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"Improved" lattice study of semileptonic decays of D mesons
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We present results of a lattice computation of the matrix elements of the vector and axial-vector
currents which are relevant for the semileptonic decays D ~ K and D ~ K*. The computations are
performed in the quenched approximation to lattice QCD on a 24 x 48 lattice at P = 6.2, using an
O(a)-improved fermionic action. In the limit of zero lepton masses the semileptonic decays D ~ K
and D —+ K' are described by four form factors: f~, V, A&, and Aq, which are functions of q, where
q~ is the four-momentum transferred in the process. Our results for these form factors at q = 0
are f~(0) = 0.67+s, V(0) = 1.01+~s, Aq(0) = 0.70+~0, Aq(0) = 0.66+~s, which are consistent with
the most recent experimental world average values. We have also determined the q dependence of
the form factors, which we find to be reasonably well described by a simple pole-dominance model.
Results for other form factors, including those relevant to the decays D —+ vr and D ~ p, are also
given.

PACS number(s): 13.20.Fc, 12.38.Gc

I. INTRODUCTION

Semileptonic decays of the heavy-light mesons have at-
tracted considerable interest, as they play a crucial role
in the determination of the elements of the Cabibbo-
Kobayashi-Maskawa (CKM) mixing matrix and in the
understanding of weak decays. In recent years, a ma-
chinery has been developed for calculating weak matrix
elements from lattice simulations (for review lectures pre-
sented at recent lattice conferences see Refs. [1—6]). D de-
cays provide a good test of the method, since the relevant
CKM matrix elements (V, and V d) are well constrained
in the standard model. In addition comparisons between
D and B decays reveal the size of nonleading terms in
the heavy quark e8'ective theory (HABET).

The study of the decays D ~ K/+v~ and D -+ K*/+v~
(and similarly D ~ nL+vt, D + pl+vt) is particularly
simple. They proceed via the spectator process in which
a charm quark decays into a light quark (s or d) by emit-
ting a TV boson, which materializes into a lepton pair
(I+, vt), as shown in Fig. 1. With only a single hadron
in the final state, there are no interfering diagrams or
final-state interactions to take into account, unlike the
situation in nonleptonic decays.

The nonperturbative strong interaction efFects are con-
tained in the matrix elements (K'

~

J"~D) and (K
~

J"jD),
where J" = sy" (1 —ps)c is the relevant quark weak

current. In this paper we present the results of a lattice
calculation of these matrix elements using the improved
quark action proposed by Sheikholeslami and Wohlert [7].
We determine the dependence of the form factors on the
momentum transfer (q), and study the phenomenologi-
cal implications of our results. Previous lattice studies of
these decays, obtained using the Wilson quark action can
be found in Refs. [8—15], and using the Sheikholeslami-
Wohlert action in Ref. [16].

The plan of this paper is the following. In Sec. II we
review the experimental situation and give the general
formulas necessary for the calculation of the D ~ Kl+v~
and D ~ K*/+v~ decay rates. In Sec. III we describe the

FIG. 1. Feynman diagrams relevant in semileptonic
D ~ D, K' decays.

Present address: HLRZ Julich, 0-52425 Jiilich, Germany.
Present address: Centre de Physique Theorique, CNRS

Luminy, Case 907, F-13288 Marseille Cedex 9, Prance.
This discussion applies equally well to the D —+ vr, p cases

by modifying the appropriate Bavor quantum numbers.

0556-2821/95/51(9)/4905(19)/$06. 00 51 4905 1995 The American Physical Society



4906 K. C. BOWLER et al. 51

details of our simulation and the methods used to deter-
mine the matrix elements (and hence the form factors)
from the correlation functions computed on the lattice.
The results, as is always the case in lattice simulations,
are obtained for unphysically large values of the masses
of the u and d quarks and have to be extrapolated to the
chiral limit. Details of this extrapolation are presented
in Sec. IV, and in Sec. V we discuss the relation between
the lattice vector and axial currents used in this study
and the corresponding continuum currents. In Sec. VI
we present a compendium of all our results. Finally, in
Sec. VII we study the implications of our results, com-

paring them with the experimental measurements from
Refs. [17—27], summarized in [28,29], and with other the-
oretical predictions [8—16] and [30—38].

II. PHENOMENOLOGY

Using Lorentz, parity, and time-reversal invariance, the
matrix elements for the decays D —+ K and D ~ K*
can be parametrized (in Minkowski space) in terms of
invariant form factors as [9,11,12,30]

(K:I(V —A)wlD) = &.'~T&p

2V(q') ~ b 2
TI P— e~~bppDPK. —i(mD + mK. )Aa (q )g~pma+ mg ~

Az(q') .A(q')+~- '
(pD + pre. )„qp —~, 2m'. q~(pD + pz') p,mD+ mg.

(2)

(3)

where q" = (pD —p~~~-l)" is the four-momentum
transfer, e„*~ is the polarization vector of the K', and
f+', V, A, and Aq z are dimensionless form factors. A
can be written as

A(qz) = Ao(q') —As(qz),

A;(q') =

&+(q') =

V( z) V(0)
1 —qz/mz

A;(0)
1 —qz/mz+ '

y+(0)
1 —q'/m

Ao(o)
1 —qz/mz

i=12 3

~o( z) &'(0)
1 —q'/m'+ '

(6)

(7)

with Ao(0) = As(0) and f+(0) = f (0). In the limit
of zero lepton masses, the terms proportional to f in
Eq. (1) and to A in Eq. (3) do not contribute to the total
amplitude and hence to the decay rates.

The physical meaning of the diferent form factors is
clear in the helicity basis, in which each of the form fac-
tors corresponds to a transition amplitude with definite
spin-parity quantum numbers in the frame of the center
of mass of the lepton pair. Pole dominance models [30]
then suggest the following behavior with q2:

where m J~ denotes the mass of the sc meson with spin
J and parity P. This simple picture certainly has limita-
tions. The pole-dominated form factor would vary very
rapidly with q near the end point. Another limitation
is that for J, Aq, Az, and As, the 0+ and 1+ resonances
are, in most cases, not known or only poorly established.
On the lattice we can, in principle, determine form fac-
tors as functions of q . Therefore, assumptions such as
pole dominance are not needed. Indeed, an important
motivation for lattice computations is the opportunity to
test such assumptions from first principles.

The total decay rates are given by

I'(D w Kl+v() =
192vr 3m3D

(m~ —fA g )

(8)

r(n ~ K*I,+~, ) =
192m mD

(m~ —mI, )'
dq'q't&(q')]' '(IH+(q') I'+ IH (q') I'+ IH'(q') I'), (9)

where A(q ) = (m& + m~ ~. —q ) —4m&m& &.. H comes from the contribution of the longitudinally polarized
K' and is given by [34]

0 2 2 2 2 4m' lp~.
I

2 2
H (q ) = (m& —m&. —q )(m~ + mR. )A~(q )— Az(q )2m~. ~q mQ + mg»
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where p~. is the momentum of the K* in the D-meson
rest &arne. H+ corresponds to the contribution of the
transverse polarizations of the vector meson and is given
by [34]

We now briefIy summarize the experimental results for
semileptonic decays of D mesons, basing our discussion
on the review articles [28,29]. The largest and best mea-
sured semileptonic decay is D -+ Klv~. There have
been several experiments ([17-21])which have measured
the branching ratios B(Do ~ K 1+vi) and B(D+
Kot+vi). From these experiments and the total DP and
D+ lifetimes, one can calculate the D and D+ semilep-
tonic decay rates, which should coincide by isospin sym-
metry. The world average value of the semileptonic width
quoted in [29] is I'(D -+ Kl+v&) = (7.1 + 0.6) x 10io s
However, by looking only at the D + K 1+v~ chan-
nel and assuming isospin symmetry, a different average
value, F(D -+ Kl+vi) = (9.0 + 0.5) x 10 s, is given
in [28].

The shape of the form factor is a measure of the de-
creasing overlap of the D and K wave functions as E~ in-
creases. CLEO has measured this shape with the largest
sample of D —+ K 1+v~ decays. Due to the phase space,
the differential decay rate peaks at low q2. The factor
] f~(q )] increases with q2, changing by a factor of about
2 over the kinematical range of the decay. A good fit
to the data is obtained using Eq. (7) with a pole mass
mi- ——(2.00+ 0.12 + 0.18) GeV [17], which is in good
agreement with the value of 2.1 GeV expected &om the
closest resonance with the proper quantum numbers, the
D,*. The measured value of the pole mass m»- agrees
with earlier experiments but with a smaller error. f~(0)
is obtained &om the total semileptonic width, integrated
over q, by assuming pole dominance. The average value
quoted in [29] is f~+(0) = 0.70+0.03, whereas the average
value quoted in [28] is f~+(0) = 0.77+ 0.04.

The Cabibbo-suppressed decay D ~ vrlv~ has also been
observed. Since the ratio ]V,q/V„] is known, assuming
unitarity of the CKM matrix, &om the comparison of
the decays D ~ mlv~ and D + K/v~ it is possible to
determine the ratio f (0)/f~(0). This ratio is predicted
theoretically to lie in the broad range 0.7 —1.4. Mark

III [20] gives a result of f+(0)/f&+(0) = 1.0+t s + 0.1.
In a recent analysis, CLEO gets a value f+(0)/f ~(0) =
1.29 + 0.21 + 0.11 [27]. The errors in this ratio of form
factors are still very large. In addition in [28], a value for
the rate F(D + ml+vi) of (1.260.3) x 10 s i is quoted.

There have been a number of measurements of B(D +

K'l+vi), with both D and D+ mesons ( [17,21—25]).
The average value of the width from these measure-
ments is I'(D ~ K*l+vi) = (5.1 6 0.5) x 10 s i [28].
A slightly different average value, F(D ~ K'1+iIi)
(4.5 + 0.5) x 10i s, is given in Ref. [29]. The exper-
imental results for the form factors V, A», and A2 are
summarized in Table I and. the results for the ratio of
the decay rates of the longitudinal [H contribution in
Eq. (9)] and transverse [H+ contributions in Eq. (9)] K'
are presented in Table II. The total rate is dominated
by the A» form factor and the ratios of form factors are
determined by fitting the angular distributions.

For the (Cabibbo-suppressed) decay D -+ plvi there
only exists an upper limit for the branching &action at
90%%up confidence level B(D ~ plv&) ( 0.37 [20].

III. DETAILS OF THE SIMULATION

We work in the quenched approximation on a 24 x 48
lattice at P = 6.2, which corresponds to an inverse
lattice spacing a = 2.73 + 0.05 GeV, as determined
from the string tension [39]. Other physical quantities
lead to slightly different values for the lattice spacing
(a i = 2.7—3.0 GeV) [40]. The uncertainty in the deter-
mination of the scale should be reQected in our results
for dimensional quantities. Our calculation is performed
on 60 SU(3) gauge field configurations [39]. The gauge
configurations and quark propagators were produced on
the 64-node i860 Meiko Computing Surface at the Uni-
versity of Edinburgh. The SU(3) gauge fields were gener-
ated using the Hybrid Over-Relaxed algorithm, defined in
Ref. [39]. The gauge configurations are separated by 2400
sweeps, beginning at configuration 16800. The quark
propagators were calculated using an O(a)-improved ac-
tion proposed by Sheikholeslami and Wohlert, which we
refer to as the SW action [7],

(12)

where 8+ is the standard Wilson lattice action,

(13)

In [28] the most recent measurement of the Cl EO Collab-
oration ([17]) is included, whereas it is omitted in [29].

E~„ is a lattice definition of the field strength tensor and K

is the hopping parameter. Periodic boundary conditions
were employed in the spatial direction and antiperiodic
in the temporal direction. The "improvement" is partic-
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TABLE I. Form factors at q = 0 for the D ~ K'/+v& decay.

Expt.
V/Ai

Ag/Ai

E-687[22]
1.74 + 0.27 + 0.28
0.78 + 0.18 + 0.10

Expt.
World ave. [28]

E-653 [26)
2.00 + 0.33+ 0.16
0.82 + 0.22 + 0.11

Ag
0.61 + 0.05

E-691[23]
2.0 + 0.6 + 0.3
0.0 + 0.5 + 0.2

Ag
0.45 + 0.09

World ave. [28]
1.90 + 0.25
0.74 + 0.15

V
1.16 + 0.16

PG TG
qz(T) (1+ —p D I' 1 ——p. D q2(2;),

2 2
(14)

where I' is one of the 16 Dirac matrices. The matrix
elements of these operators computed using the SW ac-
tion have no discretization errors of O(a); the leadiiig
discretization errors are of O(n, a) [41].

Our statistical errors are calculated according to the
bootstrap procedure described in Ref. [39], for which the
quoted errors on all quantities correspond to 68/0 confi-
dence limits of the distribution obtained &om 1000 boot-
strap samples.

We have computed light quark propagators at three
values of the quark mass corresponding to v = 0.14144,
0.14226, and 0.14262, using an overrelaxed minimal resid-
ual algorithm with red-black preconditioning and point
sources and sinks. The masses of the light pseudoscalar
and vector mesons which are needed for this study were
obtained in Ref. [40] and are summarized in Table III.

ularly important here since we are studying the propaga-
tion of quarks whose bare masses are around one third of
the inverse lattice spacing. The interpolating operators
and currents which we use in this study are of the. form

Results extrapolated to the chiral limit (found to corre-
spond to a hopping parameter r„;q ——0.14315+2) and
to the mass of the strange quark (e, = 0.1419+i) are
also tabulated. Our D mesons consist of a heavy quark
(with r., = 0.129, where the subscript c stands for charm)
and one of the light antiquarks. The heavy quark with
v = 0.129 has a mass approximately equal to that of the
charm quark [42]. We use spatially extended interpolat-
ing operators for the D mesons (we use gauge-invariant
Jacobi smearing on the heavy-quark field, described in
detail in Ref. [42]), but local operators of the form in
Eq. (14) for the light mesons.

Further details on the lattice calibration, fitting proce-
dures, mass spectrum, and extraction of matrix elements
of local operators between the vacuum and meson states,
e.g. , (Mps[Qpsq[0) can be found in Refs. [40,43]. In Ta-
bles III and IV we show a summary of the mass spectrum
found which we will use below. In the following we only
present those details of the calculation which are specific
to semileptonic decays and cannot be found in the above
references.

In order to determine the matrix elements in Eqs. (1)
and (2) we compute the three-point correlation functions:

C (pri, q, t~, tg) = ) e' e' (J~'(t'ai, 'x) Jg (tg, y) JIc(0, 0)),
x,y

(15)

C" (pg, q, tD, tz) = ) e' e' (JD('tD, x') Jvi, (tz, y) Jlc. (0, 0)),
x,y

(16)

where JD is a spatially extended interpolating field for the D meson [42] and J~ is an O(a)-improved lattice operator
corresponding to the continuum weak currents sp~(1 —ps)c or qp" (1 —p5)c (q = u or d). J~ and Jg. are local
interpolating operators which can annihilate the light-light pseudoscalar and vector mesons, respectively. The lattice
vector and axial currents [Eq. (14) with I = p~ or p"p ] are related to the continuum ones by renormalization
constants Z~ and Z~, we will discuss the determination of these constants in Sec. V. To evaluate these correlators we
use the standard source method [44]. We choose t~ = 24 (in lattice units) and symmetrize the correlators about that
point using Euclidean time reversal [45]. The position of the light meson source is fixed at the origin and we have
varied the time position of the current in the interval t1 ——7 —16. In Euclidean space, provided the three points in
the correlators of Eqs. (15) and (16) are sufficiently separated in time (tg, t~ —tg )) 1), the ground-state contribution
dominates and one finds for tg & tD.

( t 24 t ) ~ ~i i~ (I + I)e—@ (p ) e[ (po) E» po+g ~ g—( )(~ + ]yp[D )*I ~PD 9 rPD

(17)

TABLE II. Ratio of the longitudinal and transverse partial widths for the D -+ K*l+v& decay.

Expt.
FL, /FT

R-687[22]
1.20 + 0.13 + 0.13

E-653[26]
1.18 + 0.18+ 0.08

E-691[23]
1.8+ +0 3

World ave. [29]
1.2 + 0.1
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(p t 24 t ) ~ + ( lpD I) I' (Ip& + q1) —Ez (pz)i& [z& (p& )—z& (p +q)ji
2ED(pD)2EJc (»+ q)

»(V)&(~)).e.*(»+q)(&.* »+ ql[V —&]"ID, p~)* (18)

A(o = 0) = —1, A(o = 1, 2, 3) = 1.

e E~ (p)—
m Z,'(ipse) cosh Es(p) t ——

p 2

(20)

TABLE III. Light-light meson masses in lattice units. For
the pseudoscalar channel we fit over the time range t = 14—22.
For the vector channel we fit over the time range t = 13—23.

ED is the energy of the D meson and its wave-function
factor ZD(]p~i) = (0~1'(0)~D, pD), is a function of
the meson momentum because we use spatially ex-
tended interpolating operators. Elc(E~. ) is the en-

ergy of the light pseudoscalar (vector) meson and the
wave-function factors Zic(ip~) = (0~ JIc(0)~K, p) and
Zlc. ()p()((0)Jsc. (0)(K*,p) = e„(p)ZJ~-. ()&()) d t d
pend on the inoznentum of the meson (p) because we
have used local densities. The factors A(p) in Eq. (17)
and A(p)A(n) in Eq. (18) come from relating D-meson
matrix elements, which we obtain directly Rom the three-
point correlation functions defined in Eqs. (15) and (16),
to those of the D meson which we are interested in.

The matrix elements have been computed for two val-
ues of the momentum of the D meson [(12a/vr)pLi
(0, 0, 0), (1,0, 0)]; and all values of the momentum trans-
fer q for which (12a/vr)~q~ ( 2. In order to limit the
systematic errors (and also statistical ones) we will only
present results for matrix elements for which both the
initial- and final-state mesons have three-momenta less
than or equal to 7r/12a. To improve statistics, we average
over all equivalent momenta and the diferent correlators,
C~' or C~, which lead to the same matrix element.

The wave-function factors and energies are obtained
&om Gts to two-point correlation functions. At large
times, t, the Euclidean correlators G5 and G;~ behave
as

G;z (t, p) = ) e'P "(V;(x, t)Vt (0, 0))
K

s,p, ~~l -g*'+ ','
I Zv(lpl) E, ,

mv ) Ev /p)

( T l
xcosh

~
Ev(p) t —— (21)

where T is the length of the lattice in the time direction,
P5 and V, are the pseudoscalar density and vector cur-
rent with the appropriate flavor quantum numbers, and
E5 and E~ the energies of the mesons. For light mesons
we use continuum dispersion relations, i.e., Es (vp)

m2sv + p2 and impose Z5(ip~) = Z5(~O~) [46]. These

relations are well satisfied for momentuin n/12a which is
the highest one we have considered. For the D meson,
as mentioned above, the wave-function factors ZLi(p) de-
pend on the momentum and it is necessary to fit the cor-
responding two-point correlators to the asymptotic ex-
pressions of Eq. (20) not only for p = (0, 0, 0), but also
for p = (vr/12a)(1, 0, 0). We have constrained the energy
to be ED(p) = gm&2 + p2 and therefore have performed
only a one-parameter fit in order to find ZD(~p~). The
masses we have used in our study of semileptonic decays
of D mesons appear in Tables III and IV, whereas the
wave-function factors appear in Tables V and VI.

Having determined the Z's and energies, all the factors
multiplying the required matrix elements on the right-
hand sides of Eqs. (17) and (18) are known, allowing us to
determine the diferent form factors which appear in the
matrix elements. The results presented in Sec. VI were
obtained by fitting the different (p, , n) correlators, for
each combination of quark masses and each momentum
channel, to their respective asymptotic forms [Eqs. (17)
and (18)] in the time interval t~ = ll —13. We have per-
formed correlated fits, but we only allow for correlations
between difFerent time slices (tg = 11,12, 13) of a given

(p, n) correlator at the same quark mass and momentum.

K)1
0.14144
0.14144
0, i 4144
0.14226
0.14226
0.14262

K, = 0.1419
K~z jg: Oo 14315

K~2

0.14144
0.14226
0.14262
0.14226
0.14262
0.14262

K „.g ——0.14315
K,;g ——0.14315

0 meson
0.298+2
0 259+2
0 241+'
0.214+3
0.192 3
0.167+4
0.181+8

0

1 meson
0.395+
0 370+
0 360+
0.343+
0 331+»
0 319+113
0 326+13

0.290+10

K~

0.14144
K, = 0.1419

0.14226
0.14262

K„;g ——0.14315

0 meson
0.716+2
0.701+
0 692+32

0.683+3
0.665+3

1 meson

0.732+'

0.697 4

TABLE IV. Heavy-light meson masses, K = 0.129, in lat-
tice units. We 6t over the time range t = 11—22.
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TABLE V. Pseudoscalar heavy-light meson wave functions
(in lattice units), K = 0.129. Fitting ranges are the same as
those in Table IV.

Where AmD(Kcl KX) and Ambgi, t(KX, KX. ) (light StandS fOr

light pseudoscalar and light vector mesons) are defined
by3

0.14144
0.14226
0.14262

z' (p = (o, o, o))
14.5 4
12.6 4

+6

Zo2(p = (z/12a)(1, 0, 0))
10.6+4,

9.0+3
8.4+43

+mD(Kcl KX) mD(Kcl KX) ™D(KclKcrit) l

bmpS(KXl Ki. ) = mpS(KXl KX. ) mpS(K»tl Ks) l

l-tmV(KXl Ki ) ™V(Kll Ki, ) ™V(KcritlKs) .

(26)

(27)
(28)

IV. CHIRAL EXTRAPOLATION

~ps ( 1
mLx(K. , «) = &ps+

2 (Kx K„,t)
1 1

mx (Kx, K2) = av+ bi !(2Ki 2

mps(Ki K2) —6ps ! +
E2Kx

)
K2 Kcrit )

Kcrit J

(22)

(23)

(24)

This extrapolation, together with the continuum dis-
persion relations, also determines the value of q2 corre-
sponding to each set of three-momenta for physical quark
masses (see Tables III and IV).

(ii) For each momentum channel we extrapolate the
form factors to the physical limit, using the full covari-
ance matrix, assuming the following dependence on the
quark masses:

b,mxx(K„Kx) Amhg}, t(Kx, K$ )F v), r) ——a+6 +c
m~(K. , K.„,) m„gh, (K.„„K,)

+ (b.mi;st(KX, KX ) )
(m light (Kcrit l Ks ) )

We are interested in deriving the form factors for phys-
ical values of the charm, strange, and light quark masses,
for a range of values of the momentum transfer q. We ob-
tain these by extrapolation &om the three-point correla-
tion functions of Eqs. (15) and (16) computed with a fixed
charm quark mass (corresponding to K, = 0.129) and for
three values of the light quark mass (corresponding to
Ki = 0.14144, 0.14226, and 0.14262) and two values of
the strange quark mass (corresponding to Kx, = 0.14144
and 0.14226). The extrapolation to the physical values of
the light and strange quark masses proceeds as follows.

(i) For each set of three-xnoxnenta of the initial- and
6nal-state mesons we determine each form factor for the
six combinations of light and strange quark masses. The
masses are extrapolated to their physical values using

In the decay into vector mesons we have not kept the
quadratic term [Wm„.,„t(K„K, )/m, ;g„t(K.„„K.)]' (f om
Table III it can be seen that, unlike in the case of the light
pseudoscalar meson, this terxn is always smaller than 5%%uo

and has a negligible effect on the extrapolation of the
form factors to the physical limit) and we end up with
only three free parameters (a, b, c). Thus, in the 0 ~ 0
case, we fit the form factors to the following dependence
on the quark masses:

(1
s'(K, K) =n+p! ——

&crit

2

Kcrit )
2

Kcrit )
and in the 0 —+ 1 case we have assumed the following
dependence:

, f I
I'(Kx. , Kx) = n'+ p'! ——

(Ki

, t'1 1+p'! +-
i KX, Kg

Kcrit )

Kcrit ) (30)

(I 1 )' (I= n+~
I

——
! ++

I

——
E Ks Kcrlt ) (Ks Kcrit )

F~ = o.'.
(31)

V. RENORMALIZATION CONSTANTS
Zy AND Z~

where F represents a generic form factor. Note that, in
contrast to some analyses (e.g. , [13,16]), we do not as-
sume Havor symmetry between the active and spectator
light quarks. Thus, for example, the form factors extrap-
olated to the strange and critical quark masses, F and
F~, are

K)1
0.14144
0.14144
0.14144
0.14226
0.14226

K~2

0.14144
0.14226
0.14262
0.14226
0.14262

&'(p = (o o o))
0.0081
0.0067+'
0.0062+4
0.0056+3
0.0052+4

Zv(p = (0, 0, 0))
0.0025+ i
0.0021+'
0.0019+
0.0017+22

O.OQ15+2

TABLE VI. Light-light meson wave functions (in lattice
units). Pitting ranges are the same as those in Table III.

In this section we discuss the diKculties in determining
the form factors of semileptonic D —+ K, K' decays,
due to the presence of discretization errors. Of course
these errors are substantially reduced by the use of the
improved action ([7,41]), nevertheless even in this case we

The dependence assumed in Eq. (25) is motivated by the
results of a Taylor exPansion of q (Ki, K&, ) around q (Kc„t,Ks).
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believe that, for currently accessible values of the lattice
spacing, they lead to uncertainties of the order of 10%
in the form factors. We will now attempt to justify this
statement.

The lattice currents V and A„used in this study are
related to the physical ones (V„and A„) by renormaliza-
tion constants Z~ and Z~.

ZVV„= V„, Z~A„= A„. (33)

When both quarks are light, at P = 6.2, Zi and Z~
are known to be about 0.83 and 1.05, respectively [47].
For light quark masses the discretization errors are very
sinall, but for the charmed quark at P = 6.2 this is no
longer the case. In previous simulations, using Wilson
fermions, these effects were modeled by using an effec-
tive (mass-dependent) value of Zv and Z~, or by assum-
ing that the "conserved" vector current, i.e., the lattice
current which would be conserved if the quarks were de-
generate, is free of discretization errors [46]. However we
wish to stress that the discretization errors of O(n, ma)
and O(m a2) are in general difFerent for matrix elements
of currents with different Lorentz indices and between dif-
ferent states. Thus they cannot be absorbed into an effec-
tive Z~ or Z~ for all cases. To see this, note that there
are discretization errors due to the mixing of the cur-
rents with higher dimensional operators, e.g. , the vector
current can mix with aqqD"q2 or a q~p"D"D~q2. The
behavior of matrix elements of these operators with the
external states is in general different from that of the cur-
rents. We have carried out an extensive study of these
effects for the heavy-heavy vector current Qp"Q.4

De6ning Z&+ by

Using Wilson fermions the analogous expression is

(1+mpa)

1 + +O —mt —mae e
2

(38)

where m = ln(1+ mpa)/a and mp is the bare mass. An
important correction proposed by Kronfeld and Macken-
zie is the e ™afactor in Eq. (39). With the SW action,
even at the tree level, there can be no O(ma) term in the
correction factor and we hand

d'*S (*,0) = 1+pp 1 ~
1+ — 1+moa

2 4

is too large for us to be able to determine whether the
discretization errors are the same in matrix elements of
V and V . In any case, because of hypercubic group in-
variance, there are no discretization errors of order O(a)
which affect spatial components of the currents in a dif-
ferent way to temporal components at each value of q;
the leading discretization errors for which this happens
are of order O(a ) for the SW action (arising, e.g. , from
matrix elements of the operator a qip" D"D"q2).

For simulations using the Wilson fermion action, the
discretization errors are much larger. Kronfeld and
Mackenzie ([50]) have argued that much of this uncer-
tainty can be absorbed into a multiplicative m-dependent
correction factor to the heavy quark propagator. Con-
sider the continuum free propagator at zero three-
momentum:

where

Z
O (t*'p)

~ =
Cg(t„, t.;p) X' (34)

1 + mpa)
(1 + mpa) o . (40)

&2('* p) = ). ""(J~(~)Jp(0))
X

&"(t,t*;p) =). ""(J ( )V"(&)J'(0))
x,y

(35)

(36)

and J&~ and Jp are the interpolating operators which can
create or annihilate the heavy-light pseudoscalar meson
P. For degenerate quarks with e = 0.129, and using
correlation functions with p = 0 and p = 4 we 6nd
Z& ——0.9177+2. We note that this value differs by about
10'%%up from that for Zv determined using light quarks and
is a measure of the residual size of the discretization er-
rors using the improved action. Another important ques-
tion is whether the effects are multiplicative. To study
this we have computed Zv for ~p, ~

= ~pf ~

= vr/12a,
and using the current V in the correlation function C3
we find ZP = 0.925(1) whereas using the current Vi
we find Zi, = 0.99(6). Unfortunately the latter error

Numerically we estimate that this correction factor dif-
fers from 1 by only about 1.5%, for our charmed quark
(Ic = 0.129), whereas we have seen that ZP in heavy-
to-heavy transitions is about 10%% larger than Zv. This
suggests that this correction factor accounts for only a
modest part of the discretization errors. This conclusion
is supported by the behavior of Z& with mass, for which
we find that the quadratic term [i.e., the O(mza2) term]
is relatively small [48].

Our conclusions from the above observations are the
following.

(i) The use of the free quark propagator is not a use-
ful guide to the discretization errors when using the SW
action. For the Wilson action it is possible that the
corresponding factor e accounts for part of the er-
rors. However, the remaining uncertainties are not un-
derstood, and are in any case formally at least as large

Full details of this study can be found in [48j.

There is some mild evidence [48] that Zv. may grow faster
with mass for p = 1 than for p, = 4 in heavy-to-heavy
transitions.



4912 K. C. BOWLER et al. 51

Z ~ =0.88+; (41)

which represents an approximate average of Zv ——0.83
(obtained with light quarks) and ZP = 0.92 for the
heavy-heavy current with the mass of the heavy quark
corresponding to e = 0.129. For the axial current, a
nonperturbative determination of Z~ (when both quarks
are lights) using a method based on Ward identities [49],
gives a value of Z~ = 1.05(1) [47]. A one-loop calcu-
lation in perturbation theory for the SW action ([51])
when the "boosted" coupling suggested iri [52] is used,
gives Z~ ——0.97. Unlike the case of the vector current,
perturbative and nonperturbative determinations of Z~
do not agree for the light-light current, thus for the axial
current we have decided to take

as for the SW action [i.e., there are O(n, ma) terms, and
there is even no proof that there are no O(ma) terms
above tree level ].

(ii) Formally there is no reason to believe that the dis-
cretization errors can be absorbed into universal efFective
renormalization constants Zi, and Z& . Even if O(m2a2)
corrections are neglected, in which case the discretization
errors are independent of the I orentz index of the cur-
rent, these discretization errors could be difFerent for dif-
ferent form factors and they could have a difFerent q de-
pendence than the form factors themselves. However, if
for a given form factor, both the form factor itself and the
discretization errors have the same q dependence, e.g. ,
if the pole dominance formula is a good approximation
to both, then the corresponding efFective renormalization
constant, ZP or Z&@, is independent of q2 [up to correc-
tions of O(m2a )]. Therefore if O(m a ) corrections are
neglected and assuming that the meson pole dominance
model describes well the q dependence of the difFerent
form factors and their discretization errors, only the fact
that discretization errors could, in general, be difFerent
for difFerent form factors, prevents the absorption of all of
them into universal efFective renormalization constants.
The situation is not improved by the use of "conserved"
currents on the lattice. Here the situation is more dif-
ficult than in the evaluation of the Isgur-Wise function,
where only one needs to evaluate a single form factor and
this factorization is still possible.

Given this discussion what can be done? In this study
we recognize that discretization errors are of order 10/0,
and in spite of the discussion above, we assume that they
can be modeled by ZP and Z& (at least part of the
errors can be so absorbed). Specifically for the vector
current we take

account for the perturbative value mentioned above.
Below we will discuss briefIy the dependence of the

results on the values in Eqs. (41) and (42). Over the next
few years, as high statistics simulations are performed at
difFerent values of P, it will become possible to study the
discretization errors in detail.

VI. B.ESUITS

A. The exclusive 0 ~ 0 case

With the method described in former sections we have
found for the D —+ K decay

= 0 76+'
zeffv

&Ic(o) 0 74+s
ZefF —4'

v

; = 0.67+', [a-'],

;; = 0.91+;[ -']. (43)

In this section we present our results for the form fac-
tors obtained at six combinations of momenta of the
initial- and final-state mesons, which are (in units of
m /12a, and using the notation pD ~ p~ ~*): (a)
(0, 0, 0) ~ (0, 0, 0), (b) (0, 0, 0) ~ (1,0, 0), (c) (1,0, 0) ~
(1,0, 0), (d) (1,0, 0) -+ (0, 0, 0), (e) (1,0, 0) -+ (—1,0, 0),
and (f) (1, 0, 0) -+ (0, 1, 0). The momenta of the initial
state D meson are fixed to be (0,0,0) or (1,0,0), but we
average over all equivalent momenta of the light meson,
so that, for example, case (f) is really the average of the
four terms in which the final-state meson has momentum
vr/12a in the positive or negative y or z directions.

The results for the form factors, together with the cor-
responding values of q, are presented in Tables VII—IX.
In these tables we also present the form factors extrap-
olated to physical quark masses for the decays D —+ K,
K*, following the procedure described in Sec. IV.

From the results of Tables VII—IX one can in principle
check the pole dominance relations given in Eqs. (6) and
(7). This is true in practice for some of the form factors.
However, we have a very poor determination of both, the
scalar (0+) and axial-vector (1+) meson masses. Thus,
we have decided to extract both the pole masses (m Jl )
and the form factors at q = 0, by fitting the chirally
extrapolated data to the pole dominance model. In the
case of f+, V, and Ao we will compare the masses of the
0 and 1 mesons obtained from the pole dominance fit
with the lattice results obtained in our simulation (Table
IV).

Z~ ——1.05+8 (42)

which corresponds to the nonperturbative determination
of [47], but with an increased lower error in order to

The pole mass m&', agrees reasonably well with the value

0.732+4[a ] quoted in Table IV and the experimental
value (2.00 + 0.12 + 0.18) GeV [17] quoted in Sec. II.
The result found for mo+ is also consistent with the
value of 2.3+ 0.2 GeV obtained in the lattice simula-

Note that in nth order perturbation theory, in general,
terms appear which behave as n main (a) ma [41].

In this case we do not have a nonperturbative determination
of Z& for the heavy-heavy current.

This value was obtained from the analysis of scalar-scalar
two-point functions, not from the study of the q dependence
of f (q')
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tion of Ref. [13]. We also see f~(0) is equal to fg. (0)
within the errors. These values agree with, and update
the preliminary results presented in [53]. In Figs. 2 and
3 we show the form factors f+ and fo as a function
of q for two combinations of the light quark masses:

——0.14144 and x~ ——v«, t, e~ ——v., In all cases
the solid line corresponds to the comparison of the pairs
(q, flc' (q )) with the q dependence of the form fac-
tors determined fmm a two-parameter pole dominance
fit to our data [giving the parameters in Eq. (43), for
the case Ki = K z't, Ki = K ]. Crosses correspond 'to

the form factors at q2 = 0 (up to a factor ZfP) deter-
mined in this way. In the case of f+ we also compare
(dashed lines) the q2 dependence of our data with that
determined from a one-parameter pole dominance fit, fix-
ing the pole masses to the corresponding values of the
vector-meson masses, mi-, quoted in Table IV. Dia-
monds correspond to the form factors at q2 = 0 (up to
a factor ZfP) determined by using this second method.
The fits using the constrained pole masses, also lead to
acceptable y /Ngr. As can be seen from these figures,
both methods of extracting f+(0)/Zi, agree remarkably

TABLE VII. Form factors for 0 ~ 0 decay with momenta in units of vr/12a and rc, = 0.129. For f (q ), the channel
(1, 0, 0) -+ (1., 0, 0) has not been considered in the pole dominance fit, because we feel we do not control its chiral extrapolation.

Pa
(o,o,o)

(0,0,0)

(1,o,o)

(1,0,0)

(1,o,o)

(1,0,0)

PK'

(o,o,o)

(1,0,0)

(1,0,0)

(0,0,0)

(—1,0,0)

(o,1,o)

K~

0.14144

0.14226

0.14262

~crit
0.14144

0.14226

0.14262

Kcrit

0.14144

0.14226

0.14262

&crit

0.14144

0.14226

0.14262

&crit
0.14144

0.14226

0.14262

&crit

0.14144

0.14226

0.14262

K crit

0.14144
0.14226,
0.14144
0.14226
0.14144
0.14226

0.14144
0.14226
0.14144
0.14226
0.14144
0.14226

0.14144
0.14226
0.14144
0.14226
0.14144
0.14226

0.14144
0.14226
0.14144
0.14226
0.14144
0.14226

0.14144
0.14226
0.14144
0.14226
0.14144
0.14226

0.14144
0.14226
0.14144
0.14226
0.14144
0.14226

Q G

0.175+2
0 209+2
0 188
0.229+3
0.195+3
0.241+43

235+8
0 033+1

0.052+1
0.037+2
0.057+2
0 039
O.O60+;
O O52+'
0.134+»

155+2
0.138+2
0.162+2
0.141+2
0.165+2
0 157+
0.147
0.185+2
0.163+2
0.208+3
0 172
0 223+
0 217+'

—0 14O+'
0.119+21

—0.136+2
—0.113+2
—0.133+',
—0.109+2
-0 117+'
—0.003+
0.018+1
0 001+2

025+2
0.004+2
0.028+2
0.020+4

f+(q')/&v

0.91+3
0.88+'
0 90+
0.86+4
0.89+;
0.84+5
0.88+5
1.13+7
1 12+'
1 O9+"—11
1 o7+"—14
1.00+1145

O 94+"
1 16+
1.25+55

1.33+;
1.27+',
1 4O+"—10
1.26+10
1.43+,",
1 48+"
0.60+3
0.58
O 59+'
0 58+'
0.58
o 57+"
0.63+8
0.78+3
0.75+4
0.76+44

0 73+
o 74+'
0.71+~
o 75+5

f'(q')/&v
1.03+;
O 99+'
1 O4+'
1 00+
1 05+
1 03+
1 O1+'
0.87+3
0.81+3
0.85+3
0.78+3
O 83+4
O 75+5
O.8O+;
O 91+'
0.82+

q

0 77+10

0.64+—11
0.58+15
0.40+1167

o.73+"—15
0.98+4
0.96+4
0 99+
1 00+'
1.00+5
1.01+
1.06+
0.71+;
0.69+4
0.71+5
0.69+6
0.69+8
0.67
0 73+'
0.79+;
o.73+44

o 76+4
o.7o+',
o.74+'
0.67+~
O 72+'
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well, which gives us confidence in our procedure. It can
be also seen &oxn these 6gures, that the q dependence
of both form factors f~(q2) and f~~(q2) is well described

by the pole dominance model.
For the D ~ m decay we obtain, following the same

steps as in the D —+ K case:

= O.69+"
zeff

V

f.(o) 0 60+10
geff

V

'" = 0.74+ [a '],

m'" = 0.91+ [a ] (44)

TABLE VIII. Vector form factor (V(q )) for 0 ~ 1 decay with moments in units of xr/12a
and tc = 0.129. The channel (1,0, 0) +(1-,0, 0) has not been considered in the pole dominance fit,
because we feel we do not control its chiral extrapolation.

PD
(0,0,0)

(0,0,0)

(1,0,0)

(1,0,0)

(1,0,0)

(1,0,0)

px'
(o,o,o)

(1,0,0)

(1,0,0)

(o,o,o)

(—1,0,0)

(o,l,o)

K~

0.14144

0.14226

0.14262

&crit

0.14144

0.14226

0.14262

&crit

0.14144

0.14226

0.14262

&crit

0.14144

0.14226

0.14262

&crit

0.14144

0.14226

0.14262

&crit

0.14144

0.14226

0.14262

Kcrit

0.14144
0.14226
0.14144
0.14226
0.14144
0.14226

0.14144
0.14226
0.14144
0.14226
0.14144
0.14226

0.14144
0.14226
0.14144
0.14226
0.14144
0.14226

0.14144
0.14226
0.14144
0.14226
0.14144
0.14226

0.14144
0.14226
0.14144
0.14226
0.14144
0.14226

0.14144
0.14226
0.14144
0.14226
0.14144
0.14226

q a
0.103+~
0.119+
0.103+33

0.121+5
0.104+44

O.124+,'
0.112+5

—0.010 1
0.000+

—0.012+22
—0.001+3
—0.012+~
—0.001+44
—O.OO9+;
0.083+2
0.095+2
0.082+~
0.095+3
0.082+33

O.O96+',
0.086+34

+

0.085+4
0.068+3
P P88+6
0.069+4
0.092+7
0.079+56

—0.191+2
—o 179+'
—0.192+2
—0.179+43
—0.192+3
—o 179+'
—0.188+4

—0.042+2
—o o55+'
—0.042+3
—o o55+'
—0.042 5
—0.051+4

v(q )/z

1.5O+;
1 47+7

45+8
1 41+1101

43+12—12
1.36+—15
1.4O+"—12

2 7+4

2 9+
3.4+',
4.1+99

3 7+10—10
5 2+13—13
3 7+'

1 46+i0—10
1.39+i4
1.36+1168

3P+25—26
1.42+"—31
1.42+38

1.09+—16
O.9O+;
O 9O+'

P 85+11

O.87+"—15
0.81+"—18
0.81+25
0 80+»—13
1.22+'
1.18+87

1 11 ]
1 06+—14
1 OO+"
p 90+20

1 02+~2—14

Because of our poor determination of the scalar 0+ meson mass we cannot do a similar comparison for f (0) However, .
the value quoted in (43) for mo+ agrees well with the value of 2.3 6 0.2 GeV mentioned above ([13]) and we expect a similar
situation for f as that obtained for f+.

In order to compute q and the form factors in the chiral limit we take m = 0.05a instead of 0, which corresponds to
a hopping paraxneter of 0.14310(2) determined from (24). The use of massive instead of massless u and d quarks, which is
important for the study of the q dependence of the D ~ vr decay, has no practical consequences in the determination of the
strange quark xnass or in the determination of the p meson mass (which has been used in fixing the lattice spacing).
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f+( ) =0.92+0.08,
fx(0)

where we can see that the value we have obtained for
the ratio of form factors f+(0)/f~+(0) is consistent with
the experimental numbers quoted in Sec. II. Note that
with the present errors, neither the theoretical nor the
experimental result for this ratio gives clear evidence for
SU(3)-Bavor violations (deviations &om unity). Note also
that f+(0) agrees within errors with f (0). In Fig. 4 we
compare the chirally extrapolated pairs (q, f+(q )) with
the pole dominance behavior determined by t'he param-
eters of Eq. (44) (solid line) and with the results kom a

one-parameter pole dominance fit, fixing the pole mass to
that of the vector-meson mass m&", quoted in Table IV
(dashed line). Both procedures of extracting f+(0)/ZP
lead again to values for f+(0) in an excellent agreement
(cross and diamond in Fig. 4).

B. The 0 —+ 1 ease

For the D M K' decay we obtain

'( ) =067+' m- =1.1+'[ -']

gruff

—4 & 1+ ' —2
A

TABLE IX. Axial form factors for 0 ~ 1 decay with momenta in units of m/12a and
r, = 0.129. For A2, the channel (1, 0, 0) ~ (1,0, 0) has not been considered in the pole domi-
nance 6t, because we feel we do not control its chiral extrapolation.

Pa
(0,0,0)

(0,0,0)

(1,0,0)

(1,0,0)

(1,0,0)

PR
(o,o,o)

(1,o,o)

(1,0,0)

(o,o,o)

(—1,0,0)

(0,1,o)

K~

0.14144

0.14226 I

0.14262

Kcrlt

0.14144

0.14226

0.14262'

Kcrit
0.14144

0.14226

0.14262

Kcrit

0.14144

0.14226

0.14262

Kcrit
0.14144

0.14226

0.14262

&crit
0.14144

0.14226

0.14262

Kcrit

K~,

0.14144
0.14226
0.14144
0.14226
0.14144
0.14226'

0.14144
0.14226
0.14144
0.14226
0.14144
0.14226

0.14144
0.14226
0.14144
0.14226
0.14144
0.14226

0.14144
0.14226
0.14144
0.14226
0.14144
0.14226

0.14144
0.14226
0.14144
0.14226
0.].4144
0.14226

0.14144
0.14226
0.14144
0.14226

,

'

0.14144
0.14226

A~(q')/&~
0.74+2
0.70+2
0.76+3
o 72+4

0.78+55

0 73+'
0 76
0 70+
0.65+',
0.71+4
0.66+44

0.71+5
0 64+'
0 72+4

0.76+„
0 71+
0 66+11

0'0,'
O 49+19

0 41 +26

O 68+'4
0.69+3
0.66+3
O 69+4
066
O 69+'
0.65+"
o 66+''7.
O 53+'
0.59+8
0.56+99

0 58+12

0 58+1135

0 58+8

0.61+2
0.55+3
O 59+4
O 53+'
0 54
0 49+
o 6o+'

A2 (q') /Z„

0.59+7
0.51+7
0.63+9
0.53+—12
0.61+14
0.49+'„"
O 69+10

1 4+11—11
1.5+"—12
0 7+17—17
0 7+20—20
0 7+26—26
0 9+30—30
4+23—23

O.67+"—38
O.93+",,
0 57+"
O 92+"
O 37+"
0 76+100—100
O.51+,
0.36+;
0 30+S9

0.37+12
O 31+15
O 34+19

0.30+23
0.36+15
o 4o+'
0 34+

O 34+'
0 28+12

23+15

0.20+,"
0 36+

Ao (q') /Z„'

0.73+2
0.72+3
0.73+3
o 72+4

o 74+'
o 72+'
o 72+4

0.92—11
0 96+
o 74+"
0 78+"
0.53+30
0 57+
0.78+24
0.88
0 88+
0.92+10
O 91+"
o 99+12
O 99+"—21
0.90+14
0.44+3
0.44+4
o 45+4
0.47+',
0.46+8
0 50+89

0.45+',
0.63+;
0.61+3
0.63+44

0.61+6
0.64+6
0 61+'
O 59+'



4916 K. C. BOWLER et al. 51
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vi ——0.14144
vi ——0.14144 ~i=~crit. ~&,='Cs

U"
1.0

—0. 1 0.0 0. 1 0.2
2 2

q a
—0. 1 0.0 0. 1 0.2

q a2 2

FIG. 2. Results for the form factor f~(q ) as a function of the dimensionless quantity q a . Left: e& = r&. = 0.14144.
Right: K& ——e „.t, e&, ——e, . Solid lines represent the pole dominance behavior determined from a two-parameter fit to the data
[parameters of Eq. (43), for the case ~& = ~„;&, m&. = e ]. Dashed lines represent the pole dominance behavior determined from
a one-parameter fit to the data (fixing the pole masses to the corresponding values of the vector-meson masses, m~, quoted in
Table IV). Crosses and diamonds correspond to the values of the form factor at q = 0 (up to a factor Zv ) determined from
two-parameter and one-parameter fits to the data, respectively.

A, (0) = 0.62
A

Ao(0)
gefF

A

&(0) +v
Zen

V

m" = 0.46+ [a ]

mo' = 0.59+s[a ],

m~' = 0.85+ [a ] .

(47)

(48)

(49)

The results obtained for I
y

and my &om the form
factors V and Ao are consistent within 1 or 1.5 standard
deviations with the values quoted in Table IV. In the Az
case, the pole mass is compatible with the value of 2.5
GeV, corresponding to the D, q resonance, which was
used in the extraction of the form factors in Refs. [22,23].

In Figs. 5—8 we show the form factors Aq, A2, Ao,

1.0—

z)——0.14144

x) ——0.14144
1.0—

~i=~Cr1t. ~i,=~S

U
oR

0.6—
—0. 1

I I I

0.0
q a2 2

0.2
I I j I

0.0
2

q a
0. 1

FIG. 3. Results for the form factor fx(q ) as a function of the dimensionless quantity qsas. Left: +~ = K~ = O. 14144.
Right: e~ ——+ -& +g = +,. The curves represent the pole dominance behavior determined from a two-parameter fit to the
data [parameters of Eq. (43), for the case ml = Kcr.,g K(. = e,]. Crosses correspond to the values of the form factor at q2 = O

(up to a factor Z& ) determined from a two-parameter fit to the data.

Note however, that the spin-parity quantum numbers of this resonance have not been confirmed yet.
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I I I I I I I I I I I I I I I I I I I

~,=~, =0.

I I I I I I I I I I I I I I I

0.0 0. 1 0.2 0.3 0.4
q a

FIG. 4. Results for the form factor f+(q ) as a function
of the dimensionless quantity q a . The solid line represents
the pole dominance behavior determined by the parameters of
Eq. (44). The dashed line corresponds to a one-parameter fit
to the data (fixing the pole mass to that of the vector meson
m', quoted in Table IV). The cross and the diamond corre-
spond to the values of the form factor at q = 0 (up to a factor
Z& ) determined from two-parameter and one-parameter fits
to the data, respectively.

and V as functions of q2 for two coxnbinations of the
light quark masses: e~ ——K~. ——0.14144 and ~~ ——~gpjg,
rc~ ——K, . In all cases the solid line corresponds to the
comparison of the pairs (q2, form factor) with the q2

dependence of the form factors determined Rom a two-
paraineter pole dominance fit to our data [parameters of

Eqs. (46)—(49), for the case ei = K,»t, ri. = e,]. Crosses
correspond to the form factors at q = 0 (up to a factor
ZP or Z&+) determined in this way. In the cases of V
and Ao we also compare (dashed lines) the q2 dependence
of our data with that determined kom a one-parameter
pole dominance fit, fixing the pole masses to the cor-
responding values of the vector and pseudoscalar-meson
masses, mq- and mo-, quoted in Table IV. For the axial
forxn factors A~ and A2 we only make such a comparison
for the physical situation v~ ——K„;t, K~. ——e, where we
fix the pole mass to the value used in [22,23] (2.5 GeV
= 0.9[a i]). Diamonds correspond to the form factors at
q2 = 0 (up to a factor ZP or Z&+) determined by using
this second method. As can be seen &om these figures,
both methods of extracting the forxn factors a q = 0
agree well, serving as further check of consistency.

The q dependence of Ao and A~ is reasonably well
described by the pole dominance model, in contrast with
sum-rule calculations which predict for Aq a much weaker
q2 dependence than would be-given by dominance of the
lowest expected cs state in the J = I+ channel [38].
However, after our discussion in Sec. V of the possible
dependence on q of the discretization errors, we must be
cautious in our aKrmations about the q dependence of
the form factors and we cannot draw any definitive con-
clusion, without a better understanding of the size and
the q dependence of the lattice artifacts present in our
simulation. In the cases of A~ and V, our errors are too
large to determine, in a precise way, its q2 dependence.

As mentioned above, the values of the form factors at
q = 0 have been extracted by fitting the chirally extrap-
olated data to the pole dominance model. However, in
our study we have some momentum channels with val-
ues of q close to q = 0. Another way of obtaining
the form factors at q = 0 is to take the momentum

0 9 I I I I I I I I 0.9 I I I I I I I

0.8 +,=0.14144 Kl /Cbrit Kl Ks

el ——0. 14144

N 0 7

U"

0.7
U'

0.6— 0.6—

0.5—
I I I I I

q a
0.0 0. 1 —0. 1

q a
0. 1

FIG. 5. Results for the form factor A.i(q ) as a function of the dimensionless quantity q a . Left: eI = tcI ~
——0.14144.

Right: K7 —K g K7 ——x, . Solid lines represent the pole dominance behavior determined from a two-parameter fit to the
data [parameters of Eq. (46), for the case eI = e„;t,, zI. = e,]. The dashed line, on the right, represents the pole dominance
behavior determined from a one-parameter fit to the data (fixing the pole mass to 0.9 [a ] —2.5 GeV). Crosses and diainonds
correspond to the values of the form factor at q = 0 (up to a factor Z~ ) determined from two-parameter and one-parameter
fits to the data, respectively.
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I I I I I I I I I I I I I I I I I I I I l I t I

/cl ——0.14144
/cl ——0.14144

1.0 /C l
—IC t, IC l

—IC

0.0— 0.0

—0. 1 0.0
I I I I I I I I

—0.2 —0. 1 0.0
2 2

Q

FIG. 6. Results for the form factor As(q ) as a function of the dimensionless quantity q a . Left: e~ = x&. = 0.14144.
Right: e~ ——K„;~, e~. ——e, . Solid lines represent the pole dominance behavior determined from a two-parameter 6t to the
data [parameters of Eq. (47), for the case m& = e„;&, re&. = tc,]. The dashed line, on the right, represents the pole dominance
behavior determined from a one-parameter fit to the data (fixing the pole mass to 0.9 [a ] 2.5 GeV). Crosses and diamonds
correspond to the values of the form factor at q = 0 (up to a factor Z~ ) determined from two-parameter and one-parameter
Gts to the data, respectively.

channel which provides (in the chiral limit) the value
of q nearest to zero, and by means of the pole dom-
inance model (with a fixed pole mass) extrapolate the
form factor to q = 0. This method for extracting the
form factors at q2 = 0 has the advantage that it only
requires a small extrapolation in q, but on the negative
side it only uses a single lattice point. Except in the cases
of V(q2) and Ai(q ), the results obtained in such a way

would agree within errors with those quoted in Eqs. (43),
(44), and (46)—(4S). For Ai and particularly for V, the
point nearest to q2 = 0 appears to be high compared to
the neighboring points, giving a higher value of the form
factors at q = 0 if only this point is used. In the D
decay into vector mesons, the momentum channel with
the value of q nearest to zero corresponds to the tran-
sition pD = (0, 0, 0) + [pre. [a = vr j12 and is averaged

1.0 I I I I I I I I I I

/C l
—/C t, /C l

—IC

0) W

U"

CO

H

—0.2 —0. 1 0.0
q a2 2

0.4—
I I I I I 3 I I I I

—0.2 —0.1 0.0
q a2 2

FIG. 7. Results for the form factor Ao(q ) as a function of the dimensionless quantity q a . Left: m& = ~&. = 0.14144.
Right: e~ = e „q, r~. ——K, Solid lines represent the pole dominance behavior determined from a two-parameter 6t to the data
[parameters of Eq. (48), for the case ~& = e„;,, ~&. = e,]. Dashed lines represent the pole dominance behavior determined
from a one-parameter fit to the data (fixing the pole masses to the corresponding values of the pseudoscalar-meson masses,
ms-, quoted in Table IV). Crosses and diamonds correspond to the values of the form factor at q = 0 (up to a factor Z& )
determined from two-parameter and one-parameter 6ts to the data, respectively.
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I I I I I I I I I I I

1.5 1.5— K l Ãcr1t fCI K

1.0 1.0—

I I I I I I I I I I I I I I I I I I I I

—0. 1

q a
0.0 —0.1

2 2
q a

0.0

FIG. 8. Results for the form factor V(q ) as a function of the dimensionless quantity q a . Left: ei = »;I. = 0.14144.
Right: K7 = K 'g K$

——e, . Solid lines represent the pole dominance behavior determined from a two-parameter fit to the data
[parameters of Eq. (49), for the case eI = m„;&, tcI. = tc,]. Dashed lines represent the pole dominance behavior determined from
a one-parameter fit to the data (fixing the pole masses to the corresponding values of the vector-meson masses, mi, quoted. in
Table IV). Crosses and diamonds correspond to the values of the form factor at q = 0 (up to a factor Z& ) determined from
two-parameter and one-parameter fits to the data, respectively,

over the six equivalent momenta of the light meson. For
V(q2), the other three channels plotted in Fig. 8, all cor-
respond to transitions in which pDa = (vr/12)(1, 0, 0).
The difFerence between those two sets of points [pD = 0
and pDa = (m/12)(1, 0, 0)] is partly statistical but it may
also be partly due to systematic errors afFecting the two
data sets difFerently. We have decided to be cautious, and
to include this difFerence in the errors in our final results
for Ai(0)/Z&+ and V(0)/ZP. Thus, our final values for
these two form factors are

~pz'~ = m/12[a ]. In Fig. 9 we compare the chirally
extrapolated pairs (q2, A~i(q2)) with the pole dominance
behavior determined by the parameters of Eq. (52).

VII. CONCLUSIONS AND COMPARISON
WITH EXPERIMENTAL DATA
AND OTHER CALCULATIONS

In this section we compare our results with the ex-
perimental measurements and other theoretical calcula-

Ai (0)
Zeff

A

( ) 1 15+2s
geffv

For the D ~ p decay we 6nd

(5o)

(51)

0.8—+ i
=+crit& I, crit

I I I I

A', (o)
Zeff

A

A', (o)
Zeff

A~(0)
geff

A

V~(0)
jefv

o.6o+,',

0.48+—11~

o.66+'„

1.08+—10)

mi~ = 1.1+2[a '],

mi+ = 0.44+s[a ],

m' = 0.00+', [a-'],

m" = 0.91+',ss[a-'].

(52)

(54)

(55)

0.5—

0.4 —,
As in the case of the D —+ K* decay, we have a good

determination of the Ai (which dominates the decay rate)
and Ao form factors and a poorer determination of V
and A2. We have increased the upper errors of the form
factors V and A1 by 0.18 and 0.01, respectively, in order
to make our quoted values for the form factors at q
0 compatible with the determination of these two form
factors, from the momentum channel pr& = (0, 0, 0) +

0.0
q

0. 1

FIG. 9. Results for the form factor {q,Af(q )) as a func-
tion of the dimensionless quantity q a . The curve represents
the pole dominance behavior determined by the parameters
of Eq. (52). The cross corresponds to the value of the form
factor at q = 0 (up to a factor Z~ ) determined from a
two-parameter pole dominance fit to the data.
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tions. In order to do this we have to specify the values of
the efFective renormalization constants Z& and Z&', we
have taken Z&+ = 1.05+s [Eq. (42)] and ZP = 0.88+s
[Eq. (41)], as discussed in Sec. V. In Table X we show our
results for the semileptonic decays D + K and D —+ K'.
We have included the above uncertainty in the renormal-
ization constants in our final results for the form factors
in order to account for some of the residual discretization
errors. In our quoted errors for the ratio A2/Aq we have
taken into account the fact that the discretization errors
could be different for difFerent for factors and therefore in
general, the efFective renormalization constant Z& could
be diferent for A2 than for Aq giving an additional am-
biguity of around 10'Fo for this ratio [see Eq. (42)].

In Table X we also compare our predictions with the
most recent experimental world average and with pre-
vious lattice, quark-xnodel, and sum-rule results. Our
results are in reasonable agreement with the experimen-
tal data and the most recent lattice simulations using an
O(a)-improved SW ([16]) and Wilson ([14,15]) actions.
Values reported in Refs. [11,12,8—10,13] (all of them ob-
tained using Wilson fermions) are also in a good agree-
ment with ours, but the former are in general higher,

whereas the latter are smaller, than our predictions. Dis-
cretization errors are, in principle, larger for Wilson than
for improved actions, and part of the discrepancies be-
tween difFerent lattice results in Table X, are due to dif-
ferent values used in the literature for the efFective renor-
malization constants Z&+ and Z&+.

Looking now at our result for f+(0)/ f~+(0) in Eq. (45)
there is no clear evidence of SU(3) flavor symmetry
breaking and it is consistent with the experimental re-
sults. Furthermore, our prediction

f+(0) = 0.61+",,

V~(0) = 0.95+",„A',(0) = 0.63+', ,

A2 (0) = 0.51+is, Ao (0) = 0.70+~2 .
(57)

(58)

compares well with lattice calculations obtained with
Wilson fermions (0.58 + 0.09 [10],0.84 6 0.12 + 0.35 [ll],
and 0.64 + 0.09 [15]) and other theoretical calculations
(0.69 [30,33], 0.51 [32,34], and 0.75 [37]). The situation
is similar for f o (0).

For the decay D —+ p we find

TABLE X. Form factors at q = 0 for the semileptonic decays D —+ K and D ~ K': compari-
son of our results with experimental data and with other theoretical calculations. In obtaining our
results we have used Zz ——1.05+8 and Z& ——0.88+5. All lattice gauge calculations have been ob-
tained using Wilson fermions except that of Ref. [16] and the present work, where an O(a)-improved
SW action has been used.

Source
Expt.

Lattice
gauge

Quark
models

Sum rules

Source
Expt.

Lattice
gauge

Quark
models

Sum rules

World ave. [28]
World ave. [29]

This work
ELC [13
APE [16]

BKS [11,12]
BG [15]
WU [14]

LMMS [8—10]
ISGW [32]
WSB [30]
KS [33]
GS [34]

BBD [38
AOS [36
DP [37]

World ave. [28]
This work
ELC [13]
APE [16]
BKS [12]
BG [15]
WU 14]

LMMS [8—10]
ISGW [32]
WSB [30]
KS [33]
GS [34]

BBD [38]

f+(o)
0.77 6 0.04
0.70 + 0.03

0.67+8
O.6O+"+'—15—7
0.78 + 0.08
O.9O+'+21—8 —21
0.73 + 0.05
0.76 + 0.15
0.63 + 0.08
0.76 —0.82

0.?6
0.76
0.69

0.60+—10
0.8 + 0.2

0.75 + 0.05
Ag (0)

0.61 + 0.05
o.?o+;,

0.64 + 0.16
0.67 + 0.11

83+14+28—14—28
0.66 + 0.03
0.59 + 0.08
0.53 + 0.03

0.8
0.88
0.82
0.73

0.50 + 0.15

0.65 + 0.07

0 70+8+24—8 —24
0.73 + 0.04
0.75 + 0.06

A, (o)
0.45 + 0.09

o.66+"—15
0.40 + 0.28 + 0.04

0.49 + 0.34
0 59+14+24—14—23
0.42 + 0.17
0.56 + 0.40
0.19 + 0.21

0.8
1.15
0.8
0.55

0.60 + 0.15

V(0)
1.16 + 0.16

1.o1+30—13
0.86 + 0.24
1.08 + 0.22

43+45 +48—45 —49
1.24 + 0.08
1.05 + 0.33
0.86 + 0.10

1.1
1.27
0.8
1.5

1.10 + 0.25

Ag/Ag
0.74 + 0.15
0.9 + 0.2
0.6 + 0.3
0.7 + 0.4

0 70+16+20—16—15
0.71 + 0.20

0.4 + 0.4
1.0 + 0.3

1.3
1.0
0.8

1.2 + 0.2

V/Ag
1.90 + 0.25

1.4+2
1.30 + 0.2
1.6 + 0.3

1 99+22+31—22 —35
1.79 + 0.09

1.6 + 0.2
1.4 + 0.4

1.4
1.0
2.0

2.2 + 0.2

&0

0.75+11

094+ +—9 —24
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Our results are in good agreement with the most re-
cent lattice simulation ([15]) and with the previous lat-
tice calculations of Refs. [10,12] (the results quoted in
[10] are however, in general smaller than our predictions)
and slightly smaller than the quark model prediction of
Ref. [30].

In the present study we have found not only the val-
ues of the form factors at q2 = 0 for the difFerent de-
cay processes, but also their q dependence in a wide
region around q2 = 0. Thus we can estixnate the in-
tegrals of Eqs. (8) and (9) and obtain the total decay
rates. Our predictions, together with the experimental
measurements and other theoretical calculations, are pre-
sented in Table XI. As mentioned above, we have a poor
determination of the q dependence of the A2 and V form
factors in the D decays into vector mesons. However, as
can be seen in Eq. (9), the contribution of these form
factors to the decay rates is small and only important in
the proximity of q = 0, where their contributions are
reasonably well determined. Por example, pole masses,
for the A2 form factor in the D + K*, p decays, three
times larger than those of Eqs. (47) and (53) give to-
tal decay rates and ratios I'L, /I'z which differ from those
quoted in Table XI only at the level of (0.3—0.5) stan-
dard deviations. Therefore, we are confident that we can
use the values of the form factors &om our simulation for
calculating the total decay rates.

In the 0 + 0 case, (ZP)2 is an overall factor in the
expression for the width and thus we could quote our re-
sult for the decay rate in terms of (ZP) 2/0. 88 . However,
in the decay into vector mesons, the form factors H+ mix

the contribution of both the vector and the axial form
factors and thus such a factorization cannot be made.
Therefore in both cases (decays into pseudoscalar and
vector mesons) we have decided to include in the quoted
statistical errors of our results, the uncertainty due to
Z& and Z& . We have estimated this uncertainty by
computing the extreme values which would be obtained
for the difFerent decay rates if the errors of Eqs. (41) and
(42) were taken into account. On the other hand, the
q2 dependence of the form factors is determined by the
difFerent pole masses, quoted in Eqs. (43)—(55), whose
physical values depend on the precise value taken for the
lattice spacing, a, and thus the results obtained for the
decay rates will also depend on the scale a . The sec-
ond set of errors in our results of Table XI is due to the
uncertainty in the determination of the lattice spacing;
we have taken a ~ = 2.85 + 0.15 GeV. This ambiguity
in the scale has, in general, a small eKect on the decay
rates, and in some cases is negligible.

As can be seen in Table XI, our results are in excellent
agreement with the experimental data. This agreement,
together with that already shown in Table X, provides
further confidence that lattice QCD is becoming a re-
liable quantitative tool for nonperturbative QCD phe-
nomenology. Studies of charm physics on the larger lat-
tices which will shortly become available, will provide a
fruitful area of investigation, and will enable the control
of the systematic errors (except quenching) present in
these calculations. This understanding of the discretiza-
tion errors will make it possible to obtain accurate es-
timates of the QCD nonperturbative corrections to the

TABLE XI. Semileptonic partial widths for D —+ K, K", vr, and p, using ~V,
~

= 0.975 and
~V q~ = 0.222. We also report the ratio of the longitudinal to transverse polarization partial widths
for D ~ K' and D —+ p. Units in 10 s

Source
Expt.

Lattice
gauge

Quark
models

Sum
rules

Source

Expt.
Lattice
Gauge

Quark
models

Sum rules

World ave. [28]
World ave. [29]

This work
ELC [13
APE [16]

LMMS [10]
ISGW [32]
WSB [30]
KS [33]
GS [34]

BBD [38]
AOS [36]
DP [37]

World ave. [29]
This work
ELC [13]
APE [16]

LMMS [10]
ISGW [32]
WSB [30]
KS [33]
GS [34]

BBD [38]

I'(D -+ K)
9.0 + 0.5
7.1 + 0.6

7.0 11.6 + 0.4
5.4 + 3.0 + 1.4

9.1 + 2.0
5.8 + 1.5

8.5
8.26

10.2(e) —9.9(V,)
7.1

6.4 + 1.4
9.1 + 4.5
8.2 + 1.1
I'(D —+K )I'(a-+z )

0.55 + 0.07
0.86 + 0.28 + 0.03

1.1 + 0.6 + 0.3
0.8 + 0.3

0.86 + 0.22
1.1
1.15
0.95
1.4

0.5 + 0.15

I'(D -+ K")
5.1 + 0.5
4.5 + 0.5
6 0+0.8—1.6

6.4 + 2.8
6.9 + 1.8
5.0 + 0.9

9.1 + 0.25

I'(D -+ sr+)
1.2 + 0.3

r(D ~ p+)

0.52 + 0.18 + 0.04 0.43 + 0.11
0.5 + 0.3 + 0.1 0.60 + 0.3 + 0.1

0.8 + 0.2 0.6 + 0.2
0.5 + 0.2 0.40+ 0.09

3.2 + 1.3

0.76 + 0.24

(.".).(~) K'
1.2 + 0.1

1 06 + 0 16 + 0 02 1 05 0'go + 0 04
1.4 + 0.3
1.2 + 0.3

1.51 + 0.27 1.86 + 0.56
1.1 + 0.2

0.9
1.1
1.2

0.86 + 0.06
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B —+ vr and B ~ p decays, &om which we expect to ex-
tract the Cabibbo-Kobayashi-Maskawa matrix element
v.,

We end this paper with a brief summary. The study
presented in this paper is one of the first calculations of
the form factors of weak vector and axial currents rel-
evant for semileptonic decays of D mesons, performed
using the improved quark action proposed by Sheik-
holeslami and Wohlert [7]. Our results for the form fac-
tors (Table X) and decay rates (Table XI) have reason-
ably small errors and are in good agreement with exper-
imental measurements. The results at nonzero momen-
tum transfer are, in general, in agreement with the pole
dominance model.

We have tried to minimize systematics by working with
an improved action to reduce discretization errors, and
on fairly large volume in the hope that finite-size efFects
would be small. Nevertheless, it is important that our
simulation be repeated on lattices of difFerent sizes and
spacings in order to quantify more precisely the system-
atic efFects, which could modify the results presented in

this work, in particular the q dependence found for the
different form factors.
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