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We investigate the high-order behavior of perturbative matching conditions in efFective field
theories. These series are typically badly divergent, and are not Borel summable due to infrared
and ultraviolet renormalons which introduce ambiguities in defining the sum of the series. We argue
that, when treated consistently, there is no physical significance to these ambiguities. Although
nonperturbative matrix elements and matching conditions are in general ambiguous, the ambiguity
in any physical observable is always higher order in 1/M than the theory has been defined. We
discuss the implications for the recently noticed infrared renormalon in the pole mass of a heavy
quark. We show that a ratio of form factors in exclusive As decays (which is related to the pole
mass) is free from renormalon ambiguities regardless of the mass used as the expansion parameter
of heavy quark e8'ective theory. The renormalon ambiguities also cancel in inclusive heavy hadron
decays. Finally, we demonstrate the cancellation of renormalons in a four-Fermi efFective theory
obtained by integrating out a heavy colored scalar.

PACS number(s): 12.39.Hg, 12.38.Bx, 13.20.He, 13.30.Ce

I. INTRODUCTION

In physical problems involving several distinct scales, it
is often convenient to describe the physics using an effec-
tive Geld theory. Typically, one is interested in physics
at energies much less than the mass of a heavy parti-
cle, in which case the physics is most easily described
by an effective Lagrangian in which virtual heavy par-
ticle exchange is accounted for through a series of non-
renormalizable operators. The coeKcients of these oper-
ators are perturbatively calculable as a power series in
cr, (M), where M is the mass of the heavy particle which
is integrated out. However, since the resulting perturba-
tion series is only asymptotic, and since it is well known
that perturbative QCD is not Borel summable, the per-
turbatively calculated coefficient functions are at some
level ambiguous. One source of this ambiguity is in&ared
renormalons [1—4], which arise in QCD &om graphs of the
form shown in Fig. 1. They contribute to the factorial
growth of the coefBcients of the perturbation series, and

FIG. 1. The bubble chain diagrams which are the leading
contribution to the renormalon as the number of light colored
fermions is large, Nf + oo.

introduce uncertainties in the sum of the perturbation
series proportional to powers of AclcD/M.

There has been much recent discussion in the literature
on the effects of infrared renormalons in the context of
one particular effective Geld theory, the heavy quark ef-
fective theory (HQET) [5—7]. In particular, the use of the
pole mass as an expansion parameter in HQET has been
criticized, because it has been shown to suffer from an
ambiguity which prevents its definition to an accuracy
better than O(AclcD) [5,6], and the authors of Ref. [5]
advocate formulating HQET in terms of a short-distance
mass m(p) which does not suffer from a renormalon ambi-
guity at O(AqcD). The results of [5,6] clarify the formal
status of the pole mass (and of nonperturbative matrix
elements in an effective theory in general).

Given this ambiguity, it is important to show that
physical predictions of HQET, which are usually ex-
pressed using the pole mass as an expansion parame-
ter, are unambiguous. In this paper, we investigate the
effects of renormalons on matching conditions in effec-
tive Geld theories. We argue that, while perturbatively
calculated coe%cient functions suffer from renormalons,
any ambiguity in a physical observable is always higher
order in 1/M than the theory has been defined and is
consequently irrelevant. Therefore, as long as one works
consistently, it does not matter that unobservable pa-
rameters such as the heavy quark mass or the matrix
elements of higher dimension operators are not unam-
biguously defined; relations between physical quantities
are unambiguous. We also argue that, while formulating
HQET in terms of some short-distance mass m(p) is cer-
tainly possible, use of an expansion parameter other than
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the pole mass [or some mass which difFers from m~ i, by
O(Aq&D)] is both inconvenient and uneccessary.

The paper is arranged as follows: In Sec. II, we review
the physics of infrared renormalons, and discuss the basic
method of calculation that will be used in this paper. In
Sec. III we discuss HQET and the renorrnalon ambiguity
in the quark pole mass. We show explicitly that there are
no renormalons in the ratio of form factors for Ag —+ A
semileptonic decay from which the perturbatively defined
pole mass may be extracted, and we comment on the
renormalon cancellation for inclusive semileptonic B me-
son decay. In Sec. IV, we discuss renormalon ambiguities
in a four-Fermi effective theory. We show that this effec-
tive theory has new renormalon ambiguities not present
in the full theory which cancel corresponding ambiguities
in matching conditions, and also show that the cancella-
tion of renormalon ambiguities is not specific to HQET,
but occurs in other effective field theories. This section
can be omitted by readers only interested in HQET. The
conclusions are presented in Sec. V.

II. RENORMALONS

bf e "~ '~~l B[f](t)
C

) 2( bp—)t«) (2.4)

where bo ———(ll —2ny/3)/4m is the leading term in the
QCD P function

p
' =bow, +O(n, j,8p

(2.5)

which governs the high energy behavior of the QCD cou-
pling constant

guities have a power law dependence on the momentum
transfer Q2. For example, a simple pole at t = to in
B[f] introduces an ambiguity in f depending on whether
the integration contour is deformed to pass above or be-
low the renormalon pole. The difference between the two
choices is proportional to

QCD perturbation theory is used to express some
quantity f as a power series in n„ (—bo) ln (Q /A&~p)

(2.6)

(2.1)

Typically, this perturbation series for f is only asymp-
totically convergent. The convergence can be improved
by defining the Borel transform of f,

(2.2)

which is more convergent than the original expansion
Eq. (2.1). The original expression f (n, ) can be recovered
from the Borel transform B[f](t) by the inverse Borel
transform

and the contour C encloses tp. It is useful to write
the Borel transform B[f](t) in terms of the variable
u = —bpt. The form of the renormalon singularity in
Eq. (2.4) then implies that a renormalon at uo produces
an ambiguity in f that is of order (AqcD/q) "'. This
ambiguity is canceled by a corresponding ambiguity in
nonperturbative effects such as in the matrix elements of
higher dimension operators. The sum of the perturba-
tion series plus nonperturbative corrections is expected
to be well defined.

A. The calculational method

(2.3)

If the integral in Eq. (2.3) exists, the perturbation series

f (a, ) is Borel summable, and is unambiguously defined.
However, if there are singularities in B[f](t) along the
path of integration, the function f is ambiguous. The
inverse Borel transform must be defined. by deforming
the contour of integration away from the singularity, and
the inverse Borel transform in general depends on the
deformation used.

One source of singularities in B[f] in QCD is infrared
renorrnalons [1—4]. These arise from graphs of the form
in Fig. 1. Physically, these graphs correspond to the run-
ning of o.„and in&ared renormalons are ambiguities in
perturbation theory arising &om the fact that the gluon
coupling gets strong for soft gluons in the one-loop di-
agram in Fig. 1. The in&ared renormalons produce a
factorial growth in the coefficients f, which gives rise to
poles in the Borel transform B[f].The renormalon ambi-

Clearly, one cannot sum the entire QCD perturbation
series to determine the renormalon singularities. Typi-
cally, one sums bubble chains of the form given in Fig. 1
[1,9]. Beneke [8] considered a limiting case of QCD in
which the bubble chain sum is the leading contribution to
the renorrnalon. Take QCD with Ny flavors in the limit
Ny ~ oo with a = Nya, held fixed. Feynman diagrams
are computed to leading order in o.„but to all orders in
a. Terms in the bubble sum of Fig. 1 with any number
of bubbles are equally important in this limit, since each
additional fermion loop contributes a factor a,Ny, which
is not small. QCD is not an asymptotically free theory in
the Ny -+ oo limit, so the procedure used by Beneke is to
write the Borel transform as a function of u = —bpt but

This is the definition used in [6], and is the negative of the
definition used in [8].
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still study renormalons for positive u. The singularities
in u are taken to be the renormalons for asymptotically
free @CD. This procedure is a formal way of doing the
bubble chain sum, while neglecting other diagrams.

The Borel transform of the sum of Feynman graphs
containing a single bubble chain can be readily obtained
by performing the Borel transform before doing the loop
integral [8,6]. The bubble chain sum is

Q(~„k) = ) ~

" —g„ i
(boo.,&y)" ln( —k /p ) + C (2.7)

where k is the momentum Bowing through the gauge boson propagator, C is a constant that depends on the particular
subtractions scheme, and bo ——1/6m' is the contribution of a single fermion to the P function. In the modified minimal
subtraction (MS) scheme, C = —5/3. The Borel transform of Eq. (2.7) with respect to n, Ky is (u = —hot)

&l&j(u k) = ~ ).k, I k,
" —gp- I „, In( —k'/v')+&'"1 . 1 (k„k„)(—u)"-

~ n=O

1 1 j'kk
n W k2 ( k2 "")—g„„~exp —uln( —k e /p, )

(2.8)

The Borel transformed loop graphs can be computed by
using the propagator in Eq. (2.8) instead of the usual
gauge boson propagator

(k„k„—k'g„„) (k')' (2.9)

III. KENDKMALQNS IN THE HEAVY' QUA&K
EFFECTIVE THEORY

A. Matching conditions

An effective field theory Lagrangian is an expansion in
an operator series in inverse powers of some mass scale
M. By construction, the effective field theory has the
same infrared physics as the full theory. However, be-
cause the ultraviolet physics (above the scale at which
the theories are matched) differs dramatically in the two
theories, the coeKcients of operators in the effective the-
ory must be modified at each order in n, (M) to ensure
that physical predictions are the same in the two theories.

Since the two theories coincide in the infrared, these
matching conditions depend in general only on ultravio-
let physics and should be independent of any infrared
physics, including infrared renormalons. However, in
a mass-independent renormalization scheme such as di-
mensional regularization with MS, such a sharp separa-
tion of scales cannot be achieved. It is easy to see how in-
frared renormalons creep into matching conditions. Con-
sider the familiar case of integrating out a W boson and
matching onto a four-Fermi interaction (we will discuss a
variant of this example in detail in Sec. IV). The match-
ing conditions at one loop involve subtracting one-loop
scattering amplitudes calculated in the full and effective
theories, as indicated in Fig. 2. For simplicity, neglect all
external momenta and particle masses, and consider the

region of loop integration when the gluon is soft. When
A: = 0, the two theories are identical and the graphs in the
two theories are identical. This is the well-known state-
ment that infrared divergences cancel in matching condi-
tions. However, for finite (but small) k, the two theories
difFer at O(k /Miv) when one retains only the lowest di-
mension operators in the effective theory. Therefore, the
matching conditions are sensitive to soft gluons at this
order, and it is not surprising that (as we shall show) the
resulting perturbation series is not Borel summable and
has renormalon ambiguities starting at O(A&cD/Mii, ).

However, this ambiguity is completely spurious, and
does not mean that the effective field theory is not well
defined. Since the theory has only been de6ned to a
fixed order, an ambiguity at higher order in 1/M~ is
irrelevant. The renormalon ambiguity corresponded to
the fact that the two theories differed in the infrared
at O(k /Miv). When operators suppressed by an addi-
tional power of 1/Mi22, in the efFective theory are consis-
tently taken into account, the two theories will coincide
in the infrared up to O(k /Miv), and any ambiguity is
then pushed up to O(A&&D/Miv). Consistently includ-

ing 1/Mi44, suppressed operators pushes the renormalon
to O(As&&D/Miss, ), and so on. In general, a renormalon
at u = uo in the coeKcient function of a dimension D op-
erator is canceled exactly by a corresponding ambiguity

FIG. 2. The one-loop contribution to the matching of a
higher dimension operator. The coefFicient of the operator
in the e8ective Lagrangian is co + ego. + ego. , + - . This
series will have infrared renormalons due to the incomplete
cancellation of the soft gluons in the two graphs.
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in matrix elements of operators of dimension D —4+ 2up,
so that physical quantities are unambiguous. This can-
cellation is a generic feature of all effective field theories,
and also occurs in HQET.

B. HABET and the quark mass

The HQET Lagrangian has an expansion in inverse
powers of the heavy quark mass,

1 1
& = &p+ &i+,&2+ . . +&isht

2mp 2mp

Cp ——h„(iD. u) h„—b'm h„h„, (3.1)

4 ~ ~

Here Ci;sh& is the QCD Lagrangian for the light quarks
and gluons, h,„ is the heavy quark field, and l.I, are terms
in the effective Lagrangian for the heavy quark that are
of order 1/mp. There are two mass parameters for the
heavy quark in Eq. (3.1), the expansion parameter of
HQET mp, and the residual mass term bm. The two pa-
rameters are not independent; one can make the redefi-
nition mp ~ mp + Am, bm + bm —Lm. A particularly
convenient choice is to adjust mp so that the residual
mass term bm vanishes. Most HQET calculations have
been done with this choice of mp, but it is easy to show
that the same results are obtained with a different choice
of mp [10]. The HQET mass when bm = 0 is often re-
ferred to in the literature as the pole mass, and we will
follow this practice here.

Like all effective Lagrangians, the HQET Lagrangian is
nonrenormalizable, so a specific regularization prescrip-
tion must be included as part of the definition of the
effective theory. An effective field theory is used to com-
pute physical quantities in a systematic expansion in
a small parameter, and the effective Lagrangian is ex-
panded in this small parameter. The expansion parame-
ter of the HQET is AclcD/mp. One can then use "Power
counting" to determine what terms in the effective the-
ory are relevant to a given order in the 1/mp expan-
sion. For example, to second order in 1/mp, one needs to
study processes to first order in l.2, and to second order
in Ci. It is important that the renormalization proce-
dure preserves the the power counting for the effective
field theory to make sense. In order to preserve power
counting, we must choose a mass-independent subtrac-
tion scheme; in our case, we choose to use dimensional
regularization and MS. A mass-dependent subtraction
scheme (such as a momentum space cutoff) mixes differ-
ent orders in the 1/mp expansion. Thus to compute a
quantity to first order in 1/mp, one would have to retain
the efFective Lagrangian to all orders in 1/mp, which is
not particularly useful. Hence, HQET is defined using a
mass-independent subtraction scheme, and nonperturba-
tive matrix elements must be interpreted in this scheme.

It has recently been shown [5,6] that there is a renor-
malon in the relation between the renormalized mass at
short distances (such as the MS mass m) and the pole
mass of the heavy quark at u = 1/2, which produces an

ambiguity in the relation between the pole mass and the
MS mass of order AgcD. This implies that there is an
ambiguity in the residual mass term bm of order Aq~D
due to renormalon effects [5,6].

The quark mass in HQET and the MS mass at short
distances are parameters in the Lagrangian that must be
determined from experiment. Any scheme can be used
to compute physical processes, though one scheme might
be more advantageous for a particular computation. The
MS mass at short distances is useful in computing high
energy processes. However, there is no advantage to us-
ing the "short-distance" mass (such as the running MS
mass) in HQET, as advocated by [5]. In fact, from the
point of view of HQET, this is extremely inconvenient.
The efFective Lagrangian Eq. (3.1) is an expansion in in-
verse powers of mp. Power counting in 1/mp in the efFec-
tive theory is only valid if bm is of order one (or smaller)
in mp, i.e., only if bm remains finite in the infinite mass
limit mp —+ oo. When mp is chosen to be the MS mass the
residual mass term bm is of order mp (up to logarithms),
which spoils the 1/mp power counting of HQET, mixes
the n, and 1/mp expansions, and breaks the heavy flavor
symmetry. For example, using mp to be the MS mass at
p = mp, one finds at one loop that

4
bm = —a,mp.

3m
(3.2)

There are corrections to this relation from matching condi-
tions at the GUT scale, which will have renormalon ambigu-
ities proportional to powers of AqcD/moUT.

In b ~ c decays, including this residual mass term in the
heavy c-quark Lagrangian, causes 1/m, operators such as

h, (—ig)I'hs/m, to produce effects that are of the same
order in 1/m, as lower dimension operators of the form
h, I'hb. While physical quantities calculated in this way
must be the same as those calculated using the pole mass,
it unnecessarily complicates calculations to use a defini-
tion for mp that leaves a residual mass term that is not
finite in the mp + oo limit. Better choices of the expan-
sion parameter of HQET are the heavy meson mass (with
bm of order AQQD), and the pole mass (with bm = 0).

The MS mass at short distances can be deterinined (in
principle) from experiment without any renormalon am-
biguities proportional to AclcD/mg (i.e. , at u = 1/2).
As an example, consider the MS mass of the b quark at
the grand unified theory (GUT) scale in an SU(5) uni-
fied field theory. The b-quark Inass at the GUT scale is
proportional to the b-quark Yukawa coupling at the GUT
scale, which in turn is equal to the 7-lepton Yukawa cou-
pling at the same scale. There are no QCD renormalons
at u = 1/2 in the relation between the ~-lepton mass
at short distances and the pole mass of the 7 (neglect-
ing QED efFects). Thus one could determine the b-quark
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mass at short distances by measuring the 7-lepton mass,
without any renormalon ambiguities at u = 1/2.

The MS quark mass can be related to other definitions
of the quark mass using QCD perturbation theory. The

I

connection between the Borel transformed pole mass and
a short-distance mass (such as the Ms mass) has been
worked out in [6]. The relation between the two (for the
c quark) is

B[mi' '](u) = m, b'(u) + '
~ ~

e " 6(1 —u) ——+ Bp, (u)
|' p ) " „c I'(u)I'(1 —2u) 3

3~&y (m2 I' 3 —u (3.3)

where m, is the renormalized (not the pole) mass at short
distances, such as the MS mass, p is the renormaliza-
tion scale, and the constant C and the function Rg, (u)
depend on the renormalization scheme. Equation (3.3)
has a renorinalon singularity at u = 1/2 which is the
leading in&ared renormalon in the pole mass. Writing
u = 1/2+ Au, we have

2pe- /'
B[m, '](u = 1/2+ Au) = — +. , (3.4)

3m&pm Lu

where the ellipsis denotes terms regular at Lu = 0. In the
next two sections, we will only work to 0 (1/mo), so poles
to the right of u = 1/2, which are related to ambiguities
at higher order in 1/mo, are irrelevant at this stage.

Although mi' i' is formally ambiguous at O(l/m, ), we

will argue in this paper that physical quantities which
depend on mi' ' are unambiguously predicted in HQET.
We demonstrate this explicitly for a ratio of form factors
in Ab semileptonic decay. We then comment on the can-
cellation of renormalon ambiguities in the expression for
the inclusive semileptonic width of the B meson. Both
results will make use of Eq. (3.4) and its analog for the
6 quark.

C. A from exclusive decays

The matrix element of the vector current for the
semileptonic decay Ab m A e v decay is parametrized
by the three decay form factors:

(A, (v') ~cp~b~Ab(v)) = u(v') [Fi(v v')p~ + F2(v v')v" + Fs(v v')v'"] u(v). (3.5)

In the limit mb, m m oo, and at lowest order in o,„the form factors F2 and E3 vanish. We will consider o., and
1/m, corrections, but work in the ms = oo liinit. Consider the ratio r~ = F2/Fi, which vanishes at lowest order in
a, and 1/m, . The corrections to r~ can be written in the form [15]

F2(v v') A 1
r~(o.„v . v') =,=, + f, ( ov v'),

Fi v v') m, 1+v v' (3.6)

where the function f„(a„v. v ) is a perturbatively calculable matching condition from the theory above p = m, to
the effective theory below p, = m„and the A term arises from 1/m, suppressed operators in HQET. At one loop [ll],

(n„v v') =— ln(v. v'+ g(v a')~ —1) . (3.7)

The ratio r~ ——F2/Fi is an experimentally measured quantity, and does not have a renormalon ambiguity. The
standard form for r~ in Eq. (3.6) is obtained by using HQET with the pole mass as the expansion parameter. The
HQET parameter A is the meson mass in the efFective theory, i.e. , it is the meson mass mD minus the pole mass of
the c quark. The pole mass has the leading renormalon ambiguity [6,5] at u = 1/2 given in Eq. (3.4), which produces
an ambiguity in the 1/m, contribution to F2/Fi given by the first term in Eq. (3.6). There must therefore also be a
renormalon at u = 1/2 in the radiative correction to F2/Fi given by the second term in Eq. (3.6). It is straightforward
to show, using the techniques of Sec. II, that this is indeed the case.

The Borel transformed series B[f,](u, v . v ) in the 1/Ky expansion is easily calculated from the graph in Fig. 3
using the Borel transformed propagator in Eq. (2.8). The Borel transform of the Feynman diagram is

1 4 2 (p2)" &4k p" (m, g'+ )+m, ) p v" (k„k —k2&„)
B[graph] = —go.~Ay 3 (e+ j (2m) (k + 2m~k ~ v')( —k )2+~k v

(3.8)

The radiative correction to F2 (which determines f ) is obtained &om the terms in Eq. (3.8) which are proportional
to v . Combining denominators using the identities
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(k2 + 2m, xk v') +" k . v

1 dx (1 —x) +"

(k + 2m, k . v')(k2)2+"
= (2+u)

o [k2+2m xk. v'] +"

1 dA= 2(3+ u)
o [k2 + 2m, xk v' + 2Ak v]

+"

~

~

extracting the terms proportional to v" and performing the momentum integral, ere obtain

B[f.]( . ') =
3~~1( +u) 4 ) o o [A2+2Am, xv. v'+m x ]

+"

Rescaling A —+ xm A and performing the x integral gives

(3 9)

B[.f-](u v v') = 4 ( p ) (u —2)I (1 —2u)I'(1 + u)
dA

1
I'(3 —u) o [A2+ 2Av v'+1] +" (3.iO)

This expression has a pole at u = 1/2. Expanding in Au = u —1/2 gives

~ ~ ~

[A~ + 2Av v'+ 1] ~

3vrm e+/'2 Lu 1+v. v''

B[f ](u = 1/2 ~ Au, v v') = dA
2p 1

3vrm e /' AtL 0

2p, 1 1
(3.11)

where the ellipsis denotes terms that are regular at u = 1/2.
The Borel singularity in Eq. (3.11) cancels the singularity in the first term of Eq. (3.6) at all values of v . v, so

that the form factor ratio r~(n„v. v') = F2(v. v')/Fi(v v') has no renormalon ambiguities. Therefore the standard
HABET computation of the 1/m, correction to F2/Fi using the pole mass and the standard definition of A gives an
unambiguous physical prediction for the ratio of form factors.

D. Inclusive decays

A similar situation occurs for inclusive B decays, which have been the subject of much recent interest [12—14]. The
inclusive B ~ X~ev (where q = u or c) decay rate is related to the imaginary part of the forward scattering amplitude,

I'(B m X~ev) Im (BlT(J"t,J")lB), (3.12)

where J"= cp" (1 —p5)b In this ca.se the expression for the total rate as an expansion in powers of 1/mg is not the
result of matching onto an efFective theory, but instead is the result of performing an operator product expansion on
the time ordered product of the two currents in Eq. (3.12). The final expression is

I'(B ~ X.e~)=, fo(~ ) (B(v)l h~h~ IB(v))
Gg lVi, ql mp-

fi (n ) (B(v)l hi, i (D ~ v) hi, lB(v)) + e7(m /m$, AqcD/mi, )
mb

(3.i3)

where fo ——1 and J'i ——1 to lowest order in a, . Equa-
tion (3.13) is true with an arbitrary residual mass term
in the HABET Lagrangian, and we have not yet applied
the equations of motion to the operator hi, i (D . v) hi, .
The total decay rate I' is an observable, and does not

I

have a renormalon ambiguity. It was shown in Refs. [5,7]
that the total decay rate is unambiguous. It; is impor-
tant to note that this result does not require the use of a
"short-distance" mass in Eq. (3.13). One is &ee to choose
some definite (but arbitrary) prescription for integrating
around the pole at u = 1/2 in Eq. (3.3). The mass mg in
the leading term of Eq. (3.13) is then well defined, but
there is an ambiguity at O(Aq~D) in the residual mass
term bm arising &om the renormalon at u = 1/2 in the
pole mass. By the equations of motion,

i(v D) hi, = hm hi, + O(1/mi, ), (3.14)

FIG. 3. The loop graph vrith the Borel-transformed gluon
propagator contributing to the v~ form factor in Ag ~ A ev.

so the ambiguity at O(A@CD) in the matrix element
(B(v)l hqiD . vhq lB(v)) is the same as that in the pole
mass, Eq. (3.4). From [7], the Borel transformed series
B[fo(u)] for the n, corrections to the leading term has a
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pole at u = 1/2,

].Ppe C/2
B[fo](u = 1/2+ Au) =

3vr NymgAu
(3.15)

Comparing Eq. (3.4) with Eq. (3.15) and Eq. (3.13), we
see explicitly that the ambiguity in the matrix element of
i,D u cancels that in fo to give an unambiguous prediction
for the total width I'.

Thus in this operator product expansion the cancela-
tion of renormalon ambiguities occurs in the same man-
ner as in the construction of HQET: the ambiguity in
the matrix element of a higher dimension operator can-
cels that in the perturbation series for the coefBcient of
the leading operator.

A2 A2

cs(p) sz ed + cg (p) so„ w e cr" d

A2
ds(p) u~D'[ed]+". ,M4 (4.2)

FIG. 4. The tree-level exchange of a heavy colored scalar.
It only contributes to cs(p) and ds(p) and not to cz (p).

IV. FOUR-FERMI THEORY

8 = A (s~ + de) P+ H.c. (4 1)

We will study the theory in the d —+ s sector.
The effective Lagrangian obtained from Eq. (4.1) after

integrating out the heavy scalar has the form

As we argued in Sec. III, the cancellation of renormalon
ambiguities between matrix elements and matching con-
ditions is a general feature of an effective field theory.
In this section, we illustrate this in a more familiar ef-
fective field theory, four-Fermi theory in which a heavy
colored scalar is integrated out. (We choose the scalar
theory as our example because it has Feynman graphs
which are slightly easier to compute than in the four-
Fermi theory of weak interactions. ) The theory is QCD
with Ny light flavors in the Ny ~ oo limit, with o.,Ny
fixed. Two of the NJ: flavors (called d and s) couple via
a color triplet scalar of mass M )) A~~D to color singlet
particles (called e and w) according to the interaction
Lagrangian

where the ellipsis indicates additional operators of di-
mension 6 and higher. The scale p, is the scale at which
the effective Lagrangian is computed from the full the-
ory, and is usually chosen to be p = M. The effective
Lagrangian at zeroth order in the strong interactions is
computed by equating the dw ~ se scattering amplitude
obtained from Eq. (4.2) with that obtained by expanding
the scalar exchange graph in the full theory (Fig. 4) in a
power series in 1/M, to give cs = 1, cz ——0, and dg = 1.

We now consider matching onto the effective theory at
high orders in a„, and concentrate on the coeKcient of
the operator O~ = so~„v eo" d. This is a particularly
convenient operator because its coeKcient c~ is zero at
tree level, and at one loop in the full theory it only re-
ceives a contribution from the graph in Fig. 5. The other
graphs do not have the correct p structure to contribute
to t"z, and contribute only to the scalar amplitude. c~ is
obtained by equating the tensor scattering amplitudes in
the full and effective theories, and its Borel transform is
computed using the techniques discussed in Sec. II.

The Borel transform of the tensor scattering amplitude
Az (at zero momentum transfer) in the full theory is
obtained by evaluating the Feynman graph in Fig. 5,

B Ag =
~ ~ ~

U, o„U U.o pU~
167lA fp
3m~ i e~)

d4k k~k~ (k"k~ —k2g"")
(2~)' (k' —m')' (k' —M') (—k')'+" ' (4.3)

using the gluon propagator Eq. (2.8). The U, are Dirac spinors for the external fermion lines, and the quarks have
been given a common mass m to regulate the in&ared behavior of the diagram. Performing the k integral gives

B [A ""j =
i i

U, ""U U, a.„ U I'( —1) I'(2 — )12vr&~ ye~)
(M')' "—(m') "[(1—u) M'+um'j

(M2 —m2)
(4.4)

Despite the appearance of I'(u —1) in Eq. (4.3), the amplitude is finite at u = 0 and 1 as the term in the square brackets
vanishes at these points, but it has singularities at u = 2, 3, . . .. However, we stress that renormalon singularities
in Eq. (4.4) are of no interest, since we are not going to attempt to calculate scattering amplitudes in perturbation
theory. Any attempt to do so will of course face serious infrared problems. We are only interested in using perturbation
theory to calculate the coeKcient functions in Eq. (4.2), which requires us to subtract the corresponding amplitude
calculated in the effective theory.

To match onto the efFective theory, we expand (4.4) in a power series in 1/M:
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B[A" ] =
i i

U, ""U U, „„Ud I'( —1) I'(2 — )
xA (p i — — (M )

12vrNy e~ )
( ') "

—(1 —u) M2 (4.5)

where we have only retained terms up to order 1/M, since cl /M is the coefficient of a dimension-six operator. It
is perhaps useful at this point to relate this to the standard perturbation series for AT"

AT" ——i U, rr""U U, rr„„Ud ) a„(n,Ny)" + 0
~

(4 6)

Taking the appropriate derivatives of (4.5) gives for the first few terms of the series

ao ——0,
aq ———1 —2 ln(m/M),
a2 —— bo C—+ 2(1 + C) ln(m/M) —21n(p/M) + 21n (m/M) —41n(m/M) ln(p/M)
Q3 I ~ 0 (4 7)

The tensor scattering amplitude in the effective theory is computed from the loop correction to the lowest order
operator cs,

16vrA2 (p2) — — d4k k k~ (k"k —k g"")
B A~+ = —

~ ~
U, rr„U U, rr pUg

3Nf (e j ' " '
2vr (k2 —m2) M2 (—k2) +" (4.8)

where we have used the tree-level value cp ——1 in evaluating the graph. This result is the same as that obtained by
setting the scalar propagator in Eq. (4.3) to 1/M, since the cs term in the effective Lagrangian reproduces this piece
of the four-Fermi vertex. Evaluating the A: integral gives

B[A' ]=
i i

U, ""U U, „„U I'( ) I'(2 — )
iA' t' p,

'
1

"—
( ') "

(4.9)

This reproduces the (m ) term in Eq. (4.5), includ-

ing the entire u dependence. Comparing Eq. (4.5) with

Eq. (4.9), we obtain

co ——0,
cq ——C' —2 ln(p/M),
c2 = —bo C + 2C n(p/M) —2 ln (p,/M),
c 0 ~ ~3 = (4.12)

(M')
B[ (p)] =

~

"
~

I ( —1) 1(2 — )
127r N~ q

e+ )

(4.10)

Note that any dependence on the quark mass m has
dropped out of (4.10), so that the matching condition
is independent of the infrared regulator. Therefore, in
terms of the original perturbation series

(where C' and C" are scheme-dependent renormalization
constants). However, despite the fact that the individual
terms c, in the expansion of cT are now well de6ned, ex-
pression (4.10) has poles at u = 0, 1, 2, . . . . The pole at
u = 0 is removed by renormalization [6], but the renor-
malons at u = 1, 2, ... correspond to ambiguities of or-
der (AqcD/M) " in the coeKcient function cT (p). Note
that these are diferent from the singularities in expres-
sion (4.4). The singularity at u = 1 in (4.10) is not
present in (4.4), while the coefficients of the singularities
at u = 2, ... also dier. For the singularity at u = n we

6nd

A2
cT(p) = ) c„(n,Np)",

12' Nf
(4.11)

all large logarithms of m/M have dropped out of the
matching conditions:

The logarithms of m /M are reproduced in the effective the-

ory by scaling the operators from p, = M to low energies.

FIG. 5. The leading contribution to cT (p) arises at one
loop in QCD. The blob on the gluon propagator denotes the
bubble sum of light quark loops. The external quarks have
been given a small mass m which regulates the infrared be-
havior of the graph.
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n n i—
p 2 i—1

+M~ u —n i, m2) i M2)

B[cz(V)] - — I, f
+ . .(-1)" t'~' &"

u —nEM) (4.13)

where the ellipses denote terms regular at u = n. Note that the singular piece of B[AT", ] at u = n has no term
proportional to (p /M )

We now consider using the effective Lagrangian in Eq. (4.2) to calculate the cross section for the spin-flip scattering
process wd —+ es. This is of course not a physical process, since the d and 8 quarks are not physical asymptotic
states, and the perturbatively calculated rate Afg" exhibits serious in&ared problems, as is clear from Eq. (4.4).
However, we may use this process to demonstrate that physical predictions in the efFective theory are well defined, by
demonstrating that the renormalon ambiguities cancel between the coefBcient function cT (p) and the (perturbatively
computed) matrix elements of higher dimension operators. Since the graphs which cancel the ambiguity also occur
for the matrix elements of physical hadrons, this cancellation will also take place for physical amplitudes such as
7. -+ K'e.

The order 1/M contribution to ~d ~ se process &om the operator OT is

A2 ( p2)" (M2)I'( —1) I'(2 — ) U, ""U U, „„Ug.
12~Ny (e )

(4.i4)

Writing u = 1+Lu, one finds that the singularity at u = 1 is

U, o""U U, o.„„Ug (4.i5)

which is of order 1/M . The renormalons at u = 2, . . . produce singularities of order 1/M, . . . . Since we have
only computed the effective Lagrangian to order 1/M4, we can ignore the renormalon singularities at u ) 2, and the
only singularity that is relevant to the order we are working is the one at u = 1. This singularity is canceled by a
singularity in the Borel-transformed matrix element of the ds operator, which is also of order 1/M . The matrix
element of the sv D [ ed ] operator between quark states is evaluated using the graphs of Fig. 6, where only the first
graph contributes to the spin-fIip scattering amplitude

16~4 f ) — — d k k k~ (k"k —k g"") k2

3' (e ) "
(2vr) (k2 m2) M4 ( k2) +" (4.16)

Evaluating the k integral gives

U, o.""U U, os I (u —1) I'(3 —u)
x he~) (4.i7)

Expanding around u = 1 gives the singular term

B[AT ]=
)

~Ucr~ U Uo~ U(i) iA', f p''1 — „„11

12' Nf (e~ ) ' " M4

(4.is)

This is precisely the negative of Eq. (4.1S), so that the
singularity cancels in the total amplitude, which is the
sum of the two terms, Eqs. (4.14) and (4.17).

Clearly, at u = 2, 3, ... similar cancellations will take
place with 1/M, 1/M, ... operators. This is simply be-
cause the singularities in B[cT(p)] are not found in the
scattering amplitudes in the full theory, Eq. (4.13). Since
the full and efFective theories are, by construction, identi-
cal up to the order to which the efFective theory has been
defined, the singularities must cancel between matching
conditions and the matrix elements of higher dimension
operators in the efFective theory, as they do at u = 1.

FEG. 6. The contribution to the scattering amplitude from
the (iD) operator which is O(1/M ). Only the first diagram
contributes to the spin-flip amplitude at order 1/Nf. The
ambiguity at u = 1 in this matrix element cancels that in
cT (&).
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V. CONCLUSIONS
Perturbatively calculated matching conditions in an ef-

fective Geld theory suer &om renormalon ambiguities.
However, we have argued that any ambiguity in a phys-
ical quantity is always higher order in 1/M than the ef-
fective theory has been de6ned and is therefore of no
consequence. In practice, one calculates matching con-
di+ions to a given number of loops, and &om physical
measurements then determines the value of Donpertur-
bative matrix elements. The cancellation of renormalon
ambiguities in physical observables then simply means
that, although the values obtained for the nonperturba-
tive matrix elements will depend sensitively on the num-
ber of loops at which the theories are matched, relations
between physical quantities will not. If the unphysical
parameters are extracted from observables at a given or-
der in Q.„then they can be used to predict other observ-
ables to the same order in n„as was done for example
for the extraction of [Vs, ]

in [16,17]. Inclusive and exclu-
sive semileptonic decays of hadrons containing a heavy
quark are &ee of renormalon ambiguities, regardless of
the mass parameter of the I/mo expansion. In addition,
we have demonstrated renormalon cancellation in an ef-
fective field theory other than HQET —the four-Fermi
theory.
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