115) we get, for any n,

g~"~. X = g~"& -A -X. (117)

As the Y's satisfy the homogeneous differential con-
straint, they can be assumed to be smooth functions.
In this case, all the divergent behavior of the X is con-
centrated in the function P. The 0's control then the
divergent character of the group elements.

Let us define the following set of elements of the ex-
tended space: X E (X), if, and only if, there exists
a prescription function P such that bT[P] . X = Y is a
smooth function. We shall demonstrate that the wave
functions defined on this domain are smooth in the ex-
tended variables and that this property is invariant under
diffeomorphism transformations.

The coefEcients are then invariant under difFeomorphism
transformations. Note that this result does not imply
that p(X) or w(X) are diKeomorphism invariants. From
(99) the state (117) contains to any order in the cosmo-
logical constant contributions of different knot invariants.
The invariance of these coefBcients has to be checked ex-
plicitly.

Let us consider now the regularity properties of the
extended wave functions. Generically the multitensors
X" are distributional, as it is directly inferred from (8).
As we have shown in Sec. II, any multitensor that satis-
fies the difFerential constraint can be written in the form
X = o[P] Y, where the Y are transverse fields. From
(17) we have, for the rank two component of the multi-
tensor,

X aa by yam by + gag. yby /by y az yaz /by ycz

+y[by yaaj. (118)

Given a diffeomorphism transformation AD it can be
shown that hDT = AD i .bT AD is a transverse projector
in the prescription

x
(tD y J(+) gDb( )

4 D(y)g (119)

~D ~T '(AD 'X) ~D ~T '(rD ~ ' AD 'Y
= AD Y. (120)

The set (X), is then invariant under diffeomorphism
transformations. For any X 6 (X), we have

vtr(X) = g X = g . (T[P] . Y—:gy . Y. (121)

All the distributional character of the wave function is
concentrated in the "metric" gy. They are well-defined
functionals, smooth in the extended variables. More-
over, the difFeomorphism transformed of the wave func-
tion would be defined on the same domain and is also
smooth.

B. The regularization of the constraints

We shall restrict the analysis of the regularization to
the case of the point splitting method, based on a delo-
calization of the point where the operators are evaluated.
The point splitting version of the constraints are

where J(x) is the Jacobian of the coordinate transfor-
mation and P the function that fixes the prescription of
the projector hT [10]. In this prescription X = (T . Y =
AD —& 0 D —1 AD ' Y For any diffeomorphism trans for-
mation AD, the transverse part of A~ . X is a smooth
function with the prescription 4D-i. In effect

C' d(R) = f d' fd'vvvr(vvv)f(vv)@, (X, v(vv) x, R,~~~),

gd'(v)@(R) = g f d vv f d uf d v r (u v)f (u v)f (v v)@(% (vv) x R~" "~),

(122)

(123)

where f, is any appropriate symmetric smearing of the
delta function. Notice that this point splitting regular-
ization is not uniquely determined by the formal factor
ordered expression. Several sources of ambiguities arise,
the first one is related with the background metric used
in the smearing functions. It is also possible, but not
necessary, to preserve the gauge invariance in the reg-
ularization process. Finally additional factor ordering
problems may arise due to the distributional character of
the fundamental fields. A more complete and lengthier
discussion will be given elsewhere [26]. Here we shall pro-
ceed as follows: we shall introduce a naive point splitting
and study the action of the regularized and renormalized
operators on the formal solutions. We shall prove that
there is a factor ordering that ensures the consistency be-
tween the known results in the connection and the loop
representation.

In the previous section we have shown that the in-
variance under diffeomorphism of the coefBcients of the
expansion of the generalized transform (115) is ensured
by construction. Also that, with an appropriate defini-
tion of the domain of dependence, the wave functions
can be endowed with convenient regularity properties (in
particular, the smoothness dependence on the extended
variables can be ensured in a diffeomorphism invariant
way). We check now the good behavior of the regular-
ized diffeomorphism constraint for the particular case of
the Gauss invariant p(K). From (122) we obtain

C; tg(R) = f d vv J d v f, (u, v) f(vv)gv, v, , ,

XW b"' (m) B( (124)

This result is valid for any prescription. Because of prac-



514 DI BARTOLO, GAMBINI, AND GRIEGO 51

1 0 1
4m. c)x !x —y!

(125)

In the transverse prescription the Bee Chem-Simons
propagator g b„ takes the form (101). Then using (107)
we get

C r(R') = —r v. f d'rvf &'vf, (rv, x)f(v, x),Ri~~

(126)

tical computational reasons we shall restrict the domain
of the wave functions to those prescriptions connected by
diffeomorphisms to the "transverse" prescription, given
by

R(N)cm y.bv cu) + y.cm bu (127)

C' (p(R) = 0. (128)

Notice that no divergences occur in (126) and we do not
need to take the limit when e goes to zero. The dif-
feomorphism constraint is perfectly well defined and no
renormalization is needed. A similar result holds for the
other known invariants.

Let us analyze now the action of the regularized Hamil-
tonian constraint on the Alexander-Conway coefficient
p(R). We get, in this case,

is a smooth function symmetric under the interchange of
the indices b and c (using the fact that the integration
points are undistinguishable). The last expression is well
defined and we conclude that

R'(x)p{R) = f ti'rv J i' fud'v f(rvx) f,,(u, ,x)f[vx), ,

&& ( &abcgfzzfiz + + [2Iiarrr tnu fzz & gaur bzg)zzdzgea fz]+
+(g. b

—g. b.)g„,.&'""' "") (129)

The last term in the above expression (what we call the "anomalous term") appears as a consequence of the modifi-
cation of the differential constraint of R( ' ). We have now

(9 Q( arbrr)fzl ' fzi'' Prr —[$(~. ~. ) $(~. ~. )]Q(azrrbv)fzl ''Ni '''fzrr

+[b(x; —u) —b(x; —n)](—1)"—'B( "»- ~ -~ &- &'+~). (130)

instead of the normal differential constraint. In the above expression, xo ——u and x +q ——v. The calculation of the
regulated terms involves the consideration of the divergences that comes &om the group elements (through the matrix
sigma) and &om the metric terms. The first observation is that both types of contributions are of the same order.
Let us consider, for example, the divergent contributions associated with the rank five group elements contained in
R( "'~)&' &'. One can see that all these terms are equivalent in their divergent character to

aa ~(bv flycrrr )zz)v (131)

with V( ~' ~') a regular function in the limit e ~ 0. Notice that this expression gives the leading divergence of
the rank five term in (129). But

au y(bv p.1cul p, 2) y. (bv p, ]cup p2) (132)&bca~o e = gbuce

is exactly the same contribution that comes &om the anomalous term. Notice that in this case g„,„,R( "' "') is
a regular function in the limit e —+ 0 due to the point splitting does not affect two consecutive indexes.

The result (113) ensures that the contribution of the rank five term in the Hamiltonian vanishes due to the same
symmetry properties used in the formal calculus. One can see that the second term in (129) also vanishes when one
removes the regulators. For the anomalous term we get

2 d QJ d Q d v tU X 'll, X v X g ~g~ ~ R(

2 gcyR(a~ p, &by p,2),
abcgp, 1p2+27re

+ O(e), (133)

:= lim eR'(x) p(R)

(7r)
gcuR(a~ v1bV V~)

&abcgp, 1 pg (134)

where we have used a Gaussian regulator f, (z)
(~vre) s exp( —z e ). Then
&"(~)p(R)

I

%e conclude that the renormalized Hamiltonian con-
straint does not annihilate the generalized diffeomor-
phism invariant corresponding to the second coefBcient
of the Alexander-Conway knot polynomial in the (naive)
point splitting regularization procedure.

A compatibility argument arises &om the beginning.
We know that the exponential of the Chem-Simons form
is an exact quantum state of the Hamiltonian constraint
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with cosmological constant in the connection representa-
tion. What about the regulated equations order by order
in A that correspond to the same state in the extended
representation? As it was just mentioned, the formal cal-
culus works in the expected way. But the point slitting
regularization makes these equations to fail. However,
the consistency can be restored by introducing a coun-
terterm in the Hamiltonian.

A counterterm is a regularized term which has no eKect
over a regular Wilson functional (that is to say, over an
extended Wilson functional constructed with nondistri-
butional connections). Consider, for example, the follow-
ing expression, symmetric under the interchange of the
internal indices:

= (Tr[+(amIpIbu)v] Tr[+(am IpIbu)v])+

(135)

C'(g„,„,R"'"') = 2(g ~ —g s„)R( " (137)

The addition of the counterterm C' in Q ensures that the
Kauffman brackets polynomial is annihilated (up to the
second order in A) by the renormalized Hamiltonian con-
straint with cosmological constant. This is an important
result. In the extended representation one can prove that
the Kau8'man brackets polynomial is a quantum state of
gravity with cosmological constant including regulariza-
tion. Notice that the introduction of the counterterm
C' is equivalent to a particular choice of ordering of the
connections in the Hamiltonian constraint.

VII. CONCLUSIONS

An extended loop representation for quantum gravity
was constructed. The formal calculus associated with the
constraints have been developed and the regularization
problems discussed.

We have shown that the extended loops provide an ap-
propriate arena for the definition of the quantum states
and that the constraint equations present practical cal-
culational advantages. These facts can be considered. as

It is clear that this term vanishes in the limit e —+ 0 if
the connections are regular functions, but it may have
a nontrivial contribution if the connections are distribu-
tions. The corresponding regularized expression in the
extended space is

ge ~(aa @au v)~ b b
136

~~g~( I Is ) g~( I
Is.) ~~

This term generates anomalous type contributions. For
example,

an improvement of the loop representation in the descrip-
tion of quantum gravity. However in this approach one of
the most attractive ingredients of the loop representation
has been lost: the fact that the difFeomorphism constraint
was easily solvable in terms of knots. A further study of
the characterization of difFeomorphism invariant classes
of extended loops is in order. In this sense, the fact that
the knot polynomial solutions have direct analogues in
the new representation can be viewed, in our opinion, as
a suggestion that the topological and geometric insights
of the loop representation be inherited in some sense by
their extension to the generalized space.

One may wonder about the equivalence between all
the possible representations that can be formulated in
the extended space. As we just mentioned, represen-
tations associated with the groups Wo and Xo can be
developed in a way similar to the Vo case. Moreover,
it is still unclear which among all possible representa-
tions behave as the dual of the connection representation.
These representations obey diferent types of first class
constraints. In the case of 'Vo these constraints are the
linearity constraint and the difFeomorphism and Hamil-
tonian constraints. The presence of other constraints be-
sides the usual gravity constraints allow to eliminate the
superfluous degrees of &eedom of the theory. One can
see that the elimination is complete in Lo, where all the
gauge ambiguity disappears and, in consequence, all the
representations can be considered as essentially equiva-
lent.

An important property of the extended representation
of quantum general relativity (and in general of any gauge
theory) is that it provides, in a natural way, a framework
to develop a classical counterpart of the quantum the-
ory. One can view the role of the multitensors as con-
figuration variables of a canonical theory. The conjugate
momenta are represented by functional derivatives. This
suggests that there exists an underlying classical Hamil-
tonian theory that under canonical quantization yields
directly the extended loop representation. This was un-
clear with loops, where the loop representation could only
be introduced through a noncanonical quantization. For
the Maxwell case this theory was studied [27] and found
to be equivalent to the usual Maxwell theory. For the
non-Abelian case it is yet to be studied.

In what concerns the regularization proced. ure some
comments are in order. In the first place it is important
to point out that a gauge invariant regularization proce-
dure may be introduced. However this regularization is
totally equivalent to the naive regularization we have con-
sidered here. Second, it is important to remark that the
generalized knot invariants are well defined in the space
of R's that are related with continuous V's for some pre-
scription P and therefore in a diffeomorphism invariant
background independent domain. However we need to
impose, for practical reasons, a further, background de-
pendent, restriction in the domain of the wave functions:
the transverse prescription. This prescription allows to
perform the explicit analysis of the regularization and
renormalization of the constraints. Therefore the regu-
larization procedure is clearly background dependent; the
smearing functions, the Chem-Simons propagators and
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the extended space are in the transverse prescription.
A more geometric definition of the relevant extended

space, for instance, by restricting the domain of the wave
functions to some geometric smearing of loops (bands or
tubes), could allow to keep for one side well-defined knot
invariants and on the other side to analyze the action
of the regularized constraints without any reference to a
background metric.
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