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Perturbative +CD fragmentation functions as a model for heavy-quark fragmentation
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The perturbative QCD fragmentation functions for a heavy quark to fragment into heavy-light
mesons are studied in the heavy-quark limit. The fragmentation functions for S-wave pseudoscalar
and vector Inesons are calculated to next-to-leading order in the heavy-quark mass expansion using
the methods of heavy-quark effective theory. The results agree with the mb ~ oo limit of the
perturbative QCD fragmentation functions for b into B, and R;. We discuss the application of the
perturbative QCD fragmentation functions as a model for the fragmentation of heavy quarks into
heavy-light mesons. Using this model we predict the fraction P~ of heavy-light mesons that are
produced in the vector meson state as functions of the longitudinal momentum fraction z and the
transverse momentum relative to the jet axis. The fraction P& is predicted to vary from about-
at small z to almost —near z = 1.

PACS number(s): 13.87.Fh, 12.38.Bx, 12.39.Hg

I. INTRODUCTION

Heavy-quark spin-Havor symmetries are very useful for
understanding the properties of hadrons containing a sin-
gle heavy quark in kinematic regimes where nonpertur-
bative aspects of the strong interaction are dominant.
These symmetries arise from the fact that the charm,
bottom, and top quarks are much heavier than AqcD.
The symmetry is exact in the limit of infinite quark mass,
and corrections can be systematically organized into an
expansion in powers of AclcD/mg using heavy-quark ef-
fective theory (HQET). There has been much progress on
the applications of heavy-quark symmetries and HQET
to the spectroscopy and to both exclusive and inclusive
decays of charm and bottom hadrons [1].

It has recently been pointed out by Ja8'e and Randall
[2] that HQET can also be applied to the fragmentation
of a heavy quark into hadrons containing a single heavy
quark. They showed that when the fragmentation func-
tion is expressed in terms of an appropriate scaling vari-
able, it has a well-defined heavy-quark mass expansion.
Speci6cally, they showed that the fragmentation function
Dg~II(z) at the heavy-quark mass scale has a system-
atic expansion in inverse powers of mg when expressed
as a function of the scaling variable

1 —(1 —r)z
g
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Dg J (z) = + b(y) + O(r),a(y)
(2)

Dg v'(z) = + b*(y) + O(r),
a*(y)

where a*(y) = 3a(y). By heavy-quark spin symme-
try, the leading terms dier by a spin factor of 3, while
spin splittings erst appear at next-to-leading order in the
functions b(y) and b*(y).

It was also realized recently that the &agmentation
functions for mesons containing a heavy quark and a
heavy antiquark can be computed using perturbative
quantum chromodynamics (PQCD) [3—5]. The fragmen-
tation functions for a b to split into the S-wave bc mesons
B and B* were calculated to leading order in o., in
Ref. [6]. These fragmentation functions have been used
to predict the production rates of the B meson at the
CERN e+e collider LEP and at the Fermilab Teva-
tron [7,8]. The general analysis of Jaffe and Randall
must certainly apply to perturbative QCD &agmenta-
tion functions in the limit where the mass of the heav-
ier quark is taken to in6nity. It was verified explic-

where r = (mIt —mg)/m~, mJt is the mass of the heavy
hadron, and z is its longitudinal momentum fraction rel-
ative to the fragmenting heavy quark. In the case of
a heavy-light meson, r can be interpreted as the ratio
of the constituent mass of the light quark to the meson
mass. For the pseudoscalar meson P and vector meson
V of the same S-wave multiplet ( So, Sq), the fragmen-
tation functions at the scale mg have heavy-quark mass
expansions of the form
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itly in Ref. [6] that the PQCD fragmentation functions
D& & (z) and D& &. (z) reduce to the forms (2) and (3)
with r = m /(mg + m, ) in the limit mb ~ oo.

Since the PQCD fragmentation functions are consis-
tent with heavy-quark symmetry, they can be used as
models for the fragmentation of heavy quarks into heavy-
light mesons. In this paper, we show how the leading and
next-to-leading terms in the 1/mq expansions can be cal-
culated directly from HQET. We then discuss the use of
the PQCD fragmentation functions as a phenomenolog-
ical model for the fragmentation of charm and bottom
quarks into heavy-light mesons. As an application of this
model, we consider the fraction P& of heavy-light mesons
that are produced in the vector-meson state.

where k is the residual four-momentum of the heavy
quark. The QQg vertex is

Cg C2
tg—,T

l

v" ~ (kg + k2)" — v (kg + k2)v"
2mq 2m@

+i o." q„!, (7)
2mq

where kq and k2 are the residual four-momenta of the
incoming and outgoing quarks and q = k2 —kq is the mo-
mentum of the gluon. The Feynman rule for the prop-
agator of the small component of the Dirac Geld of the
heavy quark is

II. PQCD FRAGMENTATION FUNCTIONS
FROM HABET

The HQET Lagrangian, including the leading and
1/mq terms, is given by [1]

Z = h~ iv -D+ Cg iD —C2 v. iD
2mq

C3
2

g.o" G~ ~)h

where

v. k 2 (2mq ) 2

To calculate the &agmentation functions, we follow the
method introduced in Refs. [3] and [5] and applied in
Ref. [6] to the fragmentation processes b ~ B, and b ~
B,*. We denote the pseudoscalar and vector Qq mesons
by P and V, respectively. Here Q is the heavy quark and

q is the light antiquark. We calculate the cross section
for producing a Qq meson plus a light quark q with total
four-momentum K", divide it by the cross section for
producing an on-shell Q with the same three-momentum

K, and take the limit Ko —+ oo. The fragmentation
function is

Cg ——1,
( ( ) ) —8/(33 —2ng )

—2
(n. (mq) )

1 M2

16vr2 f dsol s ———
z

J-+~ g ]~o!2 '

m 2

1 —zy

& ~.(v) 'l
&3=

Ign, (mq) j
These coeKcients are all equal to 1 at the heavy-quark
mass scale p = mg. The term proportional to C2 can
be omitted in calculating physical quantities, because it
can be eliminated using a Geld redeGnition involving the
equation of motion (v D)h„= 0 &om the leading term
in the Lagrangian. Our method for calculating the kag-
mentation function involves a heavy quark which is oK
shell by an amount at least of order mqmq. To demon-
strate that the C2 term can still be omitted in this case,
we keep it in our calculation throughout and show that it
cancels between the vertex and propagator corrections.

In our calculation, we need the Feynman rules derived
&om the HQET Lagrangian for (i) the heavy-quark prop-
agator, including 1/mq corrections, (ii) the heavy-quark-
gluon vertex, including I/mq corrections, and (iii) the
propagator for the small component of the Dirac field of
the heavy quark. This last Feynman rule is needed in
our calculation because the &agmenting heavy quark is
oQ' its mass shell. The Feynman rule for a heavy-quark
propagator is

where M = mg + mq is the mass of the meson in the
nonrelativistic approximation, s = K, JUf is the ma-
trix element for producing P + q or V + q, and Wo is
the matrix element for producing an on-shell Q. The
calculation can be greatly simplified by using the axial
gauge with the gauge parameter n~ = (1,0, 0, —1) in the
frame where K" = (K0, 0, 0, QKO2 —s). In this gauge,
we need only consider the production of the Qq meson
plus q through a virtual Q of momentum K". The part
of the matrix element M that involves production of the
virtual Q can be treated as an unknown Dirac spinor I'.
In the limit Ko ~ oo, the same spinor factor I' appears
in the matrix element Mo ——I'u(K) for an on-shell Q.
The Feynman diagram for Q* ~ Qq+ q is shown in Fig.
1. The usual projection of the Qq onto a nonrelativistic
So bound state reduces in the heavy-quark limit to the

Feynman rule

Q

Z 1+ g
v k + ' k2 — ' (v . k)2

FIG. 1. Feynman diagram used to calculate the PQCD
fragmentation functions in the axial gauge.
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P~ R(0)QM s 1+ P

&4~
(io)

where R(0) is the radial wave function at the origin for
the meson and v~ is its four-velocity. For the S~ state,
the projection is the same except that p is replaced by

g, where e" is the polarization four-vector for the vector
I

meson V. The rest of the amplitude corresponding to
Fig. 1 is obtained by using the ordinary QCD Feynman
rules for the light-quark spinor and the qqg vertex and
HQET Feynman rules for the heavy-quark propagator
and the QQg vertex.

The amplitude M for producing the So state, includ-
ing I/mg corrections in the heavy-quark propagator and
vertex, is

iM =—8~em, R(0) M2/M
3 m

1 r1

(s —m )' I + ~'
mq 2m'

n„k„+k„n l
n k

xu(p')p"p'(I+ H) I

v" + Ci
2m'

where k = m v +p' is the momentum of the virtual gluon and also the residual momentum of the &agmenting heavy
quark: K = mdiv+ k. Note that the term proportional to n in the numerator of the axial-gauge propagator for the
gluon vanishes after contracting with the Dirac factor. For the vector-meson state, the p in the above equation is
replaced by g.

We are interested only in the sum of the first two terms a(y)/r + b(y) in the heavy-quark mass expansion, where
r = m~/(mg + m~). We calculate separately the contributions to the fragmentation functions &om the leading terms
in the HQET Feynman rules from the I/mg corrections from the propagator and from the I/mg corrections from
the vertex. For the following, we will detail the derivation for the So state, but only quote the results for the S~
state.

We first derive the fragmentation function Dg~I (z) with the leading terms in the HQET propagator and vertex
only. The amplitude reduces to

iMg ——
8~vrnR(0) M v M 1,( v. k

3 m, (s —m2~)2 ( n k )
(12)

Squaring and summing over spins and colors of the light quark, we get

64~n, iR(0) i
M — z(1 —z)Tr I I' 1+

9 m Ms[I —(1 —r)z] (s —m2 )2

—1+z+ 3Tz 4TM
M [1 —(1 —r)z] (s —m&2) (s —m2&)

(i3)

The corresponding amplitude squared for producing an on-shell heavy quark is

T [I'I'(I+ y)] . (14)

Substituting ~M~ and ~MO~ into (9) and integrating over s, we get

Dg~J (z) = (3[1 —(1 —r)z] —8rz(l —z) + 12rz[l —(1 —r)z]) .2n, (2m~) ~R(0)~ rz (1 —z)
81~m, [1 —(1 —r) z]

Expressing this in terms of y using (1) and expanding to next-to-leading order in r, we have

Dg~I (z) = N (3y + 4y + 8) —N (3y + 4y + 8) + O(r),(y —1)' (y —1)'
Tg y6

where N = 2n, ~R(0)~ /(81am ). Therefore, in terms of a(y) and b(y), the leading term in the HQET Lagrangian
contributes

—12
a(y) = N (3y + 4y+ 8), (17)

bi(y) = N [
—(y —1)(3y + 4y+ 8)] .(y —1)' 2 (18)
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The corresponding calculation for the Si state gives a*(y) = 3a(y) and bi(y) = 3bi(y). These contributions to
Dg~z(z) and Dg~v (z) difFer by a spin factor of 3, as required by heavy-quark spin symmetry.

Next we calculate the contributions from 1/mq corrections in the heavy-quark propagator and heavy-quark vertex.
Expanding out the 1/mq correction to the propagator in (ll) to first order, the correction to the amplitude is

(19)

Keeping the interference terms in ~Mi +M2~, summing over spins and colors, and inserting into (9), we find a 1/mg
correction to Dg~~(z). Expressing this in terms of y, we find that the contribution to b(y) is

b2(y) = N, [(—2Ci + C2y)(3y'+ 4y + 8)] .(y —1)'
(20)

A similar calculation for the Si state gives b2(y) = 3b2(y). The 1/mg correction to the amplitude in (11) from the
heavy-quark vertex is

iM3 ———8~urn, R(0) M ~M 1

3 m, (s —m~q)' ( ""g~gg
n„k )" „ lu(p')~"~'(1+ H)

xi &"—
(2m' (21)

Keeping the interference terms in ~Mi + Ms~, we obtain after some work the contribution to b(y) and to b*(y) due
to the 1/mq vertex correction:

y —1
bs(y) = N [

—C2(y —1)(3y + 4y+ 8) + 6Ci(y —1)(y+ 2) —12Csy],
y5

(22)

bs(y) = 3N [
—C2(y —1)(3y + 4y+ 8) + 6Ci(y —1)(y+ 2) + 4C»l .

y5
(23)

In (ll), the (1+ g)/2 factor adjacent to I' projects onto the large component of the heavy-quark spinors produced
by the source I'. There is also a contribution of order 1/mg from the small component of the heavy-quark spinors of
the fragmenting heavy quark [2]. The corresponding amplitude is given by

iM4 ———8~em, B(0) M QM
(s —m2~)2 ~", , I gg „"„ i-(p')~"~'(I+ ~) I, —(~" ~- ~~ ) i

(24)

The contributions to b(y) and to b*(y) from the interfer-
ence term in ~Mi + M4~2 are

b4(y) = 2N (3y + 5y + 2y —4),

The complete expression for b*(y) is obtained by adding
3bi(y), 3b2(y), (23), and (26). The fragmentation func-
tion Dg~v. (z) for the Si state, to next-to-leading order
in 1/mg, is given by (3) with

b*(y) = 6N (y' —y'+ 2y —4) .
y5

(26)

1 2

a'(y) = 3N (3y + 4y+ 8), (29)

The complete expression for b(y) is obtained by adding
(18), (20), (22), and (25). Thus the fragmentation func-
tion Dg~J (z) for the i So state, to next-to-leading order
in 1/mq, is given by (2) with

a(y) = N (3y'+ 4y+ 8),(y —1)'

b(y) = N [(y —1)(3y + 15y + 8y —8)

—12(Cs —1)y'] .

b*(y) = 3N [
—(y —l)(y + y —8y+ 8)

y6

+4(Cs —l)y ] . (30)

The terms proportional to C2 in (28) and (30) cancel
between propagator and vertex corrections. We have set
Ci ——1 in (28) and (30). If we further put Cs ——1, we
recover the next-to-leading terms in the 1/r expansion of
the PQCD fragmentation functions given in Ref. [6].

The heavy-quark mass expansions (2) and (3) break
down in the limit y —+ oo, which corresponds to z —+ 0,
and also in the limit y ~ 1, which corresponds to z ~ 1.
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f &24+ 109r —126r + 174rs+ 89r r(7 —4r+ 3r2+ 10rs+ 2r ) ln(r) l
i5(i —r)s (1 —r)s

The PQCD fragmentation functions (31) and (32) give the distributions in the longitudinal momentum fraction z
for the mesons P and V in a heavy-quark jet. This model can be easily extended to give the distribution in their
transverse momentum kT relative to the jet momentum [21]. In Ref. [6], the fragmentation functions were obtained
as integrals over the invariant mass 8 of the fragmenting heavy quark:

Dq-+pgv(z) =

where the lower limit of the integration is

ds
dqmp/v (z~ s)

(z) S
(35)

8xnin

The functions dq~p~v(z, s) in the integrand are given by

(1 z) (1 + "z)
dg~~ z, 8 6AM r8

[2(1 —2r) —(3 —4r+ 4r )z+ (1 —r)(l —2r)z ]M2

[1 —(1 —r) z] [s —(1 —r) 2M2]s

(1 —z)[1 + 2rz + (2 + r')z']
[1 —(1 —r)z] [s —(]. —r)2M ]

[2(l + 2r) —(1+ 12r —4r )z —(1 —r)(1+ 2r)z2]M2

[1 —(1 —r) z] [s —(1 —r) M2]s

The invariant mass 8 is related to kT and z by

M2+k2 m +A:
+

z 1 —z

4r(1 —r)M4
[s —(1 —r) 2M2]4

12r(1 —r)M
[s —(1 —r )2M2]4 (38)

(39)

where M = mq + mq in the nonrelativistic limit. If, instead of integrating over 8, we integrate over z with kT
held fixed, we obtained the kT distribution for the fragmentation process. Introducing the dimensionless variable
t = kT /M, we can define the kT-dependent functions dq~p~v(z, t) and Dq~p~v(t) by

f dtDq~pgv(t) =
0

dt dz dq pyv(z, t)

This implies

1 oo

dz —dq pgv(z, s) .
(~) S

(4i)

with

Dq~pgv(t) = 2M t
1 1

dz dq p~v(z, s(z, t)),z 1 —z s z, t

I'21+t r +t )
z 1 —z)

Carrying out the integrals over z, we find

Dq p(t) = %r 1 2 2 2

2(l —r) t
—24rt[4r —(2+ r+ 2r )t ] ln(r)

—(1 —r )t [30r —r (61 —20r + 28r )t —(3 —48r + 48r —12r )t ]

/r2 + t2)
+12t[4r —r(2+ r + 2r )t + (1 —r) t ] ln!

!&1+t')

+3[10r —3r (11+2r + 2r )t + (3+ 4r + 19r —6r )t

+(3+ 12r —20r + 8r )t ] arctan r+t2 ) (43)
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Dq~ v (t) = ——8rt [12r —(6 + 7r + 2r )t ] ln(r)
3Nr 1 2 2 2

2(1 —r)s ts
—(1 —r)t[30r —r(61+ 28r —20r )t + (5 —8r + 8r + 4r )t ]

fr'+ t'l
+4t[12r —r(6+ 7r+ 2r )t + (1 —r) t ] lnl

!(1+t2 )
+[30r —3r (33+ 22r —10r )t + (9+ 20r + r + 22r + 8r )t

+(9 —12r + 4r + 8r )t ] arctan
l r+t2 j (44)

In general, &agmentation functions D(z, p2) depend
not only on z, but also on a factorization scale p, . In a
high-energy process that produces a jet with transverse
momentum pz, the scale p, should be chosen to be on
the order of pT . The functions (31) and (32) should be
regarded as models for heavy-quark &agmentation func-
tions at a scale p of order mg. For values of p much
larger than mg, the &agmentation functions (31) and
(32) should be evolved from the scale mg to the scale p
using the Altarelli-Parisi equation,

0 'dy (z
p,

&
2Dg~H(z, p, ) = P~-+~

l p
Op (y

x Dg~H (y, p ), (45)

where Pg~g(x) is the appropriate splitting function:

2n, (p) t' 1 + x2 )
(46)

One aspect of the initial conditions (31) and (32) and
the evolution equation (45) that may cause problems in
practical applications is that they do not respect; the
phase space constraint:

Dg~H(z, p ) =0 for z(M /y, (47)

where dg~H(z, s) is defined by the integrand in (35) and
s;„(z) is given in (36).

IV. COMPARISON WITH OTHER
FRAGMENTATION MODELS

The model for heavy-quark &agmentation which has
been used most extensively in phenomenological applica-
tions is the Peterson &agmentation function [10]

This can be remedied [9] by using (47) as the initial con-
dition on the &agmentation function equation and re-
placing (45) by the inhomogeneous evolution equation

|9 'dy (z,Dg H(z, V') =
Op y (y )

H(y yp )

+dg H(z, p, ')0(p' —s;„(z)),
(48)

I

where NH and eH are adjustable parameters that may
depend on the hadron H. This &agmentation function
has the correct behavior in the heavy-quark limit if NH
scales like I/m~ and eH scales like 1/m&. Identifying eH

with r and expressing (49) in terms of the Jaffe-Randall
scaling variable y defined in (1), we find that it reduces
in the limit r m 0 to

NH (y —1)'
'

Ky —1)'+1l' (5o)

The Peterson &agmentation function is just the square
of a light-cone energy denominator multiplied by a phase
space factor. It contains no spin information; the normal-
ization parameter NH is to be determined independently
for the pseudoscalar and vector mesons of a heavy-quark
spin multiplet.

An alternative &agmentation model which does con-
tain spin information has been proposed by Suzuki [11].
Suzuki's &agmentation functions are derived &om the
same Feynman diagram in Fig. 1 as the PQCD &ag-
mentation functions, but with two essential differences.
First, the diagram was calculated in the Feynman gauge.
If a general covariant gauge had been used, Suzuki's &ag-
mentation functions would have depended on the gauge
parameter. The PQCD fragmentation functions that we
calculated are gauge invariant. We calculated the di-
agram in the axial gauge only for simplicity. If we had
used a covariant gauge, we would have had to also include
diagrams in which both the virtual heavy quark and the
virtual gluon are emitted by the source I' in Fig. 1. Al-
ternatively, we could have calculated the PQCD fragmen-
tation functions for the &agmentation of a heavy quark
into S-wave heavy quarkonium directly &om the general
gauge-invariant definition [12]. Such a calculation has
been carried out for the equal-mass case of charmonium
by Ma [13]. A second essential difference between the
PQCD model and Suzuki's is that we integrated over the
invariant mass s of the &agmenting quark [see Eq. (9)].
The invariant mass is related to the transverse momen-
tum kT of the meson relative to the &agmenting quark by
(39). Rather than integrating over k&2, Suzuki chose to
evaluate the integrand at a typical value (k&~). Suzuki's
model therefore has three parameters: the overall nor-
malization N, the mass ratio r, and (k&2)/m2 . When
expressed in terms of the scaling variable y 2efined in
(1), Suzuki's &agmentation function Dg~~(z) reduces
in the limit r —+ 0 to

z(1 —z)2
Q~ (H)z= H

[( )2 ]2
(49) De~I (z) ~ —(y —1)

X,(y —2)'+ ~'
g + K

(51)
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2% (y —2)2+ r.2

&~ ~(z) ~ (y —1)
p y2 + ~2 2 (52)

where r2 = (kz, )/(r m&).
The various fragmentation models in the literature

have been suinmarized in Ref. [16] and compared with
experimental data on D and D* production. The string
and parton cluster models are very difFerent in spirit from
those discussed above. One can derive analytic expres-
sions for the heavy-quark fragmentation functions &om
the string models [17]. They contain a tunneling fac-
tor exp( —BmH/z), which suppresses the small-z region.
In the scaling limit, the Lund symmetric fragmentation
function behaves like

Dq (z) ~ Xr~e ~ +~" ~l(y —1)~ .

Unless N scales like e m&+, this is inconsistent with
heavy-quark symmetry, which requires the leading term
to scale like mg as mg ~ oo.

The PQCD model for heavy-quark fragmentation has a
I

where r2 = (k&)/(r m&). By heavy-quark spin symme-
try, Dg~~(z) differs, in this limit, only by a factor of
3.

The Peterson, Suzuki, and PQCD fragmentation func-
tions all vanish like (1 —z)2 as z +l-. An alternative
fragmentation function which vanishes like the first power
of (1 —z) has been proposed by Collins and Spillers [14].
This was motivated by incorrect dimensional counting
rules. The correct dimensional counting rules for QCD
[15] do in fact give a limiting behavior of (1 —z) for the
fragmentation function. The Collins-Spillers fragmenta-
tion function can be derived in a similar way to ours,
except that in the Feynman diagram in Fig. 1, the in-
teraction mediated by the virtual gluon is replaced by
a pointlike scalar Yukawa coupling between the meson,
heavy quark, and light quark. Consequently, the denom-
inator of the matrix element contains only one power of
(s —m&2), in contrast to the two powers in (12). It is
the omission of the gluon propagator that changes the
behavior as z +1 from-(1—z) to (1 —z). Also, instead
of integrating over the invariant mass of the &agmenting
quark as in (9), Collins and Spillers, like Suzuki, eval-
uated the integral at a typical value (k&2). Taking the
scaling limit r ~ 0, the fragmentation function of Collins
and Spillers reduces to

number of advantages over those described above. First,
it is rigorously correct in the limit m~ )) AQcQ ~ Higher-
order perturbative corrections can be systematically cal-
culated. Relativistic corrections can also be calculated
in terms of additional nonperturbative matrix elements
[18]. Second, our model is consistent with heavy-quark
symmetry in the limit mg ~ oo. The logarithms of mg
that are predicted by HQET would be reproduced by the
higher-order perturbative corrections. The PQCD model
is also more predictive than those in Refs. [10,11,14].
It describes spin-dependent efFects, like Suzuki's model,
but without introducing any additional parameters. The
PQCD model not only predicts the z dependence of the
fragmentation functions, but also their dependence on
A:z, the transverse momentum of the meson relative to
the jet. The fragmentation functions (31) and (32) apply
only to S-wave mesons, but the &agmentation functions
for higher-orbital-angular-momentum states can also be
calculated. The PQCD fragmentation functions for the
P-wave mesons have been calculated to leading order in
n, in Ref. [19].

V. VECTOR- TO-PSEUDOSCALAR RATIO

In any production process for heavy-light mesons, one
of the most fundamental experimental observables is the
ratio

V
V+P' (54)

which measures the relative number of vector mesons V
and pseudoscalar mesons P that are produced. If the
mesons are produced within a heavy-quark jet, then V
and P in (54) can be identified as the fragmentation
probabilities for the heavy quark to fragment into vec-
tor and pseudoscalar mesons, respectively. The ratio Pv
can depend on kinematic variables, such as the longitudi-
nal momentum fraction z of the meson or its transverse
momentum kz relative to the jet. In the PQCD model for
fragmentation, the normalization factor K cancels out in
the ratio (54), so that Pv is determined by the parameter
r only.

The simplest measure of the ratio Pv comes from the
total numbers of vector and pseudoscalar mesons in the
jet integrated over z and kz . Setting P and V in (54) to
the fragmentation probabilities in (33) and (34), we find
that the ratio Pv. in the PQCD model of fragmentation
is

(1 —r) (24 + 109r —126r2 + 174rs + 89r4) + 15r(7 —4r + 3r2 + 10rs + 2r4) ln(r)
Pv =

2(1 —r)(16+ 61r + 51r —19rs + 71r ) + 60r(2+ r + r + r + r ) ln(r)
(55)

This ratio is plotted as a function of r in Fig. 3. From the
graph, it is clear that Pv is not strongly dependent on r.
At r = 0, Pv ——

4 as required by heavy-quark spin sym-
metry. As r increases, Pv decreases slowly to Pv ——0.51
at r = 0.5. Thus, at nonzero values of r, the vector
state is less populated than would be given by naive spin
counting. We can determine the value of r for the D

and D* system using experimental measurements of Pv.
A complete compilation of the experimental data for Pv
from the CERN e+e collider LEP, CLEO, ARGUS, the
DESY e+e collider PETRA, and KEK TRISTAN can
be found in Ref. [20]. The key point in obtaining consis-
tency between these measurements is using the updated
branching ratio R(D+* +Don+) 0.68 ins-tead of the
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FIG. 3. Ratio P~ as a function of r.

3 n(z)Pv(z) = —„ (56)

old value 0.55. The experimental value P~ ——0.65 + 0.06
determines the parameter r~ for the D-D* system to be
pD: 0 10 0'o7 If we interpret r as the ratio of the
constituent mass of the light quark to the mass of the
meson, then the value rD ——0.10 corresponds to a con-
stituent mass of 200 MeV. Given a value of rD, we can
determine the corresponding value for the B-B* system
by using the simple scaling behavior r~ ——(mD/m~)r~
This gives r~ ——0.03+0 o2. Our determination of the pa-
rameters r~ and r~ is rather crude, with uncertainties
of nearly 100%. Surprisingly, in spite of such a crude
determination of r, the PQCD model still gives useful
quantitative predictions for heavy-quark fragmentation.

Having determined the parameter r from data on D-
D* production, we can now predict how the vector-to-
pseudoscalar ratio should vary as a function of the lon-
gitudinal momentum &action z. The z-dependent ratio
P~(z) is defined by (54), where P and V are given by
the fragmentation functions (31) and (32):

n(z) = 2 —2(3 —2r)z + 3(3 —2r + 4r )z
-2(1 —r)(4 —r + 2r')z'+ (1 —r)'
x (3 —2r + 2r ')z4, (57)

d(z) = 3 —3(3 —4r)z + (12 —23r + 26r )z
—(1 —r)(9 —llr + 12r')z'+ 3(l —r)'
x(1 —r + r')z (58)

This ratio is plotted as a function of z in Fig. 4 for the
values r = 0.10 (solid curve), r = 0.03 (dotted curve),
and r = 0.22 (dashed curve). At z = 0, Pv(z)
regardless of the value of r. It decreases slightly for small
z and then increases monotonically to a maximum value,
at z = 1, of 0.74 for r = 0.03, 0.73 for r = 0.10, and
0.70 for r = 0.22. Note that, in spite of the nearly 100'%
uncertainty in our determination of rD, the uncertainty
in Pv. (z) is less than about 11%. Thus the PQCD model
gives a rather unambiguous prediction that P~ should
vary &om around 2 at small values of z to almost 4 near
z=1.

The kT-dependent ratio P~(kg) is defined by (54),
with P and V given by (43) and (44):

FIG. 4. Predictions for the ratio Pv(z) as a function of
z for r = 0.10 (solid curve), r = 0.03 (dotted curve), and
r = 0.22 (dashed curve).

nI + n21n(r) + ns lnl "y+q2 I
+ n4arctanf. +~ ((x—~)t ~

Pv(kl ) =— )
dz+ d2ln(") + ds»l I+g2 l

+ d4arctan
f,.+;l ((1—)t l (59)

where

nI ———(1 —r)t[30r —r(61+ 28r —20r )t
+(5 —8r+8r +4r )t ], (60)

n4 ——[30r —3r (33+ 22r —10r )t
+(9+ 20r + r + 22r + 8r )t
+(9 —12r + 4r + 8r )t ],

n2I = —8rt[12r —(6 + 7r + 2r )t ], (61)

ns = 4t[12r —r(6+ 7r + 2r )t + (1 —r)2t ], (62)

dI ———(1 —r) t[30r —r(61 + 16r —8r )t

+3(1+2r —2r'+ 2r')t'], (64)
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d2 ———12rt[8r —2(2 + 2r + r )t ], (65) 1.p

d, = 6t[8r —2r(2 + 2r + r )t + (1 —r) t ], (66) p.8

d = 30r —9r'(ll + 6r —2r )t'+ 3(1+r)'(3+ 2r )t
(+3(3 —4r' + 4r ') t' .

This ratio is plotted as a function of t = kT /M m Fig.
5 for the three values r = 0.10 0.03, and 0.22. At t = 0,
P (t) = —,regardless of the value of r. As t increases,
P~ t quickly decreases to its asymptotic value at
At t = 1, P~(t) is within O. l%%uo of its asymptotic values of
0.65 for r = 0.03, 0.61 for r = 0.10, and 0.60 for r = 0.22.
Again, we And that, in spite of the large uncertainty in r,
we obtain a rather precise prediction for P~ as a function
of kT.

Th P~CD fragmentation functions for vector mesonse ~~a
have been applied previously [21] as a phenomenologtca
model to describe the fragmentation processes c —+ D'
and b ~ B*. The fragmentation functions were sepa-
rated into the transverse and longitudinal polarization
components. The spin alignment, which measures the
ratio of transverse to longitudinal polarizations, was ca-
culated as a function of z and kl . In the case of produc-
tion of D* by charm fragmentation, the spin alignment

d' ted b the PQCD fragmentation model was shown
to be consistent with CLEO measurements

~
~~. n a-

dition the predicted value of the average longitudinal
momentum fraction (z) for c -+ D* and for 6 ~ B was
shown to be in excellent agreement with data from LEP,
CLEO, and ARGUS [21]. The values of r used for D*
and B* mesons in these comparisons were r == 0.17 and
0.058, respectively, which lie within the range determined
above from measurements of P~.

The PQCD fragmentation functions have also been ap-
plied in Ref. [22] to predict the fragmentation spectra for
the B, and B,* mesons based on the production rates o
the B, mesons measured at LEP. Instead of treating the
normalization N as a phenomenological parameter as ad-
vocated in this paper, the authors calculated N using the
PQCD expression, which involves n, at the scale of t e
strange quark mass.

p.4

P.2

p p
0.0

I I f f I

0.2
I I I I I I I I I I I I I I I

0.4 0.6 0.8 1.0

FIG. 5. Predictions for the ratio Pv(kT) as a function oof
kT for r = 0.10 (solid curve), r = 0.03 (dotted curve), and
r = 0.22 (dashed curve).
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