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Heavy-quark production by polarized and
unpolarized photons in next-to-leading order
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Complete analytical results for the production of heavy-quark pairs by polarized and unpolarized
photons in next-to-leading order are presented. Two-, three-, and two-plus-three-jet cross sections
for a total photon spin 1 = 0, +2 are presented for bb(g) production. The two-jet cross sections are
considered as a background to pp —+ H' —+ bb (standard model). Top-quark production, not too far
above threshold, is also considered for J = 0, +2. For both 6- and t-quark production, the higher
order +CD corrections are found to be significant.

PACS number(s): 13.65.+i, 13.88.+e, 14.65.—q, 14.70.Bh

I. INTRODUCTION

Higher (next-to-leading) order corrections (HOC's) for
heavy-quark (Q,Q) production in unpolarized particle
collisions have been determined in detail [1—3]. For po-
larized particle collisions, however, analytical results were
still absent. Even for the unpolarized case, only virtual
+ soft corrections have been presented analytically [2].
Apart from general reasons, well known from unpolar-
ized reactions, knowledge of HOC's for Q, Q production
in polarized processes is important for several special rea-
sons.

Beginning with polarized pp collisions, which is the
subject of the present work, one reason of special inter-
est is the following. A pp collider becomes particularly
important for searches of the standard model Higgs boson
when its mass is below the W'+W threshold. Then the
predominant decay is H —+ b6 and the background comes
from pp —+ bb with direct or resolved photons. Leaving
aside the latter, for the moment, use of polarized pho-
tons of equal helicity (when the angular momentum has
J, = 0) suppresses this background by a factor mz/s [4,
5]. This holds, however, only for the lowest order of a, .
HOC's necessarily involve the subprocess pp ~ bbg, and
gluon emission permits the bb system to have J g 0 with-
out suppression; this may result in a sizable background.
Of course, another reason the J, = 0 channel is impor-
tant is that the Higgs boson signal comes entirely from
it. Thus, we maximize the Higgs boson to background
ratio in two difFerent ways.

Furthermore, at higher energies, it will be possible to
produce top quarks in photon-photon collisions. This,
when combined with other data on top-quark production
from e+e and pp collisions, should certainly improve

our knowledge of the top-quark parameters. The HOC's
could have a significant effect on the threshold behavior.
It is also interesting to examine the spin dependence of
the HOC's in this region.

In this paper we present complete analytical results for
heavy quark production by both polarized and unpolar-
ized photons. Numerical results are presented for 2-, 3-
and 2+3-jet cross sections for the cases where the initial
photons have total spin J = 0 and J = +2. For 6-quark
production, this is analyzed as a background to Higgs bo-
son production. We also consider t-quark production for
energies not too far above threshold.

The analytical results presented here are also useful
in determining the production of heavy quarks in polar-
ized photon-proton (proton-proton) collisions. This is be-
cause the process pp ~ QQ(g) is the Abelian (@ED)part
of the subprocess pg -+ QQ(g) [gg ~ QQ(g)], which is
by far the dominant subprocess in p-p (p-p) collisions [1,
2]. The non-Abelian part of pg ~ QQ(g) [gg + QQ(g)]
remains to be calculated.

II. LEADING ORDER CROSS SECTIONS

and

s, —:9, —m'—:(p, + p2 —ps)' —m' = s + t+ u,

where m is the heavy-quark mass. Defining

(2)

tv=1+ —,
s s+t

The contributing graphs are shown in Fig. 1. We in-
troduce the variables (momenta as in figure)

s —= (p, + p, )', t = T —m' —= (p, —p, )' —m',
u —= tr —m':—(p, —p, )' —m' (1)
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we may express

t = —s(1 —v), tL = —sVtU) s2 ——sv (1 —u)) . (4)
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P,

P2
— P

For the examples considered in this paper, it is of in-
terest to calculate (numerically) the cross sections for a
specific helicity state cr(Ai, A2). We present analytical re-
sults for the polarized and unpolarized cross sections 40,
0. Froin (5) we can obtain the desired cross sections via

FIG. 1. Lowest order contributions to pp —+ QQ.
0.(+,+) = 0. + b.o,

Defining

o(+, —) = o —Ao.

The polarized and unpolarized squared amplitudes are
defined, respectively, as K(s) —=

m "ir(4~) '+' (tu —sm')
s I'(1 —e) ( sm2

MIMI' —= 2[1M(+ +)I' —IM(+ —)I']2 —1 we may express the n (= 4 —2e)-dimensional two-body
phase space as

IMI' —= —[IM(+, +)I'+ IM(+ —) I'l2 1

where M(Ai, A2) denotes the Feynman amplitude with
photons pq, p2 having helicity Az, A2 respectively. The
same holds for the cross sections.

[&]
' ' =K(e) (2m)'[41M12 2 ~(I —~) (8)

It will become necessary to work in n dimensions when
we determine the HOG's (see next section for details).

The resulting leading-order (LO) cross sections are, in
n dimensions,

sm' (s'
+2

tu qtu

sm') ''
—4 «u i

Sm+4
tu

t2 2
=32~ K(e)b(1 —io)Ncn e p

'
dV 878

t2 2
= 327r K(e)b(1 —ui)%co. e&p

'
dVGGJ tu

where Nc (=3) is the number of quark colors and ec2
is the &actional charge of the heavy quark. Making use
of (4) and (6) we see explicitly that do.L~(+, +)/dude is
suppressed by order m /s.

III. I OOP CONTRIBUTIONS

The loop contributions arise &om the diagrams of Fig.
2 and their pq ~ p2 interchange. These diagrams contain
both ultraviolet and in&ared singularities. To regularize
them, we use dimensional reduction [6], where the mo-
menta are in n dimensions and everything else is in four
dimensions. This facilitates the handling of the Levi-
Civita tensor e" ~l'. As we will show below, the analyt-
ical expressions for the cross sections are regularization
scheme independent once all the contributions (including
the gluonic bremsstrahlung) are added. Throughout, we
work in the Feynman gauge.

The heavy-quark mass and wave function renormal-
izations are performed on shell. The self energy graphs
are shown in Figs. 2(a—c) and the corresponding mass
counterterm diagrams in Figs. 2(a' —c'). The factor 1/2
multiplying (b)—(c') comes from wave function renormal-
ization. The bare mass and wave function are determined
in terms of the renormalized ones via

1/2

(b)

1/2
/

(c)

(a')

1/2

(b)

1/2

(c')

(e)

where p is an arbitrary mass scale which enters via the
coupling in n dimensions: g —+ gp, '. In dimensional re-
duction we find, to order g )

(IZ =1 —3g C,Cy
I

—+ —I,3

fl
Z2 ——1 —g C,Cy

I
—,+5+ —

I

&)

mp = Zmmr) O'P ——Z2 4'„)1/2 (10) (e')

where Z and Z2 are the mass and wave function renor-
malization constants. Define

r(I+s) (4~p, 'l'
(4~) ( m )

FIG. 2. Loop graphs for pp —+ QQ. (a)—(c) self-energy
diagrams; (a')—(c') mass counterterm diagrams correspond-
ing to the graphs (a)—(c); (d), (e) vertex diagrams; (d'), (e')
dimensional reduction counterterm diagrams corresponding
to graphs (d), (e); (f) box diagram.
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Z$ Z2 (13)

between vertex and self-energy graphs, with Zz denoting
the vertex renormalization constant. The Feynman rule
for this vertex counterterm is found to be (in n dimen-
sions

—g 1
Cp p,"—

(4hr) 2

with

v." = (g"" —g." )v-, P,v fl

goal/

g „—g g~~ —n,

(14)

here g„" represents the n-dimensional metric tensor with,
formally, n ( 4.

When all the contributions to the physical cross section
(including gluonic bremsstrahlung) are added, the result
is free of in&ared divergences as there are no collinear
singularities here. Thus the only scheme-dependent part
might come &om the vertex and self-energy graphs. Hav-
ing satisfied the Ward identity (13), though, means that
the scheme-dependent part of the corrections cancels be-

with CF = 4/3. We use 1/s' to indicate which terms are
of ultraviolet origin.

In dimensional reduction we must add to the vertex
diagrams of Figs. 2(d, e) appropriate counterterms (d',
e') in order to satisfy the Ward identity [7]

tween vertex and self-energy graphs. This was explicitly
verified by calculating the vertex and self-energy graphs
in dimensional regularization. We also checked explicitly
that there are no differences between reduction and reg-
ularization arising from any other contributions. More
specifically, to obtain the dimensional regularization re-
sult for any particular contribution given in this paper,
simply replace the LO term by the corresponding LO
term &om dimensional regularization. When all the con-
tributions are added, the scheme-dependent part of the
LO term cancels along with the 1/s infrared divergence
multiplying it. Hence, the absence of collinear diver-
gences or vacuum polarization graphs leads to scheme-
independence.

As was stated in Refs. [8] and [9], a counterterm like

(14) was used to rexnove an unphysical term. Gen-
eral one-loop counterterms have been developed [10] to
convert unpolarized dimensional reduction results into
the corresponding dimensional regularization results for
the purely massless case. Also, certain equivalences be-
tween dimensional reduction and dimensional regulariza-
tion have been noted [11]. In the present case, how-
ever, satisfaction of (13) is sufficient to ensure scheme-
independence.

Adding the contributions of Figs. 2(a—e') (and the
t ++ u interchange) resulted in the ultraviolet finite vertex
plus self-energy cross section

l( t t & t t l t ( tl . (Tl—ln~ —
~ ~

8 —6——
~

—2 ——&+A2ln~ —
~

/As Li2
~ (

—((2) +A4+(t++u)
m ) ( T T ) T m2) qm2) )

(16)

where

(17)

The corresponding polarized cross section AdovsE/dvdha can be obtained by replacing the A; and doLci/dvdhv in (16)
by AA; and AdoLo/dvdhu, respectively.

The [A]A, are given in Appendix B. We will use this notation throughout. We note the term 1/s in (16)
representing an infrared divergence. Also, note that [6]Ai is proportional to the LO squared amplitude without the
t m u interchange [see Appendix B, Eq. (B3)].

Since [A]dor, ~/dvdhv is in general regularization scheme dependent to O(s) (working in n dimensions), we see
explicitly that truly scheme-independent cross sections will result only when all contributions are added and all
in&ared divergences are cancelled.

In order to evaluate the box graph of Fig. 2(f), we must reduce the resulting tensor integrals to scalar ones
(conveniently listed in Ref. [2]) using projective tensor techniques [12]. The tensor integrals have the general form

D '"' "'"""(ki,k2, ks, mi, m2, ms, m4)

cPq 1, q", q"q, q"q q

(27r) (p —mi) [(p+ ki) —m2][(p+ ki + k2) —ms][(p+ ki + k2 + ks) —m4]

where the k, are general momenta. As an example, the vector box integral we encounter has the decomposition

D"(p4, —p„—p„0,m, m, m) = p4D» —p,"D» —p", Dis.

In general, the scalar coeKcients D;~ are not independent. This simpli6es somewhat the calculation. Noting that
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D"(p4, —p2, —pg, 0, m, mi m) = —D"(ps, —pg, —p2, 0, m, m, m),

we obtain

(20)

D12 —D11 D13& (2I)

since the D,z in both integrals are the same, due to the fact that they are scalars. Using the same approach, we
reduce the number of independent D,~ from seven to five in D"" and &om thirteen to eight in D~" . This method
was quite helpful in keeping the very large intermediate expressions as short as possible.

Adding the contribution of Fig. 2(f) and the t ++ u interchange gives the virtual box cross section

do box do LO 2m 1" =16+a,CyC, 21'(2:) ——tn(t8) + 2 Lip (
—x) —2Lig (x) —84 (2))dvdto

' '
dvd2o sP 2G'

CK(0) 2m2 —s 2 B2
+b(1 —2o) (4~)' sp

—8Bq ln(x) ln( —t/m ) + 2 (ln(x) [41n(1 + x) —ln(x)

where

—4ln( —t/m )] + 4Li2( —x) + 2((2)) + 2Bs ln (x) + 4 ln(x) + 4Bs ln( —t/m2)

+8B Li~(TB/m ) 4-4Btt(2) + 4B~+ (t 4+ u) I, (22)

((2) =—
6 ' p = Ql —4m2/s,

1—
I+p

The [E]B, are given in Appendix B. We see again the infrared divergence I/z.
Independent calculations were performed using FQRM [13] and REDUcE [14]. The latter proved useful in factoring

the expressions and cancelling powers in the denominators.

IV. GLUONIC BREMSSTRAHLUNG
CONTRIBUTIONS

The bremsstrahlung diagrams are shown in Fig. 3. Squaring these diagrams (plus their pq u p2 interchange), we
obtain the 2 —+ 3 particle squared amplitude

82 P2 ' P4 P2 P4 Pl P4' 82 P3 ' P Pl ' P4 P2 ' P4

+""'. + -"'. +
~ k2 . k

Pl P4 Pl 'P4

P2 '

+ + els.p p . k2

e

p2 p4 p3 . kp p p k p p p, k 2

k' p, k
+e)s „+(p, m@2, tmu) .

~ k P3 ~

(24)

As before, we may obtain A~M~2~s by replacing the e,
in (24) by Ae;. The [A]e; are given in Appendix B.
Again, independent calculations were performed using
FORM and REDUCE. The former proved useful in partial
fractioning and other reductions of the dot products.

To obtain the total bremsstrahlung contribution to
[A]der/dvdzo, we perform the phase-space integrations in

where

' = «(~), f(~) f~t2(2m)'I*2. 'Illtt4ll2 a, (25)

alid

f()—: ( ) (' — )' '* (26)

I

the frame where p4 and k are back to back. We 6nd (in
agreement with Ref. [2]), for the 2 -+ 3 phase space,

0 = dOl sin Ol dO2 sin O2.
0 0

(27)

FIG. 3. Gluonic bremsstrahlung graphs for pp —+ QQg.

The gluon angles Ol and O2 are de6ned in Appendix A
along with all the momenta.

We first evaluate all the phase space integrals in four
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dimensions since, for u) g 1, all the integrals are finite.
For u) = 1, the terms in (24) with coefficients e, are
singular through the relation [15]

1 1
(1 —u)) ' ' = — b(1 —u)) + + O(e),

2E' (1 —u)+
(28)

where the function 1/(1 —u))+ is defined through

f ( ) 'd ( ) — ()+f(,)l„(, )(1 —~)+ -, (1 —~)
(29)

This means that, for these terms, the integrals must also
be evaluated in n dimensions in the limit m ~ 1, keeping
their O(e) part. The resulting integrals are straightfor-
ward.

The final result is, with y—:g(t + u)2 —4m2s,

d0 Bq

dv de)

CK(0) — s2(s + u) 2S2 S2 4S2
2 2af(0) e2+ ln

2 ez + 2 2e4+ e5I5 + esIs + e9Is + eipIio + ei3Ii34' 2 4S, s2 s+u m2 m2 s+u 2

+el 5I15 + elsIls + (I se n) )
CK(0)

(1 —u))+ (4~)'
do.Lo+8~+,CFC,
dv Qto

1 2S2 T+ U —y S2
es 4- ln es 4- 4 ee + ssIssecc + sII~sess + ssIcsess + (1 ee o))2 y T+ U+y m2(, ( sv 1) . ( —4P(2ms —s) 2lnz

]
21n ——

]

—1 —2 Lcs
] ]

+ln v )p~ m' e) ((1—p)' j
sv

+2sp 1 —2 ln
m2

1+
E' (30)

where the integrals I; are given in Appendix C.

V. PHYSICAL CROSS SECTIONS

We may obtain the 2+3-jet cross section by adding (9),
(16), (22), and (30):

the end of this section.
Let 03 denote the angle between p3 and pi in the pp

c.m. Then the integrated 2+3-jet cross section, with the
constraint

~

cos 0s] ( cos 0&, for some 0&, is given by

[&]~2+s(s)

V2 »1

dv du) 8(cos' 0~ —cos' 0,) [A] +', (32)
dv dtD

We notice the cancellation of all the 1/e infrared diver-
gences, leading to a finite, scheme-independent result.

At this point it is useful to note that for s )) 4m, the
LO cross sections (9) are large in the forward and back-
ward directions. Since jets going down the beam pipe
are difBcult to measure experimentally, angular cuts are
necessary for bb production well above threshold. At the
same time, we reduce the bb background to the Higgs
signal. This also helps eliminate resolved photon contri-
butions where the partons within the photon participate,
as opposed to the direct contributions, which we present,
where the photon is structureless. This is discussed at

I

where

1» = -(1—P)2

1
v2 = —(1+p),

2
m, (v) = m2

s v(1 —v)

(33)

and

—(1 —v —vu))
cos 03 ——

Q(1 —v + vu)) 2 —4m2/s
(34)

Alternatively, we may convert to d(7/dcos 0sdu) and inte-
grate directly over 83 and m.

The integrated 3-jet cross section is given by

V2 1

]A]os(s) = dv dm 82(cos 8o —cos'8s)f(0) fdll(2m) ]41]]M]s
4vr 2

x 8((ps + k) —y,„,s)8((p4 + k) —y,„,s)
Vg 'Q72

dv dsv e(cos 8o —cos 8s) f(0) fdll(2m) ]E]]M]s
4vr 2

xO((ps+ k) —y,„~s), ycut —m /s2

t02=1— (35)
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remains large. We also notice o.2+3 OL~ throughout.
Figures 5(a,b) present the same quantities as in Figs.

4(a,b) except with ec = 45'. The major difference is that
the cross sections are smaller everywhere and o'2(+, +)
is particularly suppressed for 30& ~s&60 GeV. This
reHects the fact that the 2-jet events tend to occur at
smaller angles.

An interesting feature of the HOC arises for both o.2+3
and 402+3. In both cases, os and 00 are much larger
that oz,o, for s )) 4m . But they have opposite sign and
are of almost equal magnitude, leading to large cancella-
tions. In other words, the "virtual + soft" part conspires
with the "hard" part to yield HOC's which are under
control.

Figure 6 presents the 2-jet background to the Higgs
boson decay pp ~ H' —+ bb. We have used the stan-
dard model Higgs cross section of Ref. [4] which takes
e~ ——30 and an average value of (AqA2) = 0.8. The pho-
tons are produced by laser backscattering ofF electrons
(positrons) at an e+e collider with E,+, =50—0 GeV.
As well, Ref. [4] uses an efFective integrated luminosity of
L,g ——20fb and a pp energy spread of I',„&t ——5 GeV;
~s = m~ + I',„~t/2. Using the expression of Ref. [4] for
converting the pp ~ bb(g) cross section into a number of
events, we obtain the LO and 2-jet curves shown in Fig.
6.

At large ~s, the increase in o 2 (+, +) relative to
Irr,~(+, +) is compensated by a decrease in cr2(+, —) rel-
ative to o' r,o(+, —), so that or2((AqA2) = 0.8) does not
change radically. In the end, the 2-jet cross section is
still well below the Higgs signal for 90 m~ 150 GeV.
With higher degrees of polarization, we could do even
better.

10

0
|I =30 y, = 0.15

(/)

C
(L)

LLI

10 ', LO

yy~H ~ bb

10

10
Z

10
20 40 60 80 100 120 140 160 180 200

ITI (GeV)

Figure 7(a) gives o'2+a and or, o for t-quark produc-
tion in the range 1 ( V s/2m & 1.4 for J, = 0 and
1, = +2, without angular cuts. Figure 7(b) is the same
except with 0~ ——30'. We notice that the angular cuts
do not make a big difference. This is because there is no
peaked behavior in the forward or backward directions

FIG. 6. Two-jet bb background to standard model Higgs
boson decay: pp —+ H' ~ bb (solid line), crLo (dotted), and
a2 (dashed) for 20 & mH & 200 GeV. Number of Higgs
events taken from Ref. [4]. Here ec = 30', & AiA2 &= 0 g.
The other experimental parameters are described in the text.
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FIG. 5. Same as Fig. 4, except with Ot- ——45'.

FIG. 7. Cross sections for pp ~ tt(g): O'Lo(+, —) (lower
dashed line), cr2+3(+, —) (lower solid), or, o (+, +) (upper
dashed), and o'2+3(+)+) (upper solid) for 1 & Vs/2m, & 1.4:
(a) ec = O; (b) ec = 3O .
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as for bb production. As explained earlier, the (near) ab-
sence of resolved contributions makes the angular cuts
less important experimentally as well. The most inter-
esting feature of the HOC is that just above threshold,
the HOC to o(+, +) completely dominate. There is no
similar behavior &om o(+, —). This suggests that the
J = 0 channel is ideal for maximizing the top cross sec-
tion not too far above threshold. At any rate, this drastic
spin dependence of the HOC is of theoretical interest by
itself and could be tested at the bb threshold as well. As
the cross section is actually a function of only l/s/m (or
P) and o., (Q ) (times an overall factor of e~&/s), the only
difference would be an increase in the HOC for bb rela-
tive to its corresponding LO term, due to an increase in
0, In fact, the only ambiguity in the predictions is the
choice of scale Q in o, (Q ). Uarying Q in the range
s/4 ( Q ( 4s, for l/s = 400 GeU, gives n, in the range
0.0878 ( o., ( 0.104 and a corresponding variation in
the magnitude of the corrections.

Figure 8 gives the unpolarized cross sections corre-
sponding to Fig. 7(a). We also plot the small P (thresh-
old region) approximation of Ref. [3]. Our results agree
with this approximation just above threshold. We see
that the approximation breaks down for ~s/2m )1.02.
As expected, we found that almost all of the correction
comes &om os, i.e. , 0~ is almost negligible not too far
above threshold. We found the same was true for Los,
Lo.H.

VII. CONCLUSIONS

We have obtained complete analytical results for the
production of heavy-quark pairs by polarized and un-
polarized photons in next-to-leading order. Using these
expressions, we computed cross sections for b- and t-
quark production by photons having net spin J, = 0, +2.
From the bb cross sections, we determined the back-
ground to pp -4 H* -+ bb (standard model) coming from

bb(g) (2-jet) for (AlA2) = 0.8. The HOC's to the
J = 0 channel were found to be large for 8 )) 4m .
For the experimental setup considered, the background
was safely below the Higgs signal (but still sizable) for
90 mH 150 GeV, even after inclusion of HOC's. For
t-quark production, not too far above threshold, the dom-
inant contribution came from the J = 0 channel. Just
above threshold, the HOC's to this channel completely
dominate.
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APPENDIX A

Here we present the momentum parametrizations in
the frame where p4 and A: are back to back. We find

Pl (~1 i

p2 = (~2j
k = (Mg',

p4 = (&4,

ps = (&s,

Ip I
»n & I p I

cos & —~2)
0, . . . , O, cu2),

. . . , (dg Sill Ol COS O2, (dy CQS Ol ),
. . . ,

—ug sin Ol cos O2, —~~ cos Ol),

0, . . . , IpI sine(, IpI cos @),

where

S+t 8+u S2

2~S, ' ' 2~S, ' " 2~S, '

82+ 2mQ4—
2 S2

us2 —s(t + 2m')
cos (s+ u)y

T+U y
2~s I'I =

2~s,

(A1)

(A2)

in agreement with Ref. [2]. For pl, p2, ps the ellipses
represent zeros. For k, p4 they represent components
which depend on the remaining n —4 angles of k. Since
these components do not contribute to [A] IMI2~s, those
angles were trivially integrated over in the phase space
(25).
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ral Sciences and Engineering Research Council of Canada
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APPENDIX B

In this appendix we list the coefficients for the various cross sections. For AdcrvsE/dvdtv given in Eq. (16), the
coeKcients LA; are

AAl ——2[—1 —u/s + u /st + m s/tu —2m u/t ],
AA2 ———4[4(6u/t —4s/u —t/T) m /t —4sT/t —16s/t + 24u/s + s/T + 4tu/sT]m, /T,
AAs ——16[(7s/t+ 3 —St/u)m /t + (4u /st+ 2t/s —s /tu)m /t+ t/s+ u /st],
AA4 ——4[4m u/t —3s/t + 4u/s]m /T . (B1)
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For dovsE jdvdm given in Eq. (16), the coefficients A, are

A, = 2[u/t —2m /t + sm /tu —4m /tu —4m /t ],
A2 ——4[4(12sT/t + t/T+ 6)m /uT+ (s /uT —4s /tu —4s T/t u —12s/t —2t/T —8)m /T —4],
A3 —16[12m s/t u + (s/t —14 —St/u)m /t —(3s/t + 7 + t/u)m /t + u/t],
A4 ———

4 [4(2s/t + t/T) m /tu + (t/T —4)m s /t u + 2t/T —4] .

We note that

[&]Ai+ (t ++ u) = (2m)'[&] IMILQ/(~ce egp ).
For Adob /dudm given in Eq. (22), the coefficients AB; are

ABg ——AAg,

AB2 ——4(s+ 4t)m /stu+ 2(s/u+ 4u/ s) m/s —s /tu —2s/u+ t/u —4u/s,
ABs = 12m /tu+ 2m (t —u)/tu —s /tu —t/u,
AB4 ——[8(t —u)/s —3s/t —s/u]m /s + 5u/s —t/s,
ABs ——4sT/tu+ (t/u —l)m t /sT + 4(s —2t )/st —7tu/sT + t (s —3t)/sTu,
ABs —2(s/t —4)m /tu —2m (t —u)/tu+ s /tu+ t/u,
AB~ = 4(u —4t) m /t u + 2m (u —t) /tu + s /tu + t/u; ABs ——(1 + t /Ts) (t/u —1) .

For dcrb „/dvdut given in Eq. (22), the coefficients B; are

B& ——Az', B2 ——(2m —s) [(2m —u)/st —2/u] —2m (6m + t)/su,
B3 ——4m /tu + 2m (u —t)/tu + s /tu + t/u; B4 —— 2m s/tu —+ 2

Bs ——2[(2m + s)(2s/t+ t/T) —t /T ]/u; Bs ——8m /tu+ 2m /u —s /tu —t/u,
B7 ———4m /tu+ 2m (t —3u)/tu —s /tu —t/u; Bs ——2(s+ t /T)/u .

For EiM~2~s given in Eq. (24) and AdaB, /dvdtv given in Eq. (30), the coefficients Ae; are

Aei ———16(s/u —s/t —2)m /u —4[s2(2 + 2s/u —t/s + u/s + 2t /s + Stu/s ) + 2s —4tu/s]m /u

+s2(4s/u —4 —8t /su —5t/s),

(B3)

(B5)

Ee2 = —4[2m (2/s2u + 2/s2t + 1/s —u/s t) + 6/t —t/s + u /s t]/u,

Des ——2[8m (1/tu —1/s2u —s/s2t ) —2(4s/s2 + s/t —1)m /t —3s/u —5s/t
—(2s /tu —su/t + 3t + 2u + u /t)/s2],

Ae4 ———2(2m s/t + 2s + u)m /t; Ae5 ——0,

Des ——[32m /u —4m (t/u + 5 + t /su + 5t/s + 2t /s u + 10t /s + 8tu/s ) + 4st/u —16t —8t s2/su —5ts2/s]/2;

Le7 ———2m

Res ——4m (s/tu + 2/u + 1/s) —2m, (s /tu + 2s2/u —1 + t/s) —(s /t + s + 3s2 + t /s + 3tu/s) s/u;

Des ——8(1/u —1/s2) /t,

&ego = 4[2(1/u + 2s/s2t —2/s2) m /u + s2/tu —3/s2 —u/ts2],

Deil ——8m (s/t + t/u + s2/s) —2m [2s /u + 2s /t + s + s2 (2t/u + 2 + 4u/t + t/s + u/s)]
—(s + t ) (t + u)/u; Aei2 ——m s; Aeis —— m, (4m s/t + 2s + u)—,

aei4 ———m48; b, egs ——4[2m /u —2m2/t —t/u+ u/t]/s

Aezs ——az + az(t ~ u) —8(m + m t/s —t)/su+ 2[t (t/u+ 2) —u (u/t+ 2)]/s s2, (B6)
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where

a1 ——t[4m (7s/t + 1+3t/s + 9u/s) —2S + 6su/t + 4t + u]/s2us .

For ~M~& 2 given in Eq. (24) and do»/dvd1v given in Eq. (30), the coeff1cients e; are

(B7)

e1 ——2[16m (t + u)/tu + 16m, (s2/u + s/t + 3) + 2m (25s2 —2t + 2s2/u)
+ s2(2B+ 5t+ 10u)]/u; e2 ———8[2m (t+ u)/s2t+ 3]/tu,

es ———2[16m (t + u)/s2tu + 8(4 + u/t —2s/a2) m /u + 2m (6t/u + 6 —u/t —s/t + s/S2)
—2S /u —3st/u —2S —S2 + 3st/s2 —2t /s2u]/t,

e4 ——2m (2m /t + 1); e5 ———4m /u,
es ———16m /u + 2m (5s/u + 7t/u + 11) + t(4s/t —s/u + t/u + 17); e7 = 2m

es ——8m (s/t + 2 + u/s) /su + 4(3s/t + 4 + 2s2/s) m, /u + 2m (s2/u —2 —t/s)
(s /t + s + 3S2 + t /s + 3t u/s) s/'u1 eg = 8(S2 + u)/ts2u'

e1p ———4[8m. /u + 2m (s/u + 2) —s2/u + 4S + t + 3u]/ts2,
e11 ——16m [(t + u) /tu+ s2/s]/s + 8m [(s —t)/u+ t /su + 3(t + u)/s + u /st]

+ 2m [u(s + u) jt + t(t + u)/s —ts2/u —7S2 —2ts2/s —us2/s] + (s + t ) (t + u)/u,
e12 ——m (8m /s —4m —s); e12 ——m (8m /t + 4m —t); e14 ——2m; e1s ——0,
e1s ———2[22m (t + u)/tu + 3t/u + 14 + u/t]/s2 .

APPENDIX C

We give here the bremsstrahlung integrals I; appearing in Eq. (30). They are defined as

I; =—1
27'

(C1)deaf, ; (2m) [b]/M/2~2:—C) [A]e,f; js2'

[see (24)]. The f, may be explicitly expressed as functions of 01 and 02 using the expressions in Appendix A. All the
integrals here are four-dimensional [i.e. , e = 0 in (27)] and are determined using the general forms given in Ref. [2].

First we list the four basic integrals:

2' T+ U—
spy T+ U+
4Sz 1 &8

Is = ln
XS Xs

4Sg xgg
11 ln

S2 21/StX11 X11

Define

2Sg Sg

s2(s+ t) m2 '
y

y

+ S2S + 2S2+sxs
+ s2s —2s2/sxs '

+ st —2+stx11
+ Bt + 21/Stx11

x11 = 4m (s2 —t) + at .

xs =—4m (S2S + tu) + B2S,

(C2)

zq = 2m s+ sos —tu,2
z~ = s~u —2m s —st,2 Z3=m S —ttL,

2 z4=2m s —tu,2 z, —=2m +t. (C3)

We may now express the remaining integrals in terms of those listed above:

I,'z4

2

I1s —— ((zz + 2S2szs)(U+ T) + 2p z2(S2 —t)) + ((z4 —u ) + 2m szs),4s, y4 4 —4

2S&z4

m'(s+t)' (s+t)' '

I'
Ig —— (2Z1(B2 —t)(s+ t)s2 —(z, + 2zsS2S)(2m + s2)) + (z4+ 2m szs),

4S2 s+t 2 4s+t'
Z1 8S, (z, 1~ z, (s, —t)10— 12 2

2 11(s+ t) 2(s+ t)
' m S2t (X11 s2) x11t

8S2zs I11 ( S2Z51
2

—2 1—
x11(s2 —t)m t t 4 X11 )

166~ (12z, 6' + s', l 4111 8 f s/z5 l
)14— + 82u —Szs —3zs S2 —t — 1—

stxll E xll S2 ) xlls t 4 xll

Z2
Ig6

y2

Iss2 (z4 —u2)
2y~

(C4)
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The integrals were put into the above form using REDUcE. The integrals not listed here (including the n-dimensional
ones not given in Ref. [2]) are straightforward and have been substituted directly in (30). As an aside, we point out
that xqq(t ~ u) vanishes for n = I/2, m = tvq. Hence one must avoid reaching exactly the lower bound (as for the
upper) of the m integral, in numerical calculations.
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