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Masses and widths of 1V and A resonances
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A sirgple approximation is derived to relate the complex pole in a resonant partial-wave T-matrix
amplitude to the conventional Breit-Wigner parameters that describe the scattering resonance. The
approximation is tested by using well-established resonance parameters for the A(1232) — . This new
result facilitates a comparison of both Breit-Wigner parameters and pole positions for 17 resonances
described by four major analyses of aN scattering.

PACS number(s): 13.75.Gx, 14.20.Gk

I. INTRODUCTION

Resonance parameters are generally determined by an-
alyzing the energy dependence of experimentally deter-
mined partial-wave amplitudes that describe resonant
two-body scattering reactions. Typically the amplitudes
are Gtted with generalized Breit-Wigner formulas that
contain a "mass parameter" M and a "width parameter"
I'. While the conventional Breit-Wigner parameters M
and I' are more often compared with model predictions,
the pole positions are considered more fundamental and
less inodel dependent [1—4]. This paper provides a simple
approximate way to relate M and I' to the pole position.
In addition, questions concerning properties of specific
resonances, such as the width of the Roper resonance,
are addressed.

In the vicinity of a pole, a partial-wave T-matrix am-
plitude can be approximated by the Breit-Wigner form

f(W)
M —W —iI'(W)/2 '

where R is the total invariant energy in the center-of-
mass (c.m. ) frame. The energy dependence of r(W) dis-
places the real part of the pole position from M, and the
imaginary part is difFerent from —iI'/2, where I' denotes
I'(W) evaluated at W = M. If W~ = Mp —iI'p/2 de-
notes the complex pole, then D(W&) = 0 where D(W) =
M —W —iI'(W)/2. Newton's method for determining
the root of a function indicates that

This approximation is somewhat similar to that derived
by Lichtenberg [4], who found by a Taylor-series expan-
sion of D(W) about the point W = M that (in my nota-
tion) M = M —(I'/2) n and I' = I [1 —cr —(I/4) n'],
with o.' = I'"/2. Clearly Eq. (3) reduces to Lichtenberg's
result if n « 1 and if ~a. '~ && (4/I') n . Both condi-

tions are approximately satisfied for the A(1232) 2, as
discussed in the following section.

The approximations above are not directly useful for
determining the residues at the pole positions, which
clearly require knowledge of the explicit form of the func-
tion f (W) in Eq. (1). This function is generally very
model dependent and may be afFected strongly by back-
ground contributions (from nonresonant terms and/or
from overlapping resonances). An advantage of the ap-
proximations given in Eq. (3) is that they provide a con-
venient way to investigate how values of the conventional
Breit-Wigner parameters will vary depending on the as-
sumed energy dependence of I'(W). [Values of the pole
parameters are thought to be approximately insensitive
to the assumed energy dependence of D(W)].

II. DISCUSSION

As a specific exainple and a test of Eq. (3), consider

the A(1232) —,the first resonance in elastic pion-nucleon
scattering. If I write

D(Wp)
D'(W )p' (2)

(4)

where D'(W) = dD(W)/dW and Wp ——M —iI'/2 is an
initial approximation for the pole position [5]. For M ))
I'/2, I can make the Taylor series expansions I'(Wp)
I —inr and I"(Wp) I", where I ' denotes dl (W)/dW
evaluated at W = M and n = I"/2. Upon substituting
into Eq. (2) and simplifying, I obtain

where p(W) is a phase-space factor, then it follows that

r p'(M)
2 p(M)

For the A(1232) 2, the phase-space factor may be
parametrized as [6]

p(W) = —Bt (qR), (6)

(3b) where Bg is a Blatt-Weisskopf barrier-penetration fac-
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tor [7], E = 1 is the orbital angular momentum be-
tween the pion and nucleon, and q is the relative mo-
mentum between the pair in the c.m. frame; i.e. , R' =
gq2 + m2 + gq2 + m~, where m and m~ are the
masses of the pion and nucleon, respectively. For the
A(1232), I take M = 1231 MeV and 1" = 118 MeV [6].
Then using m = 140 MeV and m~ ——938 MeV, I find
q = 226 MeV at W = M. Using Bi(z) = z/gl + z2 [8]
and the value R = 1.0 fm from Ref. [6], it is straight-
forward to calculate that o. = 0.40. With this value
substituted into Eq. (3), I find Mo ——1211 MeV and
I'0 ——102 MeV, in excellent agreement with accepted
values for the pole position [9,10]. By comparison, if
I ichtenberg's approximation [4] is used, then the val-
ues obtained are Mo ——1207 MeV and I'0 ——102 MeV,
where, for the width, I have used the calculated value,
o.' = —8.0 x 10 MeV . As Lichtenberg has noted, his
approximation effectively provides a lower bound for the
mass and width.

From Eq. (3), it follows that values of M, Mo, and I'o
can be used to determine values of 0; according to the ex-
pression, n = 2(M —Mo)/I o. Table I lists calculated val-
ues of o. for several N and 4 resonances observed in vrN
elastic scattering. These values were determined using
the pole positions and mass parameters from the partial-
wave analysis of Cutkosky et al. [9]. Note that in each
case, 0 ( 0; ( 1, which is reHected in the observation that
M & Mo and I' ) I'o [4]. This result is easily understood
Rom Eq. (6), which implies that p(W) is a monotonically
increasing function for real values of W [p(W) oc q

+
for small q and p(W) -+ const for large q]. I next calcu-
lated the corresponding width parameters according to
Eq. (3), viz. , I, i, = (1 + n )I'o. For each resonance in

Table I, the difference between I', i, and the value of I'
determined by Cutkosky et a/. is generally much smaller
than the quoted uncertainty in I'. [Note that Table I lists

n = 0.44 for the K(1232) 2 . This value corresponds to
an interaction radius of R = 0.85 fm in Eq. (6).]

Conventional Breit-Wigner parameters M and I' were
then calculated from the pole positions (solution SM90)
determined in a recent partial-wave analysis of elastic AN
scattering by Amdt et al. [10]. {An even more recent set
of partial-wave analyses employing rigorous constraints
from simultaneous forward and fixed-t dispersion rela-
tions has been performed, although new pole positions
are not available [11].) Results of the calculations, which
used Eq. (3) with values of n from Table I, are listed in
Tables II and III under the heading VPI91. Tables II and
III compare these parameters with those published for
three other analyses: namely, the 1992 Kent State Uni-
versity analysis (KSU92) [6], the 1980 Carnegie-Mellon—
Berkeley analysis (CMB80) [9], and the 1980 Karlsruhe-
Helsinki analysis (KH80) [12]. The tables also give un-
weighted means with sample standard deviations. In
most cases, the different analyses agree surprisingly well
for the parameter values; however, there are six cases
that warrant further comment.

Three analyses of resonance formation in vr N scat-
tering experiments indicate that the Roper resonance
[N(1440) z ] is broad, in disagreement with the KH80
result (see Table II). It should be noted that the en-
try in Table II under the column VPI91 was determined
from the Pii pole at (1360 —i 126) MeV; this pole is on
the sheet of the Riemann surface most directly reached
by analytic continuation from the real axis. An auxil-

TABLE I. Comparison of the calculated width parameters I",
~ with values of I" from the AN

partial-wave analysis of Cutkosky et al. [9]. All masses and widths are in MeV. The values of o
were determined as discussed in the text. Note that 0 ( o. ( 1 for all cases.

Resonance

N(1440) -'

N(1520)—
N(1535)—
N(1650) —,

'
N(1675)—
N(1680)—
N(1710)—
N(1720)—
N(2190) 2

N(2220)—
N(2250)—

Mo
1375 + 30
1510+ 5

1510+ 50
1640 + 20
1660+ 10
1667 + 5

1690+ 20
1680 + 30
2100 + 50
2160 + 80
2150 + 50

r.
180 + 40
114+ 10
260 + 80
150 + 30
140 + 10
110+10
80 + 20
120 + 40

400 + 160
480+ 100
360 + 100

M
1440 + 30
1525 + 10
1550 + 40
1650 + 30
1675+ 10
1680 + 10
1700+ 50
1700 + 50
2200 + 70
2230 + 80
2250 + 80

I'

340+ 70
120 + 15
240 + 80
150 + 40
160 + 20
120 + 10
90+30
125+ 70

500 + 150
500 + 150
480 + 120

I calc

273
122
285
153
146
116
85
133
500
521
471

0.26
0.31
0.13
0.21
0.24

0.25
0.33
0.50
0.29
0.56

A(1232) -'

A(1600)—
A(1620)—
b, (1700)—
A(1905)—
A(1910)—
A(1930)—
A(1950)—

1210 + 1

1550 + 40
1600 + 15
1675+ 25
1830+ 40
1880 + 30
1890 + 50
1890 + 15

100+ 2

200 + 60
120 + 20
220 + 40
280 + 60
200+ 40
260 + 60
260 + 40

1232 + 3
1600 + 50
1620 + 20
1710+ 30
1910+ 30
1910+ 40
1940+ 30
1950 + 15

120+5
300 + 100
140 + 20
280+ 80

400 + 100
225 + 50
320 + 60
340 + 50

119
250
133
242
371
218
298
315

0.44
0.50
0.33
0.32
0.57
0.30
0.38
0.46
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iary pole, at (1413 —i 128) MeV, was found on another
sheet, and has less physical significance for the multichan-
nel Roper resonance. Further discussion of the issue of
poles in the P~q partial-wave amplitudes can be found in
the Brief Report by Cutkosky and Wang [13]. Recently
Hohler determined pole positions based on a speed-plot
analysis of the KH80 amplitudes [14]. For the Roper res-
onance, he found I'p ——164 Me V, which suggests, based
on arguments presented earlier, that the KH80 width pa-
rameter (I' = 135 MeV) is too small for this resonance.
Using the mean value M = 1441 MeV from Table II
and mean pole values (see below) of Mp ——1372 MeV
and I'p ——213 MeV, the calculated width parameter is
I' = 300 MeV, which corresponds to o. = 0.64. This
somewhat large value of o. may correlate with the obser-
vation that the vr p ~ erma reaction is dominated near
threshold by formation of the Roper resonance. [In gen-
eral, I'(W) is expected to increase relatively fast in the
vicinity of an important inelastic threshold. ] Recently,
Morsch et al. studied the Roper resonance by o.-proton
scattering [15]. Their production experiment led to a
slightly low mass of about 1400 MeV and a rather nar-
row width of about 160—170 MeV. The apparently con-
tradictory results between formation and production ex-
periments may be understood if the parameters from the
o,-proton experiment can be identified. with the pole pa-

rameters Mp and I'p. As discussed below, estimates of
Mp and I'p from the vrN experiments yield the mean val-
ues, 1372 + 11 MeV and 213 + 48 MeV, in reasonable
agreement with the results of Morsch et al.

From Table II, it is also clear that three analyses of
resonance formation in mN scattering experiments indi-
cate that the N(1535) ~ is narrow, in disagreement with
the CMB80 result. The mass and width of this resonance
are nontrivial to determine because it has a large branch-
ing fraction (about 50%%up) to re, and the threshold for rI

production is at 1488 MeV. Recently, Clajus and Nef-
kens determined the mass and width of this resonance
by using a Breit-signer term to Gt available total cross-
section data for the vr p ~ gn reaction near threshold
[16). The mass and width obtained from their fit were
Mp ——1483 + 16 MeV and rp ——204 6 21 MeV, respec-
tively. As noted by Clajus and Nefkens, this mass is
well below the (Breit-Wigner) value recommended for the

N(1535)
&

. This seemingly contradictory result is easily
explained by noting that Clajus and Nefkens used a con-
stant width in their Breit-signer Gt; hence, their values
must be interpreted as the physical mass Mp and width
I'p associated with the pole position. Their values then
agree with the mean pole values of Mp ——1502 + 12 MeV
and I'p = 169 + 80 MeV (see below).

TABLE II. Conventional Breit-signer parameters for I = —resonances as determined from four
analyses: KSU92 [6]; VPI91 [10]; CMB80 [9]; and KH80 [12]. The first entry lists M and the second
lists I'.

Resonance

N(1440) -'

KSU92
1462
391

VPI91
1451
383

CMB80
1440
340

KH80
1410
135

Mean

1441 + 22
312 + 120

N(1520)—

N(1535) i

N(1650)—

N(1675)—

N(1680)—

N(1710)—

N(1720)—

N(2190) ~

1524
124

1534
151

1659
173

1676
159

1684
139

1717
480

1717
380

2127
550

1525
115

1516
120

1668
163

1668
130

1684
122

1704
578

1694
127

2176
580

1525
120

1550
240

1650
150

1675
160

1680
120

1700
90

1700
125

2200
500

1519
114

1526
120

1670
180

1679
120

1684
128

1723
120

1710
190

2140
390

1523 + 3
118+5

1532 + 14
158 + 57

1662 + 9
167+ 13

1675 + 5
142 + 20

1683 + 2
127+ 9

1711+ 11
317 + 248

1705 + 10
206 + 120

2161 + 33
505 + 83

Calculated from the pole positions (solution SM90) in Ref. [10]. Parameters in the table for

N(1440) s were determined from the pole of most physical significance at (1360—i 126) MeV. An
auxiliary pole was found at (1413 —i 128) MeV (see text).
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The Breit-Wigner width parameters for the
N(1710) 2 and the N(1720) 2 are not determined con-
sistently among the four analyses; this lack of agreement
is understandable given that these two resonances are
very inelastic.

From Table III, it can be noted that the calculated
mass parameter of 1670 MeV for the E(1600)2 (deter-
mined from the VPI91 pole position) agrees better with
the KSU92 value of 1706 MeV than with the CMB80
and KH80 values of 1600 and 1522 MeV, respectively. A
higher mass near 1700 MeV is in better agreement with
quark-model predictions [17,18].

Finally, Table III shows that the calculated mass pa-
rameter of 2095 MeV for the A(1930) 2 (determined
from the VPI91 pole position) is about 150 MeV higher
than values of the three other analyses. The lower values
have presented long-standing problems for quark-model
calculations [18].

III. SUMMARY AND CONCLUSIONS

A simple approximation was derived to relate the pole
position in a resonant scattering amplitude to the conven-
tional Breit-Wigner parameters, M and I'. The physical
mass Mo is defined as the real part of the pole position
and the physical width I'o is —2 times the imaginary part
of the pole position [1—4]. On general grounds, it is ex-
pected that M & Mo and I 0 r, .

Tables IV and V compare the physical mass Mo and
width I o determined from the real and imaginary parts of

the pole positions from four analyses, including the 1992
Kent State University analysis (KSU92) [6], the 1991Vir-
ginia Polytechnic Institute and State University analysis
(VPI91) [10], the 1980 Carnegie-Mellon —Berkeley analy-
sis (CMB80) [9, and the 1980 Karlsruhe —Helsinki anal-
ysis (KH80) [12]. The tables also give unweighted means
with sample standard deviations. The pole parameters
listed under the heading KSU92 were estimated from the
conventional Breit-Wigner parameters in Ref. [6] using
values of o' from Table I, and the pole parameters listed
under the heading KH80 are from the recent speed-plot
fits by Hohler [14]. Contrary to expectations, Hohler's
recent determinations of pole parameters for several res-
onances do not satisfy the condition I' & I'o when com-
pared with the early KH80 width parameters; conse-
quently, the early KH80 width parameters may be un-
derestimated in some cases (the Roper resonance, for ex-
ample). This is an important point because results of
that analysis have historically provided a main contribu-
tion for the estimation of standard resonance parameters,
as quoted, for example, by the Particle Data Group [19].

My relationship between the pole position and Breit-
Wigner parameters was tested by using results from the
Carnegie-Mellon —Berkeley (CMB) partial-wave analysis
of mN scattering [9]. The relationship was then used to
calculate conventional Breit-Wigner parameters from the
pole positions determined in a recent vrN partial-wave
analysis by the Virginia Tech (VPI) group [10]. For most
cases, the parameters derived from the VPI pole posi-
tions agree very well with the results of a recent analysis
performed at Kent State University (KSU) [6]. There

TABLE III. Conventional Breit-Wigner parameters as in Table II but for I =
~ resonances.

Resonance

D(1232) s+
KSU92

1231
118

VPI91
1232
119

CMB80
1232
120

KH80
1233
116

Mean
1232 + 1
118+2

A(1600) —',
+

a(1620) —,
'

1706
430

1672
154

1670
288

1607
133

1600
300

1620
140

1522
220

1610
139

1625 + 81
310 + 88

1627+ 30
142 + 9

A(1700) -', 1762
600

1679
229

1710
280

1680
230

1690 + 18
246+ 29

A(1905)—

a(1910)—,
'+

A(1930)—

A(1950)—

1881
327

1882
239

1956
530

1945
300

1860
305

2010
434

2095
457

1939
289

1910
400

1910
225

1940
320

1950
340

1905
260

1888
280

1901
195

1913
224

1889 + 23
323 + 58

1923 + 60
295+ 96

1973 + 85
376 + 149

1937+ 16
288 + 48

Calculated from the pole positions (solution SM90) in Ref. [10].
"Without KSU92.
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TABLE IV. Pole parameters for I = — resonances as determined from four analyses: KSU92
[6]; VPI91 [10]; CMB80 [9]; and KH80 [12,14]. The first entry lists the physical mass Ms and the
second lists the physical width I'0.

Resonance
N(1440)—

KSU92
1369
257

VPI91
1360
252

CMB80
1375
180

KH80
1385
164

Mean
1372+ 11
213 + 48

N(1520)—

N(1535) -'

N(1650) i

N(1675)—

N(1680)—

N(1710)—

N(1720)—

N(2190) ~

1509
116

1513
138

1648
170

1660
152

1668
132

1661
452

1660
342

2017
440

1511
108

1499
110

1657
160

1655
124

1670
116

1636
544

1675
114

2060
464

1510
114

1510
260

1640
150

1660
140

1667
110

1690
80

1680
120

2100
400

1510
120

1487

1670
163

1656
126

1673
135

1690
200

1686
187

2042
482

1510+ 1
115+5

1502 + 12
169 + 80

1654 + 13
161 +8

1658 + 3
136 + 13

1670 + 3
123 + 12

1669 + 26
319+216

1675 + 11
191+ 106

2055 + 35
447+ 35

Calculated from the Breit-Wigner parameters in Ref. [6].

TABLE V. Pole parameters as in Table IV but for I = —resonances.

Resonance
a(1232) —,

'+
KSU92

1211b
102

VPI91
1210
100

CMB80
1210
100

KH80
1209
100

Mean
1210+ 1
100+ 1

A(1600)—

A(1620)—

1620
344

1649
139

1612
230

1587
120

1550
200

1600
120

1550

1608
116

1583 + 38
258 + 76

1611+27
124 + 10

w(1700) -', 1675
545

1646
208

1675
220

1651
159

1657 + 16'
196 + 32'

a(1905) -',
+

A(1910)—

A(1930) ~

A(1950)—

1811
247

1849
219

1867
462

1888
247

1794
230

1950
398

2018
398

1884
238

1890
260

1880
200

1890
260

1890
260

1829
303

1874
283

1850
180

1878
230

1831 + 42
260 + 31

1888+ 43
275 + 89

1906 + 76
325 + 128

1885 + 5
244 + 13

Calculated from the Breit-Wigner parameters in Ref. [6].
Calculated with n = 0.40, as discussed in the text.

'Without KSU92.
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were, however, three notable exceptions: the N(1720) 2
3+

was found to have a signi6cantly narrower width than de-

termined in the KSU analysis, and the A(1910)2 and

A(1930) 2 were found to have masses over 100 MeV
higher than in the KSU analysis. These diH'erences pos-
sibly arise because these resonances couple weakly to the
mN channel; therefore, they are not excited strongly in
elastic 7t N scattering.

My relationship was also used to estimate pole param-
eters from the KSU Breit-Wigner parameters [6]. These
were compared with pole parameters from the CMB anal-
ysis [9], the VPI analysis [10], and &om the recent work
by Hohler [14], who fitted speed plots of amplitudes from
the KH80 analysis [12]. Mean values for Mo and I'o were
determined kom these four sets of pole parameters. The
standard deviations among the pole values for a given
resonance are generally smaller than the corresponding
standard deviations among the Breit-Wigner parameters.
The four sets agree particularly well for the pole mass
and width of the A(1232) 2, K(1520)2, K(1650) 2

N(1675) 2, K(1680)2, and A(1950) 2 . This stabil-
ity in the determination of the pole parameters for reso-
nances with large mN couplings provides further evidence
that these parameters are less model dependent than the
corresponding Breit-Wigner parameters, as noted in the
Introduction.

APPENDIX: MODEL DEPENDENCY OF
BREIT-SIGNER PARAMETERS

If one assumes a "relativistic" Breit-Wigner form,
rather than Eq. (1), the partial-wave T-matrix amplitude
in the vicinity of a pole becomes

g(W)
M2 —W2 —iMI'(W)

For M )) I'/2, a similar derivation to that presented in
Sec. I yields the relationship

r i' n l I'/(8M)
2 (I+ n2y 1+ n2 (A2a)

I' I' f n
I+ o2 4M i I + o2) (A2b)

where here n = I"/2 —I'/(2M). The last terms on the
right-hand side (RHS) of the expressions in Eq. (A2) are
generally very small. Clearly these expressions for Mo
and I o reduce to the results in Sec. I when I'/M (( I '.
In that situation, the differences in Btted Breit-Wigner
parameters arising from the use of either relativistic or
nonrelativistic models are expected to be small.

Finally, it is noteworthy that other versions of the
Breit-Wigner formula are in common use. For example,
in 6.tting the e+e cross section near the Z-boson reso-
nance, it is common to represent the Z-boson propagator
by a term proportional to [3]
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where the conventional Breit-Wigner parameters M and
I' are constants. This equation may be related to Eq.
(Al) by making the identification, I (W) = (W/M)2I',
which implies that in Eq. (A2), o. = I'/(2M).
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