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Complete analytical results for the production of heavy-quark pairs by polarized and unpolarized
photons in next-to-leading order are presented. Two-, three-, and two-plus-three-jet cross sections
for a total photon spin J, = 0, £2 are presented for bb(g) production. The two-jet cross sections are
considered as a background to vy — H* — bb (standard model). Top-quark production, not too far
above threshold, is also considered for J, = 0,+2. For both b- and t-quark production, the higher

order QCD corrections are found to be significant.

PACS number(s): 13.65.+i, 13.88.4€, 14.65.—q, 14.70.Bh

I. INTRODUCTION

Higher (next-to-leading) order corrections (HOC’s) for
heavy-quark (Q,Q) production in unpolarized particle
collisions have been determined in detail [1-3]. For po-
larized particle collisions, however, analytical results were
still absent. Even for the unpolarized case, only virtual
+ soft corrections have been presented analytically [2].
Apart from general reasons, well known from unpolar-
ized reactions, knowledge of HOC’s for @, Q production
in polarized processes is important for several special rea-
sons.

Beginning with polarized v collisions, which is the
subject of the present work, one reason of special inter-
est is the following. A 7~ collider becomes particularly
important for searches of the standard model Higgs boson
when its mass is below the WTW ™~ threshold. Then the
predominant decay is H — bb and the background comes
from vy — bb with direct or resolved photons. Leaving
aside the latter, for the moment, use of polarized pho-
tons of equal helicity (when the angular momentum has
J, = 0) suppresses this background by a factor m?/s [4,
5]. This holds, however, only for the lowest order of a,.
HOC’s necessarily involve the subprocess vy — bbg, and
gluon emission permits the bb system to have J # 0 with-
out suppression; this may result in a sizable background.
Of course, another reason the J, = 0 channel is impor-
tant is that the Higgs boson signal comes entirely from
it. Thus, we maximize the Higgs boson to background
ratio in two different ways.

Furthermore, at higher energies, it will be possible to
produce top quarks in photon-photon collisions. This,
when combined with other data on top-quark production
from ete~ and pp collisions, should certainly improve

*On leave from High Energy Physics Institute, Tbilisi State
University, Tbilisi, Republic of Georgia.

0556-2821/95/51(9)/4808(11)/$06.00 51

our knowledge of the top-quark parameters. The HOC’s
could have a significant effect on the threshold behavior.
It is also interesting to examine the spin dependence of
the HOC’s in this region.

In this paper we present complete analytical results for
heavy quark production by both polarized and unpolar-
ized photons. Numerical results are presented for 2-, 3-
and 2+3-jet cross sections for the cases where the initial
photons have total spin J, = 0 and J, = +2. For b-quark
production, this is analyzed as a background to Higgs bo-
son production. We also consider t-quark production for
energies not too far above, threshold.

The analytical results presented here are also useful
in determining the production of heavy quarks in polar-
ized photon-proton (proton-proton) collisions. This is be-
cause the process vy — QQ(g) is the Abelian (QED) part
of the subprocess vg — QQ(g) [99 — QQ(g)], which is
by far the dominant subprocess in y-p (p-p) collisions [1,
2]. The non-Abelian part of Y5 — QQ(g) [§7 — QQ(9)]
remains to be calculated.

II. LEADING ORDER CROSS SECTIONS

The contributing graphs are shown in Fig. 1. We in-
troduce the variables (momenta as in figure)

s = (p1+p2)?, t=T —m?=(p1 —ps)® —m?,
'U.EU—ng(pz_ps)2_m2 (1)

and
s2=82—m?=(p14+p2—p3)?-—mP=s+t+u, (2

where m is the heavy-quark mass. Defining

t —u
=1+ - = 3
vElto, w=_— 3)
we may express
t=-s(1—-v), u=—svw, s2=sv(1l—w). (4)
4808 ©1995 The American Physical Society
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FIG. 1. Lowest order contributions to vy — QQ.

The polarized and unpolarized squared amplitudes are
defined, respectively, as

AIMP? = M+, ) ~ [M(+, ),
(%)
IMP? = S[IM(+, ) + M+, )]

where M(A1,A2) denotes the Feynman amplitude with
photons p;, p2 having helicity A;, Ay respectively. The
same holds for the cross sections.

doro _ 2 2.4  4e _tz + u?
dodw 32K (€)6(1 — w)Noa“egu =
doro 2 24 4 t2 4+ u?
Tode = 321°K (€)6(1 — w)Ncaegu™ ™

where N¢ (=3) is the number of quark colors and eg
is the fractional charge of the heavy quark. Making use
of (4) and (6) we see explicitly that doro(+, +)/dvdw is
suppressed by order m?/s.

III. LOOP CONTRIBUTIONS

The loop contributions arise from the diagrams of Fig.
2 and their p; ¢ p, interchange. These diagrams contain
both ultraviolet and infrared singularities. To regularize
them, we use dimensional reduction [6], where the mo-
menta are in n dimensions and everything else is in four
dimensions. This facilitates the handling of the Levi-
Civita tensor e#**?, As we will show below, the analyt-
ical expressions for the cross sections are regularization
scheme independent once all the contributions (including
the gluonic bremsstrahlung) are added. Throughout, we
work in the Feynman gauge.

The heavy-quark mass and wave function renormal-
izations are performed on shell. The self energy graphs
are shown in Figs. 2(a—c) and the corresponding mass
counterterm diagrams in Figs. 2(a’—c’). The factor 1/2
multiplying (b)—(c’) comes from wave function renormal-
ization. The bare mass and wave function are determined
in terms of the renormalized ones via

¥, = 2,/%%,, (10)

where Z,, and Z, are the mass and wave function renor-
malization constants. Define

o= B2 (128)

mo = Zymm,,

(11)
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For the examples considered in this paper, it is of in-
terest to calculate (numerically) the cross sections for a
specific helicity state o(A1, A2). We present analytical re-
sults for the polarized and unpolarized cross sections Ao,
o. From (5) we can obtain the desired cross sections via

o(+,+) =0 + Ao, o(+,—) =0 —Ao. (6)
m—2€ 7.‘.(471.)—2%-5

Defining
tu —sm2\ ©
s T(1-¢) ( sm? ) (7)

we may express the n (= 4 — 2¢)-dimensional two-body
phase space as

K(e) =

[ ]d02-+2
dvdw

It will become necessary to work in n dimensions when
we determine the HOC’s (see next section for details).

The resulting leading-order (LO) cross sections are, in
n dimensions,

= K(e) [(2m)*[A]IM]3_,,] 6(1 — w). (8)

43m2 4 sm2\ 2 )
+ tu tu ’

where p is an arbitrary mass scale which enters via the
coupling in n dimensions: g — gu°. In dimensional re-
duction we find, to order g2,

5
Zm=1-3¢2C.Cp (l, + -3-) ,
° (12)
9 1 2
Zy=1-g°C.Cp ~7+5+—
€ €
T AT o
) 1/2 ~ - 1/2 -
BN BN U AN
(a) (b) (c)
B o — BN
1/2 1/2
BN BN RGP S VA
(a") (b") (c")
NW\‘T—_ I I S
- - |
BN PSS o o !
(d) (e) (f)
W\qb——— A
~~e~~ AN\/\QQ—
(d") (e
FIG. 2. Loop graphs for vy — QQ. (a)—(c) self-energy

diagrams; (a’)—(c’) mass counterterm diagrams correspond-
ing to the graphs (a)—(c); (d),(e) vertex diagrams; (d’),(e’)
dimensional reduction counterterm diagrams corresponding
to graphs (d),(e); (f) box diagram.
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with Cp = 4/3. We use 1/¢’ to indicate which terms are
of ultraviolet origin.

In dimensional reduction we must add to the vertex
diagrams of Figs. 2(d,e) appropriate counterterms (d’,
¢’) in order to satisfy the Ward identity [7]

Zi =2, (13)

between vertex and self-energy graphs, with Z; denoting
the vertex renormalization constant. The Feynman rule
for this vertex counterterm is found to be (in n dimen-
sions)
2
—g 1
b = _—Cpyt— 14
Y ( 4 7r)2 Fe & ( )
with

vE = (9" = g )V, gk an, = 98 g =n;  (15)

here g&” represents the n-dimensional metric tensor with,
formally, n < 4.

When all the contributions to the physical cross section
(including gluonic bremsstrahlung) are added, the result
is free of infrared divergences as there are no collinear
singularities here. Thus the only scheme-dependent part
might come from the vertex and self-energy graphs. Hav-
ing satisfied the Ward identity (13), though, means that
the scheme-dependent part of the corrections cancels be-

J

2ILO 4 5(1 -
w
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tween vertex and self-energy graphs. This was explicitly
verified by calculating the vertex and self-energy graphs
in dimensional regularization. We also checked explicitly
that there are no differences between reduction and reg-
ularization arising from any other contributions. More
specifically, to obtain the dimensional regularization re-
sult for any particular contribution given in this paper,
simply replace the LO term by the corresponding LO
term from dimensional regularization. When all the con-
tributions are added, the scheme-dependent part of the
LO term cancels along with the 1/¢ infrared divergence
multiplying it. Hence, the absence of collinear diver-
gences or vacuum polarization graphs leads to scheme-
independence.

As was stated in Refs. [8] and [9], a counterterm like
(14) was used to remove an unphysical term. Gen-
eral one-loop counterterms have been developed [10] to
convert unpolarized dimensional reduction results into
the corresponding dimensional regularization results for
the purely massless case. Also, certain equivalences be-
tween dimensional reduction and dimensional regulariza-
tion have been noted [11]. In the present case, how-
ever, satisfaction of (13) is sufficient to ensure scheme-
independence.

Adding the contributions of Figs. 2(a—€’) (and the
t +» u interchange) resulted in the ultraviolet finite vertex
plus self-energy cross section

w) ?fr()g) (2A1{4 [5(2) ~Li, (%)] (1 + 3’”72)

—In (-#) (8—6% - %) —a- %} + A;ln (—#) + As [Li2 (%) —5(2)] + A+ (t(—)u))

where

C = (47r)3CFNcasaZe4Qu65.

(16)

(17)

The corresponding polarized cross section Adovsg/dvdw can be obtained by replacing the A; and doo/dvdw in (16)

by AA; and Adoro/dvdw, respectively.

The [A]A; are given in Appendix B. We will use this notation throughout. We note the term ~ 1/e in (16)
representing an infrared divergence. Also, note that [A]A; is proportional to the LO squared amplitude without the

t «» u interchange [see Appendix B, Eq. (B3)].

Since [A]doLo/dvdw is in general regularization scheme dependent to O(e) (working in n dimensions), we see
explicitly that truly scheme-independent cross sections will result only when all contributions are added and all

infrared divergences are cancelled.

In order to evaluate the box graph of Fig. 2(f), we must reduce the resulting tensor integrals to scalar ones
(conveniently listed in Ref. [2]) using projective tensor techniques [12]. The tensor integrals have the general form

[ONTITRVNTE 7D
DP kb A (B ko, k3, my, ma, M3, my)

= 2 / d"q 1,¢*,9"¢", ¢*q"¢* (18)
(2m)™ (g — m1)?[(q + k1)? — m3)[(q + k1 + k2)® — m3][(q + k1 + k2 + k3)2 —mj] ’
where the k; are general momenta. As an example, the vector box integral we encounter has the decomposition
D*(pq, —p2, —p1,0,m,m,m) = pj D11 — py D12 — py D13. (19)

In general, the scalar coefficients D;; are not independent. This simplifies somewhat the calculation. Noting that
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D“(p‘h —P2, —P1, 07 m,m, m) = _D“(p37 —P1, — P2, 0’ m,m, m), (20)
we obtain
D3 = Dq1 — Das, (21)

since the D;; in both integrals are the same, due to the fact that they are scalars. Using the same approach, we
reduce the number of independent D;; from seven to five in D#*” and from thirteen to eight in D#**, This method
was quite helpful in keeping the very large intermediate expressions as short as possible.

Adding the contribution of Fig. 2(f) and the ¢ +» u interchange gives the virtual box cross section

‘Z‘;‘;‘ - 167rasCFCEZZ%%ﬂ_S {2ln(z) [21_5 - ln(ﬁ)] + 2Li(—a) — 2Lis(x) — 35(2)}
+5(1 - w) C(fr ()2) {—831%;3 In(x) In(—t/m?) + 2%{ln($)[4 In(1 + ) — In(z)
—41n(—t/m?)] + 4Liz(—z) + 2£(2)} + 2B3 In*(z) + 4% In(z) + 4Bs In(—t/m?)
+8BgLiz (T /m?) + 4B7£(2) + 4Bs + (t +» u)} , (22)
where
=",  p=yi-amws,  a=1 L (23)

The [A]B; are given in Appendix B. We see again the infrared divergence ~ 1/e.
Independent calculations were performed using FORM [13] and REDUCE [14]. The latter proved useful in factoring
the expressions and cancelling powers in the denominators.

IV. GLUONIC BREMSSTRAHLUNG
CONTRIBUTIONS

The bremsstrahlung diagrams are shown in Fig. 3. Squaring these diagrams (plus their p; <> p; interchange), we
obtain the 2 — 3 particle squared amplitude

€1 es ey p2-k €g ér eg
2m)i|M|:_,,=C| = +exp2-k+ + +e + +
@m)*IMlz-s s 2P p2-Pa  p2-PE  pr1-P? saps-k  p3s-k2 ' pi-paps-pa
+69p2 k2 + e10 P2 - k e~11/32 €12 €13
- 1
P1°Pa pi-Ps P2 PabP3-k pr-paps-k?  pr-plps-k
€14 p2-k? P2k
+e1s +e + (p1 © p2,t o u) . 24
P2 Pl ps- k2 p3 -k Yps k& ( ’ ) (24)

As before, we may obtain A|M|%_,; by replacing the e; the frame where ps and k are back to back. We find (in

n (24) by Ae;. The [Ale; are given in Appendix B. agreement with Ref. [2]), for the 2 — 3 phase space,

Again, independent calculations were performed using d C

FORM and REDUCE. The former proved useful in partial (A] O Br ;

fractioning and other reductions of the dot products. dvdw wee
To obtain the total bremsstrahlung contribution to where

[A]ldo/dvdw, we perform the phase-space integrations in 1—e 1o
= m sv [ sv\l-2e 2
Floy= L (VT w26

fle) [dQ@m)®[AlM[3 .5,  (25)

= K(e)

521—s o \m2
- K and
N T T /dQ = / df; sin' 2 9, / df sin™2 0. (27)
0 0
o o o T The gluon angles 6; and 6, are defined in Appendix A

~

along with all the momenta.
FIG. 3. Gluonic bremsstrahlung graphs for vy — QQg. We first evaluate all the phase space integrals in four
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dimensions since, for w # 1, all the integrals are finite.
For w = 1, the terms in (24) with coefficients €; are
singular through the relation [15]

(1—w) 172 = —w) + +0(e) ,

1 1
—300 A=)y
(28)

where the function 1/(1 — w)4 is defined through

27rf(0){

+e1slis + e16l16 + (1 < u)}

{é1 + ?iln
Yy

ez + 25, In
2T sa(s +u)

dos, _CK(0)
dvdw ~ (4r)2

s2(s+u)
45,

1 CK(0) 1
(I-w)y (4m)% S

T+U -

dO’Lo 1

w s

+2s03 [1-—2lns—v2+1:|),
m €

where the integrals I; are given in Appendix C.

+8ma, CFC

V. PHYSICAL CROSS SECTIONS

We may obtain the 24-3-jet cross section by adding (9),

(16), (22), and (30):
dozys  (,doLo doysg dobox dog;
(A] dvdw (] d'udw+[A] dvdw +A] dvdw +A] dvdw
(31)

We notice the cancellation of all the 1/e infrared diver-
gences, leading to a finite, scheme-independent result.
At this point it is useful to note that for s > 4m?2, the
LO cross sections (9) are large in the forward and back-
ward directions. Since jets going down the beam pipe
are difficult to measure experimentally, angular cuts are
necessary for bb production well above threshold. At the
same time, we reduce the bb background to the Higgs
signal. This also helps eliminate resolved photon contri-
butions where the partons within the photon participate,
as opposed to the direct contributions, which we present,
where the photon is structureless. This is discussed at

K(0)
(47)?

[Alos(s) =

B. KAMAL, Z. MEREBASHVILI, AND A. P. CONTOGOURIS

S2
m2 ° m2(s + u)?

T+U+

2 sv 1
((2m — ) {2lna: (2111*"? - g) -1

fw) - 1),

Ta-w) F(1)In(1 — wy).

Loy = Lo

This means that, for these terms, the integrals must also
be evaluated in 7 dimensions in the limit w — 1, keeping
their O(e) part. The resulting integrals are straightfor-
ward.

The final result is, with § = /(¢ + u)2 — 4m?2s,

(29)

485,

es + eq +esls + eglg + egly + e10l10 + 13113

- S,
?{ €g + 4"—67 + 82011811 + $5112612 + 53114614 + (t © u)

2o (=) + <]

}

(30)

[

the end of this section.

Let 63 denote the angle between p3 and p; in the vy
c.m. Then the integrated 2+3-jet cross section, with the
constraint | cos 63| < cos ¢, for some 6, is given by

[Alo243(s)
=/v2dv/ dw O(cos? ¢ — cos? 03)[A ]dzz—j , (32)
where
1 1 2 1
v = i(l_ﬂ)’ V2 = 5(1+ﬂ)7 wl(v) = mT;;(l_—v)
(33)
and
cosf3 = —(—v—vw) (34)

VA —v +ovw)? —4m?/s

Alternatively, we may convert to do/dcos f3dw and inte-
grate directly over 63 and w.
The integrated 3-jet cross section is given by

va 1 .
dv / dw ©(cos? ¢ — cos? 83) f(0) /dQ(Zm)z[A]|M|§_,3
vy wy

X@((p:; + k)2 - ycuts)e((p‘i + k)2 - ycuts)

" (am)?

xO((ps + k)2 — Yeuts), wg =1-—

>/ / mueaxac—ms%woyﬁmmm)mmw}”

Yeut — mz/s

. (35)
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The angular integral is given by (27) with ¢ = 0. The dot
products involved may be explicitly expressed as func-
tions of v, w, 6;, and 6, using the parametrizations of
Appendix A and Egs. (4). We have imposed the con-
straints (ps + k)2 > yeurs and (ps + k)% > yeurs. With
a suitable choice of y.,+ we may simultaneously cut out
events with 2-jet topology and avoid the soft divergence.
We effectively eliminate the soft and collinear gluons from
the 3-jet cross section, with the degree of softness and
collinearity being specified by ycuss.

The desired 2-jet cross section is obtained by the dif-
ference

[Aloz(s) = [Aloz43(s) — [A]os(s). (36)

Since 0243 and o3 are both infrared finite and separately
observable quantities, this serves as a reliable and unam-
biguous method for defining 7.

In discussing the numerical results, it will be conve-
nient to split [A]oz43 as

[Aloz4s = [Alovo + [Alos + [Alow, 37)

where [A]os represents the contribution to the HOC’s
coming from terms proportional to §(1 — w) and 1/(1 —
w)4, and [A]oy represents the rest. In usual termi-
nology, [A]os represents virtual and soft contributions
whereas [A]oy represents hard radiation.

So far we have only considered direct contributions,
i.e., no resolved photon contributions. The reason is the
following. Well above the Q@ threshold, o33 and o5 will
certainly receive sizable resolved photon contributions.
Now, resolved photon events are generally accompanied
by a jet making small angles with respect to the beam
axis. For the 2-jet cross section (which is of physical
interest), experiment can reject resolved photon events
(and other unwanted events) as being those for which the
observed jets have total energy measurably lower than /s
[5]. This is because, due to the angular cuts, experiment
will not observe the jet making small angles. Hence, there
will be missing energy. Of course, we are assuming a
rather well-defined initial photon energy, which may be
experimentally difficult.

For top-quark production, not too far above thresh-
old, the resolved contributions will be negligible in all
the cross sections. This is because the dominant resolved
contribution comes from gy — QQ@, where the gluon orig-
inates from one of the initial photons, having a fraction x
of its momentum. Near threshold, the gluon will have to
carry a large fraction of the photon’s momentum; and for
z — 1, the gluon distribution in the photon is highly sup-
pressed. As well, 3-jet states arising from hard gluonic
radiation will be suppressed due to the restricted phase
space. The (near) absence of resolved contributions and
the nonsuppression of the J, = 0 cross section for 2 — 2
kinematics, not too far above threshold, implies that we
need not worry about whether the events are 2- or 3-jet
(even though 3-jet events are either very seldom or none,
depending on s).
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VI. NUMERICAL RESULTS

Here we present numerical results for b- and t-quark
production in next-to-leading order. Throughout, we
evaluate a,(Q?) (two-loop) with Q% = s, A = 0.2 GeV,
and the number of flavors taken as Ng = 5 since we
are well above the bb threshold. We take mp = 4.7 GeV
and m; = 174 GeV [16]. For 3-jet cross sections, we use
Yeut = 0.15. Some justification for this choice of ycy¢ is in
order. Experimentally, it is useful to have a small value
of Ycut so that for the 2-jet cross section we eliminate,
as much as possible, events with 3-jet topology via (36).
Theoretically, there are limitations. If one chooses ycut
too small, then the infrared divergence ruins the pertur-
bation expansion, since the 3-jet cross section becomes
unphysically large. To control this, an all-orders resum-
mation would be required. We find that y.ut = 0.15 is the
most suitable choice in light of the above considerations.

Figure 4(a) presents oro(+,+), 0243(+, +), o3(+, +),
and o3(+,+) for b-quark production in the range 20 <
/s < 200 GeV with 6c = 30°. As expected, the LO
cross section is highly suppressed for large /s, but not
the 3-jet. In fact o3(+, +) makes a sizable contribution to
o02+3(+,+). Hence o2(+,+) gets somewhat suppressed
relative to o213(+,+). For 20 <./5 <40 GeV the cor-
rections o243 — oo are seen to be slightly negative.

Figure 4(b) presents the same cross sections for J, =
£2, ie., oLo(+,—), o243(+, —), o3(+,—), and o2(+, —).
The major difference is that opo(+,—) and o243(+, —)
suffer no suppression at large 1/s. Hence the 3-jet contri-
bution to 243(+,—) is not so significant and o2(+, —)

107 , : . ;
1
L
a
N
10°
—
+, 107!
+
N
o \O’QE LO ]
10“3 I T 1 . 1 1 1 L L
20 40 60 80 100 120 140 160 180 200
(a) Vs (Gev)
107 : : : ; ,
— io!
fe)
a
S~
10°
—
}, 07 L 7
+
-
) 1072 L §
10’3L 1 1 It L 1 L ! L
2 40 60 80 100 120 140 160 180 200
(b) VS (Gev)
FIG. 4. Cross sections for vy — bb(g): oro (dotted line),

02+3 (dashed), o3 (dash-dotted), and o2 (solid), with 8c =
30° and yeut = 0.15 for 20 < /s < 200 GeV; (a) o(+, +); (b)
o(+,—).
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remains large. We also notice 0243 SoLo throughout.

Figures 5(a,b) present the same quantities as in Figs.
4(a,b) except with §c = 45°. The major difference is that
the cross sections are smaller everywhere and o3(+,+)
is particularly suppressed for 30 <./5 560 GeV. This
reflects the fact that the 2-jet events tend to occur at
smaller angles.

An interesting feature of the HOC arises for both 03,3
and Aoz13. In both cases, os and oy are much larger
that o0, for s 3> 4m?2. But they have opposite sign and
are of almost equal magnitude, leading to large cancella-
tions. In other words, the “virtual + soft” part conspires
with the “hard” part to yield HOC’s which are under
control.

Figure 6 presents the 2-jet background to the Higgs
boson decay yy — H* — bb. We have used the stan-
dard model Higgs cross section of Ref. [4] which takes
fc = 30° and an average value of (A\; ;) = 0.8. The pho-
tons are produced by laser backscattering off electrons
(positrons) at an eTe™ collider with E.+.- = 500 GeV.
As well, Ref. [4] uses an effective integrated luminosity of
Leg =20fb™" and a vy energy spread of [expy = 5 GeV;
V8 = mpy £ Texpe /2. Using the expression of Ref. [4] for
converting the vy — bb(g) cross section into a number of
events, we obtain the LO and 2-jet curves shown in Fig.
6.

At large /s, the increase in o2(+,+) relative to
oLo(+,+) is compensated by a decrease in o2(+, —) rel-
ative to opo(+,—), so that g2({(A;A2) = 0.8) does not
change radically. In the end, the 2-jet cross section is
still well below the Higgs signal for 90 Smpy S 150 GeV.
With higher degrees of polarization, we could do even
better.

10 T T T T T T T T
1
2 0
a
~—
10°
N
R
+
° 107t} LO N 1
10—3 1 1 1 1 1 1 1 1 3
20 40 60 80 100 120 140 160 180 200
(a) Vs (Gev)
10? ; : . : : : : .
/7~ 101
o
Q.
~—
10°
—~
|“ 107"
+
—
b 107%L ]
10_3 1 1 1 1 1 1 1 1
20 40 60 80 100 120 140 160 180 200
(b) VS (GeV)
FIG. 5. Same as Fig. 4, except with 8¢ = 45°.

B. KAMAL, Z. MEREBASHVILI, AND A. P. CONTOGOURIS 51
10"
)
T
)
>
L
©
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20 40 60 80 100 120 140 160 180 200
m,, (GeV)
FIG. 6. Two-jet bb background to standard model Higgs

boson decay: yy — H* — bb (solid line), oLo (dotted), and
o2 (dashed) for 20 < mpy < 200 GeV. Number of Higgs
events taken from Ref. [4]. Here c = 30°, < A\;)A2 >= 0.8.
The other experimental parameters are described in the text.

Figure 7(a) gives 0243 and opo for t-quark produc-
tion in the range 1 < /s/2m < 1.4 for J, = 0 and
J. = %2, without angular cuts. Figure 7(b) is the same
except with ¢ = 30°. We notice that the angular cuts
do not make a big difference. This is because there is no
peaked behavior in the forward or backward directions

1.0 1.1 1.2 1

3 1.4
V's/2m
(0) /
FIG. 7. Cross sections for vy — t#(g): ovo(+,—) (lower
dashed line), oz4+3(+,—) (lower solid), oLo(+,+) (upper
dashed), and o243(+,+) (upper solid) for 1 < /5/2m < 1.4:
(a) 8¢ = 0; (b) 6c = 30°.
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as for bb production. As explained earlier, the (near) ab-
sence of resolved contributions makes the angular cuts
less important experimentally as well. The most inter-
esting feature of the HOC is that just above threshold,
the HOC to o(+,+) completely dominate. There is no
similar behavior from o(+,—). This suggests that the
J. = 0 channel is ideal for maximizing the top cross sec-
tion not too far above threshold. At any rate, this drastic
spin dependence of the HOC is of theoretical interest by
itself and could be tested at the bb threshold as well. As
the cross section is actually a function of only /s/m (or
B) and a,(Q?) (times an overall factor of eg,/s), the only
difference would be an increase in the HOC for bb rela-
tive to its corresponding LO term, due to an increase in
a,. In fact, the only ambiguity in the predictions is the
choice of scale Q% in o,(Q?). Varying @2 in the range
s/4 < Q% < 4s, for /s = 400 GeV, gives a, in the range
0.0878 < a, < 0.104 and a corresponding variation in
the magnitude of the corrections.

Figure 8 gives the unpolarized cross sections corre-
sponding to Fig. 7(a). We also plot the small 8 (thresh-
old region) approximation of Ref. [3]. Our results agree
with this approximation just above threshold. We see
that the approximation breaks down for /s/2m 2 1.02.
As expected, we found that almost all of the correction
comes from og, i.e., oy is almost negligible not too far
above threshold. We found the same was true for Aog,
Ao H-

VII. CONCLUSIONS

We have obtained complete analytical results for the
production of heavy-quark pairs by polarized and un-
polarized photons in next-to-leading order. Using these
expressions, we computed cross sections for b- and t-
quark production by photons having net spin J, = 0, +2.
From the bb cross sections, we determined the back-
ground to vy — H* — bb (standard model) coming from
vy — bb(g) (2-jet) for (A1Az) = 0.8. The HOC’s to the
J, = 0 channel were found to be large for s > 4m?2.
For the experimental setup considered, the background
was safely below the Higgs signal (but still sizable) for
90 Smy S 150 GeV, even after inclusion of HOC’s. For
t-quark production, not too far above threshold, the dom-
inant contribution came from the J, = 0 channel. Just
above threshold, the HOC’s to this channel completely
dominate.
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APPENDIX A

Here we present the momentum parametrizations in
the frame where p; and k are back to back. We find

p1 = (w1;0,...,|p|siny, |p| cos ¢ — wa),
p2 = (w2;0,...,0,ws),
k= (wk; ..., wgsinb; cos Oy, wy cos ),
ps=(Es; ..., —wgsin by cos bz, —wy, cos 0),
p3 = (E3;0,...,|p|sinvy, |p|cos ), (A1)
where
s+t s+u 82
T TS T sy
Sg + 2m? T+U 7
Es= 2\/5—2 , B3 = 2\/5—27 |p|=2_”’—\/s—2a
cosp = usy — s(t + 2m?) , (A2)

(s +u)g

in agreement with Ref. [2]. For pi, p2, ps the ellipses
represent zeros. For k, ps they represent components
which depend on the remaining n — 4 angles of k. Since
these components do not contribute to [A]|M|2_, 5, those

angles were trivially integrated over in the phase space
(25).

APPENDIX B

In this appendix we list the coefficients for the various cross sections. For Adovysg/dvdw given in Eq. (16), the

coefficients AA; are

AA; =2[-1—u/s + u?/st + m?s/tu — 2m>u/t?],

AA; = —4[4(6u/t — 4s/u — t/T)m? [t — 4sT/t* — 16s/t + 24u/s + s/T + 4tu/sT)m? /T,
AAs =16[(7s/t + 3 — 3t/u)m*/t® + (4u?/st + 2t/s — s [tu)m? [t + t/s + u®/st],

AAy=4[4mPu/t? — 35/t + 4u/s|m? /T .

(B1)
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For dovysg/dvdw given in Eq. (16), the coefficients A; are
Ay =2[u/t — 2m? [t + sm?®[tu — 4m* [tu — 4m* [?],
Ay =4[4(12sT/t? + t/T + 6)m* /uT + (s?/uT — 45> /tu — 48> T /t?>u — 125/t — 2t/T — 8)m? /T — 4],
Az =16[12m®s/t3u + (s/t — 14 — 8t/u)ym*/t* — (3s/t + 7+ t/u)m? /t + u/t],

Ay =—4[4(28/t +t/T)m*/tu + (t/T — 4)m?s* /t*u + 2t /T — 4] . (B2)
We note that
[A]4; + (t & ) = 2m)*[A]|M 3o/ (Noeeu®). (B3)

For Adoyox/dvdw given in Eq. (22), the coefficients AB; are

AB; = AA;,

AB; = 4(s + 4t)m*/stu + 2(s/u + 4u/s)m?/s — s* /tu — 2s/u + t/u — 4u/s,

ABj3 = 12m*/tu + 2m?(t — u) /tu — s*/tu — t/u ,

ABy=[8(t —u)/s — 3s/t — s/ulm®/s + 5u/s — t/s ,

ABs = 4sT[tu + (t/u — 1)m?t? /sT? + 4(s® — 2t?) /st — Ttu/sT + t*(s — 3t)/sTu ,

ABg =2(s/t — 4)m* /tu — 2m>(t — u) /tu + s*/tu + t/u ,

AB7 = 4(u — 4t)m* /t?u + 2m2(u — t) /tu + 8* Jtu + t/u; ABg = (1 +t*/Ts)(t/u—1) . (B4)

For dopox/dvdw given in Eq. (22), the coefficients B; are

By =A;; B = (2m? - s)[(2m? — u)/st — 2/u] — 2m?(6m? + t)/su ,

Bz = —4m*/tu + 2m?*(u — t) /tu + s*[/tu + t/u; By = —2m*s/tu+2,

By =2[(2m?® + s)(2s/t + t/T) — t*/T?|/u;  Be = 8m*/tu+2m?/u — s*/tu — t/u ,

By = —4m®*/tu + 2m*(t — 3u)/tu — s®/tu — t/u; Bg = 2(s +t*/T)/u . (B5)

For A|M|3_,, given in Eq. (24) and Adop,/dvdw given in Eq. (30), the coefficients Ae; are

A& = —16(s/u — s/t — 2)m* Ju — 4[s52(2 + 25/u — t/s + u/s + 2t>/s* + 8tu/s?) + 25 — 4tu/sjm? /u
+55(4s/u — 4 — 8t%/su — 5t/s) ,

Aey = —4[2m?(2/sou + 2/s2t + 1/8% — u/s’t) + 6/t — t/s* + u?/s%t]/u ,

Aez = —2[8m*(1/tu — 1/squ — 8/52t%) — 2(4s/s5 + s/t — 1)m?/t — 3s/u — 5s/t
—(28%/tu — su/t + 3t + 2u + u®/t) /s3] ,

Aeg = —2(2mPs/t + 25 +u)m?/t;  Aes =0,

Aég = [32m* /u — 4m?(t/u + 5 + t?/su + 5t/s + 2% /s®u + 10t%/s® + 8tu/s?) + 4st/u — 16t — 8t%sy/su — 5tsa/s]/2;
Aér; = —2m? |

Aeg = 4m*(s/tu + 2/u + 1/s) — 2m?(s® /tu + 253 /u — 1 + t/s) — (s2/t + s + 355 + t2/s + 3tu/s)s/u;

Aeg =8(1/u—1/s7)/t,

Aero = 4[2(1/u + 2s/s2t — 2/sz)m2/u + sa/tu — 3/s2 — u/tsa] ,

A&y =8m*(s/t +t/u+ s2/s) — 2m3[2s% Ju + 25% /t + s + s2(2t/u+ 2 + du/t +t/s + u/s)]
—(2+ ) (t+u)/u;  Aéa =m?s;  Aeiz = —mZ(dm?s/t + 25 +u) ,

A&y = —m?*s;  Aeys = 4[2m? /u — 2m2 [t — t/u + u/t]/s? ,

Aeig = ay + a1 (t < u) — 8(m? + m?t/s — t)/su + 2[t*(t/u + 2) — u(u/t + 2)]/s%sz , (B6)
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where
a; = t[4m?(Ts/t + 1 + 3t/s + Qu/s) — 25 + 6su/t + 4t + u]/szus . (B7)
For |M|%_,; given in Eq. (24) and dog,/dvdw given in Eq. (30), the coefficients e; are

€1 = 2[16m® (¢t + u)/tu + 16m*(s2/u + s/t + 3) + 2m? (2552 — 2t + 253 /u)
+ 52(25 + 5t + 10u)]/u; ey = —8[2m%(t + u)/sat + 3]/tu ,
e3 = —2[16mO(t + u)/satu + 8(4 + u/t — 2s/s2)m* Ju + 2m2(6t/u + 6 — u/t — s/t + s/s3)
—2s%/u — 3st/u — 25 — sy + 3st/s2 — 2t3 /5] /t ,
eq=2m?(2m?/t +1)%; e5 = —4m?/u,
€6 = —16m*/u + 2m?(5s/u + Tt/u + 11) + t(4s/t — s/u + t/u + 17); &7 = 2m? |
es =8m®(s/t + 2+ u/s)/su+ 4(3s/t + 4 + 2s2/s)m* Ju + 2m2(sy/u — 2 — t/s)
— (s?/t+ s+ 3s3 +t?/s+ 3tu/s)s/u;  eg = 8(s2 + u)/tsu ,
e10 = —4[8m*/u + 2m?(s/u + 2) — s2/u + 4s + t + 3u]/tsz ,
€11 = 16m°[(t + u)?/tu + s2/s]/s + 8m*[(s — t) /u + t*/su + 3(t + u) /s + u?/st]
+2m2[u(s + u)/t + t(t +u)/s — tsa/u — Tsz — 2tsa/s — usa/s] + (s® + t3)(t + u)/u ,
é12=m*(8m*/s —4m? — 5); ez =mE(Bm*/t+4m? —t); é14=2m° e5=0,
e16 = —2[22m>(t + u)/tu + 3t/u + 14 + u/t]/s2 . (B8)

APPENDIX C

We give here the bremsstrahlung integrals I; appearing in Eq. (30). They are defined as

1 o
L= [ dfi; (2m)*[Al|M |35 = C D [Alesfi/s3 (C1)

[see (24)]. The f; may be explicitly expressed as functions of 6, and 6, using the expressions in Appendix A. All the

integrals here are four-dimensional [i.e., £ = 0 in (27)] and are determined using the general forms given in Ref. [2].

First we list the four basic integrals:

25, T+U~§ . 25, S,

Is= —In 7—F7p—, =T an—,
T sy T+U~+y sa(s+1t)  m?

48, 1 25 + 2s5./528

Is= 2 In T8 + SZS + 25, smg, zg = 4m3(s25 + tu) + s2s,
S24/8 \/Ts  xs + s3s — 2s3./57s

48 t—24/st

I = 2 21t ts ST , T =4mP(sy—t) + st . (C2)

824/ strq1 11 + st + 2\/ stxq1
Define
21 =2m2s+ sas —tu, 22 = squ—2m3s — st, z3=m2s—tu, z4=2m3s—tu, z5=2mZ+t. (C3)

We may now express the remaining integrals in terms of those listed above:

I. = 25224 Iézl
ST T m2(s+1)3 " (s+1)2]
Iy= -~—1——{2z (s2 —t)(s + t)s2 — (22 + 223525)(2m? + s2)} + ——I—é—(z2 + 2m?sz3)
48,5(s + £)3 V71 1T e I 4(s+ )2t 3/
o= 2z Igzy = 885, zs 1Y ol z5(s2 — t)
s+t s+t m?syt \ 11 So x11t
(s+t)2  2(s+¢) 2
Ta=—— 5927 oDu () s22)
z11(s2 — t)m?2t t T11
16Sy (12z3  §2 + s2 4114 s S925
La= - —sz5—3 —t(1- ,
47 sten (a:ut + s2m?2 115t 24— 925 25(s2 )t 11
S T, s2
Is = Ez%‘i{(z% + 252523)((] + T) + 2@222(82 - t)} + 46?]42{(Z4 — u2)2 + 2m2323} ,

za  Igsa(z4 — u?)
Le=22 _fe%2lza W) C
1o 72 27?2 (©4)



4818 B. KAMAL, Z. MEREBASHVILI, AND A. P. CONTOGOURIS 51

The integrals were put into the above form using REDUCE. The integrals not listed here (including the n-dimensional
ones not given in Ref. [2]) are straightforward and have been substituted directly in (30). As an aside, we point out
that z11(¢t <> u) vanishes for v = 1/2, w = w;. Hence one must avoid reaching ezactly the lower bound (as for the

upper) of the w integral, in numerical calculations.
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