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Chiral sum rules for Z~Bz parameters and its application to pro, q, g' decays
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The chiral expansion of the low-energy processes m —+ pp and q —+ pp is reconsidered with
particular emphasis on the question of the evaluation of the two low-energy parameters from Z&~&

which are involved at chiral order six. It is shown how extensive use of sum rules and saturation
with resonances as well as constraints from asymptotic QCD effectively determine their values.
Predictions for the widths are presented for both standard and nonstandard values of the quark
mass ratio m, /m. A precise relation is established between the usual phenomenological g —g'
mixing parameters and those of the chiral expansion. The large size of the chiral correction to the g
decay can be understood on the basis of a simple counting rule: O(1/N, ) O(mq). It is shown how
this counting rule eventually allows one to include the g' into the effective Lagrangian in a consistent
and systematic way.

PACS number(s): 13.40.Hq, 11.55.Hx, 12.39.Fe, 14.40.Aq

I. INTRODUCTION

The g electromagnetic decay is a neat low-energy pro-
cess, free of any strong final-state interaction, and so one
would expect that the chiral expansion should converge
as fast as it seems to do in the case of the masses. Yet,
at leading order, the width is predicted to be too small
by a factor of 3 compared to experiment. The problem of
the O(P ) corrections to rt —+ 2p (and vr -+ 2p) has been
addressed several times in the literature [1,2] (who com-
puted the chiral loop contribution) [3, 4]. Strictly speak-
ing, chiral perturbation theory (yPT) is unable to make
any prediction in this case because there are precisely two
low-energy (LE) parameters, which are finite and called
tq and tz below, which cannot be determined at present
from other low-energy data (in principle the amplitudes
for g —+ vr ~ pp or pp —+ 3m could be used as they con-
tain just the same parameters). However, shortly after
the yPT started to be developed in a systematic way [5,
6] along with its list of LE parameters, a great deal of
progress was made in the art of relating, in a rather pre-
cise way, the size of these parameters to the properties of
the low-lying resonances [7, 8]. In particular, as Ecker et
al. [8] have emphasized, whenever one can write down a
rapidly converging dispersion relation it is natural to ex-
pect that saturation from the first low-lying resonances
should provide an adequate approximation.

In this work, we intend to exploit in this manner spe-
cific convergence properties of dispersion relations, which
can be shown to hold in @CD in the chiral limit, in or-
der to estimate the two LE parameters which occur in
the electromagnetic decay of the m and the g. These
sum rules are similar to the ones that were established
for Lio [9] and for L7 [10] on the basis of two-point func-
tions. The parameters tq and ti are related to three-
point functions instead. We will find that t& is propor-
tional to the square root of —L7 and to the amplitude
A(rt' ~ pp). This amplitude must be taken from ex-
periment and this information feeds back into the LE
parameter, as is usual for the properties of the light reso-

nances [7]. Similarly, the parameter ti may be shown to
encode information on the vr (1300) resonance electromag-
netic decay [3]. Fortunately (because hardly anything is
experimentally known on this decay channel), we show
that this contribution is numerically dominated by a con-
tribution from the asymptotic behavior of the three-point
function which turns out to be canonical. A similar be-
havior was exploited previously in the case of three-point
functions involving one scalar current and was claimed to
provide an explanation, based on chiral symmetry, for the
somewhat unexpected electromagnetic properties of the
scalar mesons [11].

In addition to the purely phenomenological applica-
tion, once it is ensured that the LE parameters are esti-
mated to a reasonable level of accuracy, one can address
the question of the rate of convergence of the expansion
in powers of the quark masses. The conventional deter-
mination of the light quark running masses m„and mp
[12] was recently challenged [13],based on an analysis of
the violation of the Goldberger- Treiman relation. This
analysis suggests that the value of the quark mass ratio
2m, /(m„+my) is 2—3 times smaller than in the standard
yPT, i.e., r r2 ——25.9. If true, this necessitates rear-
ranging the quark mass terms in the chiral perturbation
series in a different way [14—16] (the so-called generalized
yPT) which one would expect to converge more rapidly.
In practice, distinguishing between the yPT and its gen-
eralized variant is, curiously, not so easy. It is likely that
only very precise measurements of vr-vr scattering lengths
could settle the issue of which one is correct. It turns
out that the amplitude A(q ~ pp) is very sensitive to
the value of r when r is in the vicinity of the value r2.
Nevertheless, we will show that it is also possible to re-
produce the experimental results under the assumption
of a much smaller value of r.

The plan of the paper is as follows. The next sec-
tion contains the derivation of the sum rules for the pa-
rameters tq and t~; the main results are contained in
the formulas (18) and (23). Application to the rt de-
cay amplitude is then discussed in Sec. III. In particular,
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we establish a connection between the chiral expansion
description and the phenomenological representation in
terms of an g-g mixing angle which is widely employed
(e.g. , [17]). The chiral corrections to the n decay are
also worked out here. This analysis suggests that the
value of E o quoted in the literature is incorrect. The
description of the g decay amplitude in the generalized
yPT is presented at the end of Sec. III. The q-g' sys-
tem is of interest also in connection with the large N
expansion since, in the large K limit, the g is a ninth
Goldstone boson. This suggests still another expansion
scheme where 1/K, is considered as an expansion param-
eter together with the quark masses and the momenta.
A natural choice is to count one power of 1/N, on the
same footing as one power of a quark mass. This point of
view is discussed in Sec. IV (in particular, one observes
the appearance of two di6'erent mixing angles but only
one of them is relevant to the q decay) and the results
are compared to those of the standard chiral expansion.

II. LOW-ENERC Y PARAMETERS
FROM A CHIRAL SUM-RULE METHOD

The current-algebra prediction for the amplitudes de-
scribing pseudoscalar meson decays in two photons is
contained into the following term of the canonical Wess-
Zumino (WZ) Lagrangian [18, 19]:

~(4) =
32 2F e (q ") ~U~P) ~

where the totally antisymmetric tensor is normalized
such that e = 1 and q'i = P P, A, , i = 1,8. The
subscript in Eq. (1) is a reminder of the chiral order.
Part of the higher chiral corrections are contained in chi-
ral Lagrangian terms which are also proportional to the
e tensor. At order 6 there are three independent terms
which are relevant for our purposes (using relatively stan-
dard notation; see, e.g. , Ref. [7])

+"~(0~T ~„.(*)~„'(~)~~(0) lo), (3)

with r = —(p+ q), g, , b, c = 1 —8, and where

A Ai„(*)= 0(*) 2»&(*) ~i (*) ='&(*) 2»@(&) (4)

are the vector and the pseudoscalar currents, respec-
tively. In the case of the singlet pseudoscalar current,
i.e. , when the index c is set to c = 0 in (3), we define
a function II&&& from exactly the same formula. II&V&
difFers from IIvvi because of the presence of the U(1)
axial anomaly.

First, let us perform the low-energy expansion of
IIi i ~. At order O(p ) one has to include a tree-level
contribution from 8 4, a one-loop contribution involv-

ing one vertex from l'.
~4~, and, finally, a tree contribu-

tion involving the parameters tq, t'~, and t2 from Z~~~

[Eq. (2)]. In the minimal subtraction scheme the scale
dependence which arises from the loop contribution is
canceled by that of the parameter t2 [4, 22]; the first two
parameters are scale independent. The expansion is

IIv ~~(p, q, r ) = 2BO + 16ti + 4t22 2 2 N p +0
16Vr2r2 r

+(chiral loop) . (5)
The first term in (5) is the pole contribution from the
canonical Mess-Zumino Lagrangian. In the pseudoscalar
singlet channel, now, we no longer have a Goldstone bo-
son pole contribution so that the chiral expansion starts
with a constant term:

II@.v p (p, q, r ) = 2Bp (16ti + 48&i )+O(p, q, r ) .

is of order O(N, ) instead of being O(K, ) at most, like
the other parameters. From this point of view one ex-
pects it to play a dominant role. The second parameter
t~ is unrelated to the g' resonance.

In order to obtain an estimate for tq, t~, and t2 let
us take the chiral limit and consider the vector-vector-
pseudoscalar correlation function, i.e.,

d e~~~p p q IIvvi (p, q, )

As discussed in [20], all the other potentially relevant
terms that one can write down can be reduced to the
above three by the use of the so-called Shouten iden-
tity and the equation of motion. Among the constants
appearing in (2) only t2 has been estimated previously
[21—23]. The parameter t2 is phenomenologically inter-
esting in that it controls the corrections to decays like
7r —i pp* which were discussed in [22]. This contribu-
tion vanishes when both photons are on shell. In this
case, the terms tq and t& are the only contributions from

to the processes vr ~ 2p and g ~ 2p. These two(6)
parameters are finite, rejecting the fact that the loop
contribution is finite and, as a matter of fact, vanishes
[1, 2]. The parameter t'i is analogous to some extent to
the parameter Lq of the standard O(p4) Lagrangian [6,
10]. It picks up a contribution from the pole of the g'
and, from the point of view of the large N counting, it

~ ~2P +V ++
2p2 gf2 p2

x[1+O(n. )] + (7)

The author is indebted to Mare Knecht for noticing a sign
error in the first version of the manuscript.

For moderate values of the momenta p, q 1 GeV it is
natural to assume that II~v~ and II&&& are dominated
by the low-lying vector and pseudoscalar resonance poles.
A very useful constraint arises in the chiral limit from the
behavior in the asymptotic regime p, q ~ oo. Indeed, a
simple calculation in QCD shows that one has

lim II&& (ip, q, r ) = lim II&vt, (p, q, r )p, q —+oo piq~ oo
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In other terms, under a scaling of the momenta p ~ Ap,

q ~ Aq, IIvv~ scales as 1/A if we let A go to infin-
ity. The leading term in the asymptotic behavior has
the property of being canonical; i.e. , it does not contain
powers of logarithms caused by anomalous dimensions.
This is because the scalar condensate (/vs) has the same
anomalous dimension as the scalar (or the pseudoscalar)
current and the vector current carries no anomalous di-
mension. In deriving (7) we have performed the operator
product expansion in the manner of Shijman, Vainshtein,
and Zakharov (SVZ) [24], i.e. , taking into account the
nonperturbative feature that the quark and gluon con-
densates are nonvanishing. SVZ argue that doing this
enlarges the domain of applicability of the asymptotic
behavior down to the 1—2 GeV domain. It is therefore
natural to demand that the two domains match smoothly.
This is really useful only in the chiral limit because the
correlation function does not blow up asymptotically and
one need not resort to tricks such as the Borel transfor-
mation which are necessary in the more general situation.
Resonance saturation in the low- to medium-energy re-
gion amounts to approximating the correlation function
by a meromorphic function having simple poles at the

location of the resonance masses. Reducing to a com-
mon denominator, one can in principle have an arbitrary
polynomial in the numerator. It is here that the asymp-
totic conditions come into play and limit the degree of
the polynomial. In the present case, where the asymp-
totic behavior is canonical, the term of highest order in
the polynomial gets exactly determined. I et us, for in-
stance, include one nonet of vector resonances in the vec-
tor channel and only the pion octet in the pseudoscalar
channel. Then, we obtain a very simple representation

— ~ '(p'+ q'+") +
2(p' —M' ) (q' —Mv) r'

where M~ is the vector meson mass in the chiral
limit. This construction bypasses the use of effective
I.agrangians for resonances and yields automatically
the most general form of the amplitude containing the
right poles and obeying the appropriate asymptotic con-
straints. In the case above one has a single arbitrary
parameter o, . In writing down (8) we have ignored the
contribution of the vr(1300) (7r') multiplet. If we include
the vr' pole contribution into the amplitude, we obtain a
more complicated representation

[
—&oFo (&' + q' + &') + &](r' —M~) + b(&' + q') + «'

which contains two additional parameters b and c. MP
is the a nonet mass in the chiral limit. This representa-
tion reduces to the preceding one in the limit where the
mass M~ is sent to infinity. It is useful to rewrite (9) by
separating out the various poles in r

2 2 2 1

u —(p2 + q2) (&oF02 + b/Mp~)
r2

c+ b/M~~(p + q2)

P

(10)

The parameters a, b, and c may be related to properties
of the resonances which will feed back into the low-energy
parameters which interest us upon expanding the corre-
lation function around p = q = r = 0 and comparing
with the representation (5). Here, we must exercise some
care with respect to the chiral loop part which is not ex-
plicitly displayed in (5). Setting Ji = q2 = 0 makes it
vanish [1, 2]. This allows us to unambiguously identify
the parameter a from the residue of the pion pole;

".B.M',
4~2

c l
32Boti = BoFp

In the case of t2, we must consider the terms proportional
to p . The chiral loop generates a contribution propor-
tional to p /r (which cancels out the scale dependence
arising from t2) and furthermore generates nonanalytic
terms which have no counterpart in the parametrization
(9). We will content ourselves with a simple estimate of
t2 valid in the leading K approximation: In this limit,
the chiral loop need not be taken into account as it is
subleading in N . Ignoring the loop, one finds

1 a 6
4&o&2 =,I, —&oFO-

2Mv (Mv M (13)

There remains to find estimates for 6 and c. As usual,
physical amplitudes are extracted from the Green's func-
tions by taking the residue of the appropriate resonance
poles and dividing out by the meson-current coupling
constants. Using that, we can express c, to begin with,
as a ratio of amplitudes:

A(~'0 ~ pp)c = atanO (14)

where 0 is an angle which parametrizes the strength of
the coupling of the vr' to the pseudoscalar current,

and to find a relation between tq and c: (O~g~(0)~7r' ) = 8 BOFo tanO, (15)
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64' (16)

Similarly, there is a simple relation between the parame-
ter b and the ratio of amplitudes A(vr -+ pp)/A(7r —+ pp):

A(vr m pp) 6 2epi I—
I
=1+*,

A(7r -+ &&) E M

in the chiral limit (the rationale for introducing an angle
here is explained in Ref. [11]).As will be recalled in the
next section [see (62)) tan 0 can be related via a sum
rule to the LE parameter Ls. The amplitudes A(P —+

pp) where P is any pseudoscalar meson are normalized
everywhere in the text such that the width:

LE parameter Ls) this bound implies that the first term
in tq is larger than the second by a factor of at least
3. This means that keeping the first contribution in ti,
i.e. , ignoring the ~ contribution, should provide, at least,
the right sign and the right order of magnitude for this
parameter.

Let us now consider the Havor singlet pseudoscalar
channel. We can write a representation of the three-point
function analogous to (10):

IIvvs =
2(p2 M2 ) (q2 —M2 )

a ' —(p2 + q2) (BpI'o2 + b'/M~~, )
r2 —M

b &

p+p + (17) c' + b'/M~, (p' + q')
T pl

(19)

where Ev is the coupling of the vector field to the vec-
tor current. In Eq. (17), T measures the deviation from
the vector meson dominance (VMD) principle. Exact
VMD means that x = 0. Using the experimental value2
I' = 68 + 7 keV for the decay width p+ m sr+a (together
with Ev = 150 MeV and Mi = 770 MeV) we obtain
x = 0.022 + 0.051 which, as has long been well known, is
fairly close to exact VMD. If we let M~ go to infinity in
(17), we get a deviation from VMD of the order of 20%.
For a better accuracy, we have to use a finite vr' mass.
In this description, VMD is realized from a cancellation
between the parameter 6 and the asymptotic term BOEo
[see (17)]. Furthermore, assuming the cancellation to be
exact ensures that the form factor associated with the
matrix element (p~ j„~m) satisfies an unsubtracted disper-
sion relation.

We can now express the parameters ti and t2 in terms
of experimentally accessible resonance properties:

—1 I"o %c (Mv l A(~' ~ pp)
64M~2 MV2 4~2 (MJ ) A(~ -+ pp)

64

Since the value of x is compatible with zero, the ex-
pression above for t2 reproduces the one obtained pre-
viously [21, 22]. Concerning ti, the contribution pro-
portional to A(n' —i 2p) is identical to the one which
was identified in Ref. [3] but the first contribution (which
comes from the asymptotic term in the three-point func-
tion) was not included in that paper. We claim, on the
contrary, that this contribution is likely to dominate. Ex-
perimentally, there exists an upper bound for the decay
rj(1295) ~ 2p rate, I' ( 0.3 keV. Assuming ideal mix-
ing in the vr(1300) multiplet together with the estimate
tan 8 2 (which is obtained from the sum rule quoted
in Sec. IV [Eq. (62)] which relates it to the value of the

Here, M~~ is the mass of the singlet state in the vr(1300)
nonet in the chiral limit. At leading N, order we expect
nonet symmetry to hold and thus M~ ——M~. Further-
more, in this limit, the residues of the poles in (19) should
be equal to the ones in (10), i.e. , a = a', b = b', c = c'.
One can express t& as a di8'erence between IIvv~ and
II&i,& in the limit p = q = r = 0 (again the loop
contribution vanishes):

96Bpti = lim IIv&&(0, 0, r )
—IIv~~(0, 0, r )r 2-+0

BpN+8~~r2

which gives

] —1 G
I

C
96Bpt] =

4
v g' I"I

(21)

(01&(0)l~') = Bo&n (22)

we obtain the following representation for the parameter
1'

e't', = ", ~6A(q' ~ qq)256M2, (23)

Here, one expects a strong cancellation between the e
and the c' terms. In fact, the first term in the parenthe-
ses is of order O(%2) while the sum of the last two terms
is of order N . It is easy to check that adding further
resonances would also generate corrections which are of
order N and which are suppressed by inverse powers of
the resonance masses. Therefore, it appears that retain-
ing only the first term in (21) should constitute a rather
solid approximation. Next, using (19) we can express
the parameter a' in terms of the amplitude A(g' —i 2p).
Introducing the coupling of the g' to the pseudoscalar
singlet current,

All the experimental numbers are taken from the 1992 Par-
ticle Data Group [25].

[the amplitude is again normalized as in (16)]. At this
point we have all the necessary ingredients to discuss the
chiral corrections to the decays g ~ pp and vr —+ pp.



CHIRAL SUM RULES FOR L(6) PARAMETERS AND ITS. . . 4943

III. APPLICATION TO m AND g DECAYS

where we have introduced for convenience the dimension-
less quantities proportional to tq and t&'.

256m
1 3

M tg,
102 4' MM ti. (25)

In (24), rq is the quark mass ratio m, /m which must be
expressed at O(p~) precision, i.e. ,

r g
——2M~ /M —1 25.9, (26)

and, as usual F~" = 2e" ~F p. In order to compute the
rI decay amplitude from (24) we must use that Ps ——P„
at chiral order O(p ) while Ps ——P„Fp/F„at order O(p ),
ignoring the vr -g mixing which effect can be shown to be
negligible for the g decay.

Since the loop contributions vanish for on-shell photons
[1, 2], the decay rate is computed by simply using (24)
at the tree level. Using relation (23) for t'i one can write
the amplitude for g decay as

Let us begin with the g. Collecting the chiral La-
grangian pieces up to order O(p ) one obtains

e~F„„F""0s 5 —2rz
T, + (1 —cs) T,') .

16vr~Fp 3 3

(24)

As with the ratio F„/E is seen to be justified only to the
extent that the correction from tq is negligible. Here, we
find that this correction is of the order of 10%%uo. Concern-
ing the mixing angle, we obtain

—~2 Mg G„tang, = (r, —1)
3 7C

o.2M3

1927t.3F2 (31)

(In numerical applications we use the value F = 92.4 +
0.2 MeV [26].) At order O(p ) now, we can use F„
(1.3+0.05)F provided by [6] and ti is given by (18) and
the following discussion. In (27) we still need to evaluate
the coupling constant G„. An estimate may be obtained
from the sum rule for the LE parameter L7 [10]:

A relation between the mixing angle and the parame-
ter Iy was first derived in [6] based on an analysis of
the pseudoscalar mass formulas. We obtain a similar,
but slightly different, formula upon using the sum-rule
relation between G„s and L7 [see (32) below]. The two
formulas do coincide at first order in the quark masses,
as they should.

Let us now make some numerical estimates. At order
O(p4), first, one has the well-known result

F 5 —2r2
A(8 -+ PP) = + Ts)3~F.

—G
L7=

48M2,rl'
(32)

~2 M~ G„+ (r~ —1) M~ F" &(~' ~ ~~) . (27)

A(rI m pp) =

A()7' -+ PP) =

cs sos 8c &8 sic 8s
)~STrF &s &o

n sin op 8 cos gp+ 28
i/3' E &s &o

Let us eliminate Ap from the second equation and replace
in the first one. We obtain a form exactly similar to
(27), which allows us to express As and gp in terms of LE
parameters:

1 F 5 —2r2+ 1cos Op&8 F~ 3 (29)

The usual assumption made in the literature to identify

In this formula, we have replaced Fp everywhere by F:
This does not modify the first term, and in the oth-
ers, this replacement amounts to a modification of order
O(p ). One observes that the i1' amplitude has crept in
via the sum-rule formula for the LE parameter tz.

Using this form of the amplitude we can make contact
with the traditional parametrization of the g and g' de-
cay amplitudes in terms of an g-g mixing angle. This
will allow us to establish definite relations between the
parameters appearing in this representation and those of
the chiral expansion. The representation which is usually
employed contains three parameters l9p Ap, and As (see,
e.g. , [17]):

This result is derived in the chiral limit under the only
assumption that the g' pole is the dominant contribution
in the dispersion relation. Using the numerical value of
Iq, Iq = —(0.4+0.15) x 10 [6] one deduces that G„
133 + 25 MeV up to a sign. In the large K limit we
expect to have G„=F which incites us to adopt the
positive sign. Using this value in the expression (27) for
the amplitude, together with the experimental value of
the width I'(rI' ~ pp) = 4.29 + 0.19 keV, we obtain the
g width in the form

- 2
I'(q m 2p) = 172 (0.77 6 0.03) + 0.09 + (0.72 + 0.15)

=430 + 98 eV, (33)

where we have displayed the contributions in the same or-
der as they appear in (27). One observes that the third
contribution, which comes from the parameter t&, largely
dominates over the one from tq, in agreement with the
expectation &om large N arguments. The contribution
from tz is not completely negligible; it increases the re-
sult by about 50 eV. If we had chosen the opposite sign
for G„s (implying a huge deviation from the leading 1V

estimate), then the width would have been of the order of
3 eV. The central value is slightly below the experimen-
tal result (the average of the two-photon data at present
give I' = 510 6 26 eV) but the relatively large error bar
on L7 generates an uncertainty of nearly 100 eV on our
prediction [as a matter of fact, within this uncertainty,
the result is compatible with both the old Primakov re-
sult (I' = 324 + 46 eV) and the photon-photon results].
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The uncertainty on L7 is tightly correlated with the un-
certainty on the value of the quark mass ratio r, which is
r = 25.7+2.3 in the standard yPT at O(p ) [6]. Roughly
speaking, the upper bound on I' corresponds to the lower
bound on r and vice versa.

Using our formula (30) with G„i derived from Ly, we
obtain, for the mixing angle,

e2F„F" (bs 5 mg —m„
3 md +m~)

mQ m(g /+ 1
mQ + m(g

(35)

Clearly, one expects the chiral corrections here to be
much smaller than in the g case because they do not in-
volve the strange quark mass. The wave-function renor-
malization in this case can be written as follows at
O(p ) [6], neglecting terms which are quadratic in e:

(1 —e, ) &F /F. . o

At O(p ) one has to set ej ——e2 ——e with

Q3 m~ —m„
4 m, —m

(37)

and, numerically, e 1.00 x 10 and e2 1.11 x 10
Expressing next t~ in terms of the mixing angle O0 and the
g' decay amplitude as before, we can write the amplitude
for the pion decay in the form

A)m M ppj = (1+ + (1+ 'e)»)
—3e tan go A(g' ~ pp) . (38)

One notices that E 0 appears here and not E = F +
which is experimentally well determined. Theoretically,
there are two contributions to the difference between
E 0 and E +. One arises from the quark mass difI'er-
ence mg —m„: A simple estimate (neglecting chiral log-
arithms) gives

2 (F~'
F~o = F~+ 1 ——

~ 2
—1

~

e + —e2 —F.1e2, (39)3 (F ) 2

which shows that this contribution is negligibly small,
of the order of 10 . The other contribution is purely
electromagnetic and, being of order O(n@ED) 10, it
should be the dominant one. Unfortunately, no estimate
of this efI'ect seems to be available at present.

Op
———(18.4 + 3.6)',

which is smaller than the one quoted in [10], eo
—(22+4)'. We should note here that the value of L7 that
we used does not take into account recent work which has
provided estimates for the corrections to Dashen's theo-
rem [27]. Part of the large error bar in L7 is generated
from the uncertainty associated with these corrections.

Let us now turn to the vr decay. In contrast to the g
case it is crucial here to take the quark mass difI'erence

md —m„ into account. The Lagrangian including the
O(ps) corrections reads

Using the value of O0 as discussed above, one can ex-
press the rate including the O(p ) corrections as

E2
I' = 7.73 1 + (6.41 —2.49 + 12.5)10

= 7.98 + 0.08 eV . (4o)

—tango(r)a(q' -+ pp) . (41)

Concerning the vr, we note first that the mixing param-
eters depend on r, for instance

1 2r(r2 —r)
e(r) = e r —1+ +GMO )

r2 —1+ AaMo/2 r + 1

(42)

where AGM~ = 3M„ /M„—2r2 —1 and e has the same
meaning as before [Eq. (37)]. The amplitude for a decay
can be written as

n e2(r) 10(1 —r)
A(vr m pp) = 1+ + 1+

vrF 0 3 3 3

5 —2r
+ ')") » (")

)
—[2e + e(r)] tan 00(r) A(q M pp) . (43)

The expression for e2(r) is rather lengthy and contains
several O(ps) low-energy parameters which are not pre-
cisely known; however, an approximate expression can be
derived

2
e2(r) = e(r) + e —(2r + 1) —1

3 r' —1 ~F'
The determination of the mixing angle angle 00(r) goes

in the same way as before. instead of Eq. (30), we obtain
here

In the parentheses we have displayed the contributions
from the terms proportional to e2, Tq, and tan O0, respec-
tively. The value of the error includes the uncertainty on
E as well as that from L7. Comparison with the experi-
mental result, I' = 7.74+0.60 eV. suggests that the value
of E 0 should be somewhat larger than E . Despite the
rather large error bar on the ~ width, the value quoted
in Ref. [25], F 0 = 84 + 3 MeV, is incompatible with our
chiral expansion of the amplitude.

Let us finally discuss the description of the amplitudes
g(m ) ~ pp in the generalized yPT approach. The O(p4)
Lagrangian in the Mess-Zumino sector is obviously the
same as in the conventional yPT, being independent of
the quark masses. The leading corrections are given by
exactly the same two terms, proportional to ti as tz as
before, which are counted as O(p ) rather than O(p ).
The main difference, then, is that the value of the quark
mass ratio r is no longer determined from the O(p ) gPT
but is left as a free parameter. As a function of this
parameter, we can express the g amplitude as

F 5 —2r")n ~ ~~) = +»)"))3~F.
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tango(r) = (r —1)

1 M. ( 2(r, —r)(r —1)1

(45)

The second equality is obtained upon using the sum rule
(32). Instead of L7, one must use the corresponding LE
parameter Zo+ in the generalized yPT (GLYPT), which
appears at O(p2) and is given at this order from the de-
viation to the Gell-Mann —Okubo mass formula (see [16]).
In order to determine Ti(r) one starts, as before, from
the sum rule (18) for ti. The coupling tan 0 is estimated
by using, again, the sum rule (62) replacing Ls by the
corresponding parameter Ao, in the GLYPT. One ends up
with the expression

Ti(r) = —4~' M'I'
(1 —A)

M. (AM,' —(1 —A)'M.'l ' A(~' -+ qq)
a(~ ~ ~~)

'

A= 2(r2 —r)
r2 1

(46)

Ti(r = 10) = —610 (0.68+ X), iX~ & 1.38, (47)

where X is the term proportional to A(m' —+ pp) in the
formula for Ti(r). This term generates an uncertainty
of the order of 30 eV in the value of the g width and
of the order of 0.1 eV in the vr width. The remaining
contributions to the g width are

I (q ~ pp) ~„ io ——172 0.77+0.02+0.95 = 521 eV,

(48)

where we have used that F„/F is practically the same
as in the standard yPT and that the value of the mixing
angle for r = 10, as obtained from (45), is oo 23.8'.
This result is at the upper limit of the allowed range
in the standard yPT. The various factors in (45) are,
however, widely difFerent from the corresponding ones in
(30), r « rz, 2mBO « M, but this is compensated by
the third factor, G„8F which is much larger than in
the standard yPT (and deviates more from the large N,
result). The no width, finally, can be expressed as

I'(~ m pp) ~„,o ——8.07 eV .0
Q2 (49)

Let us now consider some numerical results in this for-
malism for a small value of r, r = 10, for example. Using
the experimental bound on q(1295) -+ pp we find

U=Uexp i (50)

At order 2 of the mixed expansion one has the two terms
which are O(p ) x O(N ) as well as a single term which
is O(po) x O((N ) ):

Z(2) = (D„UtD"U + yt U + U"y)4

in [28]. The most general Lagrangian at order O(p ) is
discussed in [6]. We will follow their method here, which
consists in introducing a source 0(x) associated with the
winding number density w = (16vr ) TrG„„G~ . Under
an axial U(1) transformation, exp[iP(x)], one lets the
source 0(2:) transform to 8(2:) —2trP(x). Then (apart
from the canonical WZ part), the effective action is in-
variant. In the singlet sector, three kinds of invariant
building blocks are available, D„PO ——B„go —2tra„,
D~e = B„O+2tra~, and the combination v 6/0/Fo + 0.
For the purpose of discussing the spectrum and electro-
magnetic properties it is sufBcient to consider quadratic
polynomials in $0(x). The canonical WZ action is mini-
mally extended using nonet symmetry.

At order two the mixing angle is predicted to be
0J —10' [1, 6] which is too small by a factor of 2
compared to phenomenological determinations [17]. It
has long been recognized that going to O(p ) seems to
improve the situation [1]. In Ref. [6] it is proposed to
use the O(p4) Lagrangian with the q' integrated out in
conjunction with the O(p ) Lagrangian which includes
the g'. Although this procedure gives the correct mag-
nitude for 0~, one may wish to include the g' at O(p )
as well. Furthermore, the Lagrangian proposed in [6]
contains terms which are leading in N, as well as terms
which are subleading. Outside of the large % expansion,
including the g' explicitly into the chiral Lagrangian does
not make much sense since the g' mass is rather large,
larger than the mass of the p or ~ mesons, for instance.
On the contrary, this looks reasonable if one thinks in
terms of the large N, expansion, since M„, is O(1/N, ).
This suggests to generalize the chiral counting in order
to include the large % expansion: A natural choice is to
count a factor which is O(l/N, ) on the same footing as
a quark mass factor [29]. We will call this counting rule
the mixed chiral expansion. It should be clear that this
expansion is difFerent from the usual chiral expansion.
For instance, at leading order, the g mass does not sat-
isfy the Gell-Mann —Okubo relation and the ratio F /F„
difFers from 1. However, it is also a systematic expansion
which could, in principle, be carried out at arbitrary high
order.

We first generalize the chiral matrix U to include a
nonet of fields:

Both the results for the vr and the g fall in the range of
values which are also allowed in the standard yPT.

IV. MIXED LARGE Nc
AND CHIRAL EXPANSION

The proper way to introduce the pseudoscalar singlet
field Po(x) into the chiral Lagrangian was first discussed

——Moi v6 +0
Fo )

(51)

It is not dificult to extend this to the next order. We note
first that chiral loops need not be considered since they
are of chiral order 4 and they are suppressed by one power
of N; so we efFectively count this kind of contribution as



4946 B. MOUSSALLAM

~ = L.(x'U+ U'x)'+ L.(x'U U—'x)'

are both suppressed by the Zweig rule here, and so they
are also effectively of order 6 (the L's pick up contribu-
tions from the resonances which are not included in the
chiral Lagrangian; this is why L~ is difFerent from L7)
The only terms that we need consider are

l:(4) = Ls (D„UtD"U(yt U + Ut y) )

+L.(x'Ux'U+ U'xU'x) . (53)

order 6. Furthermore, the two terms of the standard
O(p4) Lagrangian

we can solve for mB0 and L8. For the latter, we find

L5 F2 r2 —r
L8 + (5s)

In order to evaluate L8, we need to know the value of
r. If we use the number given in [6], r = 25.7 (with a
10% uncertainty), we find Ls 1.1——7 x 10 [again fairly
close to Ls(M~) = 1.1 x 10 ]. However, recent work
on the O(e m~) corrections to Dashen's theorem may
imply that this value of r should be revised downwards.
Indeed, Gasser and Leutwyler [6] have shown that r is
related to the strong part of the K -K+ mass difference
by the relation

In addition to these terms, which are O(p ) x O(N ), we
have to consider the terms which are O(p ) x O((N, ) ).
We can form two terms of this kind:

2 2mg —m„M~ —M
(M, —M )

(59)

2'(4) ——ki D„QOD"$0+ ik2
~ v 6 + 8 (y U —U y) .

(54)

Furthermore, in the Wess-Zumino sector, we can form a
term which is O(p ) x O((N, ) ) and is thus on a similar
footing with the true O(p ) corrections:

In this relation, Gasser and Leutwyler [6] argue that B =
(m, —m)/(md —m„) can be estimated from the baryon
sector or from ur-p mixing in a consistent way, giving [12]
B = 43.5+3.2. The strong interaction part of the K0-K+
mass difference can be written as

(M~, —M~ )qcD = M~, —M~ + M —M,
+b(M + —M, ) . (60)

glitz k PvnP(f (+)y(+)) ~6K + 0(6)
o )

(55)

Before proceeding, we note that the LE parameters
Ls, Is and the quark mass ratio r = m, /m have to
be redetermined using the logic of the mixed expansion
scheme adopted here. In particular, L5 and Ls are scale
independent at order 4 now. Outside of the g-g' sector
one may simply use the formulas of [6] and drop the loop
contributions. I5, to begin with, is related to the ratio
E~/P 1.22:

Dashen's theorem [30] states that h is a quantity which
is O(e m~). Recent estimates [27] yield b to be positive
and in the range 0.4 & b & 0.8. In the apparent absence
of any good reason to doubt the estimate of R, using this
in relation (59) implies that the central value of r should
be moved down to r 23. This has the consequence of
increasing the value of Is up to L8 ——1.43 x 10 . This
innocent looking modification has a strong inHuence on
the g decay, as we will see.

It is interesting to compare these results with sum-rule
estimates. For Ls [10] gives

F2 F2
I5 ——

2 2 31 10
8(M~2 —M2) (56)

F20 23 10—3
4M2 (61)

This value is very close to the result of [6], L5 (p = M„) =
2.3 x 10, which is not very surprising, since the kaon
and the g chiral logarithms are very smalf for this value
of the scale and the pion chiral logarithm, being propor-
tional to the pion mass squared, is small anyway.

Next, expressing the K and vr masses

(using Mg = M, = 980 MeV), which is in fairly good
agreement with the above evaluation. A less publicized
chiral sum rule can also be derived [ll], giving Ls in the
form

L8 ——
2 1+ tan 0

sM.' l, 16M.'1+ 2 L5 lM.'=2mBO+
2 L8,E2 ) I'2

8M~2 l 2 „16M'
I

1. + Is Mg. = (r+-1)mBo+ Lsp'2 (57)

where 0 is defined in (15). Using the value of Ls found
above one obtains the estimate of 0 used in Sec. II.

Let us now consider the masses of the g and the g'.
At order 4 we have not only a mass matrix M but also a
kinetic matrix K. Both matrices are real and symmetric
and the matrix elements of the mass matrix are

Mii ——M [2rz + 1+.2r2(rz + 2) z+ 4(r2 —1) yj

Mi2 —— (r2 —1)M~ [1 + (r2 + 3) z + 2(r2 —1) y + 2kz —ki]

M22 ——Mo (1 —2ki) + —M~ (r2 + 2 + [(r2 + 1) + 2] z + 2(r2 —1) y + 2(r2 + 2) (2k2 —ki) ) (63)
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where as well as the extra factors

y = 4M Ls/F, z = 4M L5/F (64)

The mixing with the 7t has a negligibly small effect at
this level and will be ignored. The matrix elements of
the kinetic matrix now are

2K„=1+ —(2r2+ 1)z,
3
2

K22 ——1 + —(r 2 + 2) z .
3

K12 ——— (r2 —1)z,
3

(65)

The mass squared of the g and g' mesons is given by the
eigenvalues of the generalized eigenvalue problem:

~ Ml1 M12 ~ ~ Vll I 12 ~

12 M222 (I21 +22 J

( K2, 1 '
As —— Kgg—

K2, &
'

Ap —— A22- K„)

(2r2 + 1)M —3M„tan 0~ ———
~2(r2 —1)M. '

2r2 + 1 1/2(r2 —1) l
(72)

In practice, however, these expressions should be ex-
panded linearly in terms of the O(p ) parameters in order
to remain consistent with the O(p ) precision. Before ex-
ploiting this, let us examine the results that one would
obtain at order two of the mixed expansion, i.e. , starting
from (51). The unique parameter in that case, Mo, may
be adjusted so as to reproduce the g mass. The mixing
angle and the g' mass then satisfy

1
Ps ———(Po cos es + P„sin Os),

As

1
Po = —(—P„sin Oo + P„~ cos Oo)

Ap
(67)

The three parameters kq, k2, and Mp which appear in
the mass matrix can effectively be absorbed into two un-
knowns Mo (1 —2ki) and 2k2 —ki, which we expect to
determine from fitting the g and g' masses. It turns out
that one has two difFerent solutions, which we label as (+)
and (—). The requirement that the large N, expansion
be meaningful allows one to eliminate one of the solu-
tions. Indeed, numerically, the solution (+) corresponds
to the following values for the parameters Mp and k2
(setting ki ——0):

Mp ——898 MeV, k2 ——0.12 ) (68)

As a result, the mixing matrix V is not unitary (instead
of satisfying V'V=1, it satisfies VKV=1). This implies
that one has to introduce two mixing angles Op and Os

and not just one as is usually done (this fact was pointed
out in Ref. [31]):

F cos(oo —Os) 1+z
F, As cosoo

(73)

As stated above, we must expand the expressions for
tan0o and F /F„ linearly in terms of the O(p ) param-

eters y, z and the mass difference M„, —M„,. For this
purpose, let us introduce the notation

0
Numerically, this gives M„= 1583 MeV, which is indeed
larger than the experimental mass as expected from the
bound derived in [33], and 0~ = —5.6'. Note that the
result difFers from [6] because their mass matrix includes
the term k2 which we have considered here to be of higher
order. In the mixed expansion the mixing angle is of or-
der 1 rather than O(m~) as in the chiral expansion, yet,
numerically, it comes out to be rather small at leading or-
der. The ratio F /F„differs from one already at leading
order and is given by F /F„= 1/ cos 01 .

At order 4, let us concentrate on the quantities which
are relevant in the discussion of the g decay amplitude,
that is, tango and F /F„. The former is given in closed
form by Eq. (70) and the latter can be expressed as

Mp ——1226 MeV, k, = —1.43.
while the solution (—) corresponds to

(69)
3M2, —(2r2+ 1)M2

p = tan0~, p' =
~2(r2 —1)M2

Clearly, the solution (+) does satisfy the criterion that
the contribution of the k2 term in the mass matrix be
roughly of the same magnitude as, say, the contribution
from the Ls term. This does not hold for the other solu-
tion. The possibility of reproducing exactly the g and g'
masses while having only small corrections to the O(p )
Lagrangian (51) was noted by Peris [32]. One can express
the mixing angles in closed form

One finds, for the ratio F /F„

1 2pp —1
2 p2+1 (75)

F 2 1 2 1 (=(1+&')' 1 —-z(r2 —1)+ CF„3 ')

tan Op ———
1

/ Mii —K11M„~ '

~K M„, —M

tang = Ki2
(K11K22 K12)

es+ = eo +y,

(7o)

The first two terms in the parentheses may be recognized
as those of the standard chiral expansion at O(p ) in the
leading N approximation. Here, this formula is seen
to receive corrections. New we give the expansion of the
mixing angle
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, (—tan Op
———p(3 —pp') + ' (1 —p') 2y ——')

(76)

Let us now return to the question of the electromag-
netic widths. In the efFective Lagrangian language, the
new feature compared to Sec. III is that we have a piece
containing Pp.

Se 1F„F"Pp + 4ks
Fp 6(1 + 2k')

" 32vr

4(5 + r, )+ 9
M„ti (77)

F 5 —2rg
A(qmqy)= + TzlF„3cos ep

—tan op A(rI' -+ pp) . (78)

Note that only one of the mixing angles shows up in this
expression. The expansions of F /E„and tanop have
been determined above [Eqs. (75), (76)]. It is interest-
ing to investigate the sensitivity of the result upon small
variations of the quark mass ratio r. We will consider the
two cases r = 25.7, as in [6], and r = 23, as suggested
from the corrections to Dashen's theorem. In the first
situation one obtains.=0703, Op

———20.4',

r(q -+ qq) = 439 ev (r = aS.7) .
(79)

This value of r is the same as the one used in the chiral
expansion in Sec. III (standard case). The value of the
mixing angle obtained here is larger in magnitude than
the one obtained in Sec. III. One could a priori expect
that the resulting g width should be larger as well but it
turns out that this is not the case. Indeed, there is an ex-
tra ingredient in the width which is E /Ez and using the

It can be seen that the amplitude for g' —+ 2p derived
from (77) conforms to the general structure predicted in

[34].
The Lagrangian for Ps is the same as before (24) with

the crucial difference that the tI term is absent [to be
more precise, it no longer contains the a'/M„, piece in

(21) and the rest being O((%,) ) does not count at this
order]. In order to discuss the q and q' decays we expand

Pp and Ps using (67). In order to be consistent with the
O(p ) precision we use the mixing angles at O(p ) in the
O(p4) piece of the WZ Lagrangian and the mixing angle
OJ in the piece which is already O(p ).

It is clear from (77) that we can make no definite pre-
diction for the decay of the g'. All we can do is use the
experimental information to constrain the combination
of the parameters kq and ks which appear in (77). Once
this is done, we can make a prediction for the g decay.
We can recast the g decay amplitude in a similar form as
before [Eq. (27)]:

mixed expansion rules we find a result which is smaller
than the chiral expansion result E /E„= 0.77 + 0.03.
This perhaps suggests that the uncertainty on this pa-
rameter is somewhat underestimated. These two differ-
ences cancel out to some extent and one ends up with
practically the same result as before for the g width. Now
for the smaller value of r we obtain

= 0.710,) Op ———23.9,

r(g -+ pp) = 529 eV (r = 23.0) .
(80)

This illustrates that the uncertainty of the order of 100
eV which was obtained in Sec. III can be traced, to a
large extent, to the uncertainty (of the order of 10%%) of
the value of the quark mass ratio m, /m in the standard
yPT.

V. CONCLUSIONS

In this paper we have discussed the chiral expansion
of the amplitudes for vr ~ pp and g ~ pp beyond lead-
ing order. The main new contribution in this topic is
the attempt made to evaluate precisely, on the basis of
sum rules, the two parameters tq and tz which appear
in Z~~ . The dominating contribution, numerically, is

t~, in good agreement with the fact that it is O(K, ) as
it picks up a pole from the g' meson. We believe that
our estimate of tz should be on the same level of relia-
bility as the sum rule for L7. This sum rule is, in fact,
one of the ingredients in the evaluation. The contribu-
tion from tq was found to amount to roughly 10% of the
width. Its evaluation is certainly not as precise as for tz
but we argued that the sign and the order of magnitude
should be the correct ones. An interesting peculiarity of
this parameter is that it does not reflect the property
of a particular resonance but rather of the continuum,
which is matched to the @CD asymptotic behavior. It
would be interesting to compare these results with those
which obtain in other approaches, in particular improved
variants of the Nambu —Jona-Lasinio (NJL) model which
seem to perform well for the standard O(p4) LE parame-
ters [35]. On the practical side, we found that the O(p )
correction raises the value of the width to a level which is
compatible with the photon-photon experimental results.
The prediction has a rather large uncertainty, of the or-
der of 25%%u&&, which is generated by the parameter L7 and,
to some extent, by F /Fz. We have also investigated
the relevance of these two amplitudes in connection with
the generalized yPT which embodies values of r much
smaller than r2. It turned out that, even though indi-
vidual factors are very diferent, they combine to give a
result which is also compatible with experiment.

One of our aims was to test the convergence of chiral
perturbation theory in the anomalous sector. Since the
lowest-order result is so small compared to experiment,
it was by no means obvious how the O(ps) correction
could manage to bring the two in agreement. This can
be understood qualitatively if one assumes that the sim-
ple rule that a 1/K, correction has roughly the same
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magnitude as a quark mass correction. The leading term
in the O(ps) correction goes as O(N, ) x O(m~); accord-
ing to this rule, it is natural to expect that it could be
of a similar size as the leading chiral order contribution
which goes as O(N, ) x O(1). Terms of still higher order,
on the other hand, should be much smaller. On the basis
of this counting scheme it is possible to include the g' into
the effective Lagrangian in a systematic way. We have
discussed the question of the g decay from this mixed
expansion point of view. In a sense, this proves slightly
disappointing because, even in this scheme, the essen-
tial contribution to the mixing angle comes at next to
leading order. The mixing angle turns out to be slightly

larger than in the chiral expansion but the predictions for
the width are nearly identical. There remains to explore
whether this kind of expansion provides some nontrivial
constraints in the g' sector.
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