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Massless fields in scalar-tensor cosmologies
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We derive exact Friedmann-Robertson-Walker cosmological solutions in general scalar-tenser
gravity theories, including Brans-Dicke gravity, for stiff matter or radiation. These correspond to
the long or short wavelength modes, respectively, of massless scalar 6elds. If present, the long
wavelength modes of such fields would be expected to dominate the energy density of the Universe
at early times and thus these models provide insight into the classical behavior of these scalar-
tensor cosmologies near an initial singularity, or bounce. The particularly simple exact solutions
also provide a useful example of the possible evolution of the Brans-Dicke (or dilaton) field P and
the Brans-Dicke parameter u(P) at late times in spatially curved as well as fat universes. We also
discuss the corresponding solutions in the conformally related Einstein metric.

PACS number(s): 04.50.+h, 04.60.—m, 98.80.Cq, 98.80.Hw

I. INTRODUCTION

If we hope to describe gravitational interactions at
energy densities approaching the Planck scale it seems
likely that we will need to consider Lagrangians extended
beyond the Einstein-Hilbert action of general relativity.
The low-energy efFective action in string theory, for in-
stance, involves a dilaton Geld coupled to the Ricci curva-
ture tensor [1]. Scalar fields coupled directly to the curva-
ture appear in all dimensionally reduced gravity theories,
and their inQuence on cosmological models was first seri-
ously considered by Jordan [2]. These models have been
termed scalar-tensor gravity, the best known of these be-
ing the Brans-Dicke theory [3]. Gravity Lagrangians in-
cluding terms of higher order in the Ricci scalar can also
be cast as scalar-tensor theories [4,5] with appropriate
scalar potentials.

The belief that modified gravity theories may have
played a crucial role during the early Universe has re-
cently been rekindled by extended infiation [6]. In this
scenario a scalar-tensor gravity theory allows the Grst
order phase transition of the "old" inQationary model
[7] to complete. This arises because the scalar field

P (henceforth the Brans-Dicke field, essentially the in-
verse of the Newton's gravitational "constant") damps
the rate of expansion and, in the original extended in6a-
tionary scenario based on the Brans-Dicke theory, turns
the exponential expansion found in general relativity into
power law infiation [8]. However, Brans-Dicke theory is
unable to meet the simultaneous and disparate require-
ments placed by the post-Newtonian solar system tests
[9] and by the need to keep the sizes of the bubbles nucle-
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ated during inflation within the lixnits permitted by the
anisotropies of the xnicrowave background [10].

This situation may be averted through the considera-
tion of more general scalar-tensor theories in which the
parameter u, a constant in Brans-Dicke theory, is allowed
to vary as u(P) [11].But in such cases one needs to un-
derstand better the cosmological behavior of these gen-
eral theories, in order to assess their implications on our
models of the Universe. Direct observations mainly con-
strain these theories at the present day in our solar sys-
tem [12], imposing a lower bound u ) 500 and requiring
that u s(eke/dP) should approach zero. On a cosmologi-
cal scale, the principal limits arise &om the consideration
of efFects upon the synthesis of light elements, indicating
that at the time of nucleosynthesis similar bounds hold
[13].

Most of the work that can be found in the literature
on solutions of scalar-tensor theories concerns the partic-
ular case of Brans-Dicke theory [14—19]. The properties
of more general scalar-tensor cosmologies have been dis-
cussed recently [20,21] and exact solutions derived for the
vacuum and radiation models [22] (where p = p/3) corre-
sponding to the particular situation where the scalar field
is sourceless (because the matter energy-xnomentum ten-
sor is traceless). In this paper we show how to extend
this method to derive exact solutions for the homoge-
neous and isotropic cosmological models with a perfect
Quid characterized by the equation of state p = p, which
does act as a source for the Brans-Dicke field. These
models represent the evolution a homogeneous massless
scalar field [23]. Such a scalar field may describe the
evolution of efFectively massless fields, including in the
context of superstring cosmology the antisymmetric ten-
sor Geld which appears in the low energy string efFective
action [1,24].

As the energy density of a barotropic perfect Quid with
p = (p —l)p evolves as p oc a s'x, such "stiff matter"
would be expected to dominate at early times in the Uni-
verse [25] over short wavelength modes or any other xnat-
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ter with p & p. Thus our solutions provide an important
indication of the possible early evolution of scalar-tensor
cosmologies.

As in [22], our solutions will be given in closed form in
terms of an integration depending on u(P), which can be
performed exactly in many cases and numerically in all
cases. The general field equations are given in Sec. II for
scalar-tensor gravity and we solve these in Friedmann-
Robertson-Walker metrics for vacuum, stifF Quid, and ra-
diation models in Sec. III. The equivalent picture in the
conformally transformed Einstein kame is presented in
Sec. IV. Conclusions on the general behavior of solutions
are presented in our final section.

II. SCALAR- TENSOR GRAVITY THEORIES

The scalar-tensor field equations [26] are derived &om
the action

S= 1 4d xi/ —g P(B —2A(P)) — g P Pb
~(&) .b

16' M

r.b ~(y) & . „&ab g b& = 8'rr + 2 l 9 9b 9&bg l 4,&4', &

1+—(V Vbg —g b Op) (2.2)

Clg = 8vr T —g' ur, P,q
2w +3 (2.3)

where T = T is the trace of the energy-momentum ten-
sor of the matter defined as

(2.4)

It is important to notice that the usual relation
VgT = 0 establishing the conservation laws satisfied
by the matter fields holds true. This follows &om the as-
sumption that all matter fields are minimally coupled to
the metric g ~, which means that the principle of equiv-
alence is guaranteed. The role of the scalar field is then
that of determining the spacetime curvature (associated
with the metric) produced by the matter. Matter may
be a source of the Brans-Dicke field, but the latter acts
back on the niatter only through the metric [28].

+16~i'. (2.1)
III. FRIEDMANN-ROBERTSON-WALKER

MODELS

where R is the usual Ricci curvature scalar of the space-
time, P is the Brans-Dicke scalar field, ur(P) is a dimen-
sionless coupling function, and 8 represents the La-
grangian for the matter fields. It is clear that the scalar
field plays the role which in general relativity is played by
the gravitational constant, but with P now a dynamical
variable.

The particular case of Brans-Dicke gravity arises when
we take u to be a constant and A = 0 in the Lagrangian
of Eq. (2.1). The A(P) potential is the natural generaliza-
tion of the cosmological constant A. It introduces terms
which violate Newtonian gravity at some length scale.
In what follows we will leave u(P) as a &ee function but
consider only models in which A is zero. This should be
valid at least at sufBciently early times when we expect
kinetic terms to dominate, and will also avoid introduc-
ing too many &ee functions into our analysis. (Note that
the Lagrangian is sometimes written in terms of a scalar
field y with a canonical kinetic term so that P = f(p)
and w(P) = f/[2(df/dp) ].)

Taking the variational derivatives of the action (2.1)
with respect to the two dynamical variables g b and P
and setting A(P) = 0 yields the field equations

One can also include an additional boundary term depen-
dent on the extrinsic curvature of the boundary [5], as is re-
quired in general relativity [27] to allow for the variation of
g &, on the boundary.

We consider homogeneous and isotropic universes with
the metric given by the usual Friedmann-Robertson-
Walker (FRW) line element

dr2
ds = dt + a(t) — + r (dg + sing dp )1 —k~2

(3.1)

(u(P) Q2 k 87r pH +H —— + (3.2)

a ~(P)
a 2u)(P) + 3 (4 —3~), (3.3)

H+H + ——H —=—~(4) 4' 8vr p (3p —2) u) + 3

3$ 2ur(g) + 3

1

2 2~(P) +3 P
'

(3.4)

The equation of motion for P, in particular, demonstrates
how the specific w(P) determines the deviation &om both

The field equations for a scalar-tensor theory, where we
allow the coupling parameter u to depend on the scalar
field P, but restrict the potential A to be zero, are then
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general relativity and Brans-Dicke gravity. General rela-
tivistic behavior, with P =const, is only allowed for trace-
free matter [(4 —Sp)p = 0] or w —b oo. The presence of
a variable u(P), in contrast with Brans-Dicke gravity,
introduces a further damping term, in addition to the
Hubble darn. ping, on the left-hand side.

Several authors have studied cosmological solutions of
the Brans-Dicke theory for a FRW universe filled with
a perfect fluid [3,14—17]. Nariai [29] derived power law
solutions for the Qat FRW universe with a perfect Quid
satisfying the barotropic equation of state p = (p —1)p,
with p a constant taking values in the interval 0 & p & 2.

The solutions of these equations of motion are de-
fined by four integration constants whereas the corre-
sponding solutions in general relativity depend on only
three [18]. In addition to the values of a(to), a(to), and

P(to) oc 1/G(to), 2 we now also need P(to) [or p(to) in-
stead]. Originally, as done by Brans and Dicke, and by
Nariai, this extra &eedom was eliminated by requiring
that gas should vanish when a approaches the initial sin-
gularity at a = 0. In a Qat FRW model this restricts one
to obtaining only the power law solutions of the Brans-
Dicke theory. Here we shall keep our analysis more gen-
eral.

The derivation of the general barotropic Brans-Dicke
solutions for the spatially fiat (k = 0) inodel was done
by Gurevich, Finkelstein, and Ruban [16]. Their solu-
tions, which cover all the space of parameters of the
theory, render clear a very important feature of the be-
havior of the Qat cosmological models, namely, that for
the solutions which exhibit an initial singularity (those
with u ) —3/2) the scalar field dominates the expansion
at early times, while the later stages are matter dom-
inated and approach the behavior of Nariai's solutions
for u ) 2(p —5/3) j(2 —p) . Note therefore that the stifF
Quid solutions are unique in that they do not approach
Nariai's power law solutions at late times other than in
the limit ~ m oo.

The same solutions for the Qat model in the cases of
vacuum, stifF matter (p = p), and radiation (p = p/3)
were rederived later by Lorenz-Petzold [17] using a differ-
ent method which enabled him to also obtain solutions for
the nonQat models. We use this method in an improved
form [22] to derive solutions for the general scalar-tensor
theories.

Using the conformal time variable q defined by the
differential relation

we can rewrite the above field equations as

(X') + 4 k X —(Y' X) = 4MXa (3.8)

[Y' X] = M(4 —Sp)
3

24)+3
a4 '&, (3.9)

X"+4k X = 3M(2 —p) a (3.10)

where the density p = SM/8zu ~ for a barotropic fiuid
with M a constant. The prime denotes differentiation
with respect to g. Our variables are akin to those used
by Lorenz-Petzold [17] when solving for the Brans-Dicke
theory. To that extent the method we explore here is
a generalization of his method of obtaining decoupled
equations. Note that whenever X is negative this must
correspond to a negative value for P. In what follows,
unless otherwise explicitly stated, we shall assume that
ur ) —3/2, to guarantee the positiveness of the function
under the square root in Eq. (3.7), although it would
be straightforward to redefine Y(P) for the case of u (
-3/2.

This system considerably simplifies for the two partic-
ular cases: p = 4/3 (radiation) and p = 2 (stiff matter).
We shall show in the next section precisely how these
correspond to the short and long wavelength limits of a
massless field, respectively. These two limits do corre-
spond to unusually simple cases. The energy-momentum
tensor for radiation (or vacuum) is trace-free and so the
equation of motion for P, Eq. (3.3), has no driving term
on the right-hand side. Thus it can be written as an
equation of motion for the massless field Y(P), Eq. (3.9).
While stiff matter does drive the field P we will show
that Eq. (3.9) can still be written as an equation of ino-
tion for a redefined massless field Z(P). In either case the
full integration is again possible, provided we specify the
function ~(P). For other values of p, Eq. (3.9) retains an
explicit dependence on a which cannot be integrated by
the method adopted here. An alternative approach for
these latter cases based on another method of integration
of the original field equations is presented elsewhere [30].

Anisotropic cosmologies have also been considered in
the literature, again principally for Brans-Dicke gravity.
We will show elsewhere how our method may be extended
to derive solutions for general scalar-tensor gravity in
anisotropic models [31].

and the variables

dt =ad@, (3.5)
A. Scalar Beld evolution

and

X =Pa (3.6) A minimally coupled scalar field 0 whose energy-
momentum tensor

2ld+ 3 dp
3

(3.7) T~b
l gugb gabg l

o,co,d ))
= (Ii + P) «b + P g b (3.11)

This last, G(to), is of course usually considered a funda-
mental constant in general relativity rather than an initial
condition.

corresponds to a perfect fiuid [23] with density

ab
p = p =

2 lg ~,-~,bl (3.12)
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and normalized velocity field

&,a

~g da 0 ~l/2

The scalar Geld itself obeys the wave equation

0 = 0,
which in a FRW metric reduces to

(s.is)

(3.14)

index p Q 2.
In what follows we shall consider only the extreme

short and long wavelength modes of the massless Geld,
neglecting the intermediate regimes.

B. Vacuum solutions

Let us first consider the Geld equations in vacuum:
3

—0. —3Ho + ) g*~ V;V~o. (3.15)

If we consider plane wave solutions of the form cr =
crs(t) exp(iraq, 2.") then for (q/a) )) H2, H, k/a~ this
can be rewritten as

(ao )"+ q (ao ) = 0, (s.i6)

where q~ = Pq2. This corresponds to the usual flat
space result for a plane wave where (acr~) oc exp(iqq)
and thus T = qaq 0. (x: a with the null four-
vector q = (q, q;). Each plane wave is anisotropic as
each q; points in a particular direction. For consis-
tency with our choice of an isotropic metric we must
consider an isotropic distribution of wave vectors P(q)
summed over all spatial directions. This ensures that all
ofF-diagonal terms are zero [as symmetry now requires
T's ——J q;qso'zP(q)d q = j( q;)q&o2P—(q)dsq = 0 for
i g bj and the isotropic pressure p = p/3, the usual
result for isotropic radiation.

For long wavelength modes in an FRW universe (with
2comoving wave number (q/a) « H, H) we can neglect

spatial gradients in the Geld, and the first integral of
Eq. (3.15) yields aso =const and thus p = p = o2/2 oc

a 6, i.e., a stiff Quid.
Clearly the dividing line between these long and

short wavelength modes changes as the comoving Hub-
ble length or curvature scale evolves. In a conventional
(noninflationary) cosmology the comoving Hubble length
shrinks as we consider earlier and earlier times in an ex-
panding universe so that as a + 0 all modes must be
"outside the horizon" and evolve as a homogeneous stiff
Quid, lending support to our contention that the stiff Quid
solutions will be important in determining the classical
behavior of scalar-tensor cosmologies near any initial sin-
gularity. In any case, as already remarked, the energy
density of a barotropic perfect Quid evolves as p cx a
and so the energy density of a stifF Quid will eventually
dominate as a ~ 0 over any matter with a barotropic

(X')' —(Y'X)'+ 4k X' = 0,
(Y'X) =0,

X"+4k X = 0.

(s.i7)
(s.is)
(s.i9)

Both Eqs. (3.18) and (3.19) are easily integrable, and
X(rI) is independent of the particular u(P) dependence.

Solving Eq. (3.19) yields

Ag
X(g) = &

~ sin(2g)
sinh (2g)

fork = 0,
fork =+1,
fork = —1,

(3.20)

with A an arbitrary integration constant (see Fig. 1). In
what follows we will find it most useful, and succinct, to
write this as

X(q) = (3.21)

in terms of the new time variable

~(vy) = & /tanrI/
/tanhvy/

fork = 0,
fork = +1,
fork = —1.

(3.22)

I I I I

/

I'
I I I

/

I I I I

i

I I I I
i

I I I /I
[

I I/ I I

f

l /

It is convenient to define w as a non-negative quantity
and choose the plus or minus sign in Eq. (3.21) accord-
ing to whether g is greater or less than zero, respectively.
This only amounts to a different choice of the integration
constant and so can be absorbed in our choice of A. In
practice, because a2 = X/P must always be non-negative
only one choice of +A corresponds to a real solution any-
way. For the allowed choice of A, v may then either in-

This is just a derivation in terms of a classical wave of
the familiar result for an isotropic distribution of relativistic
particles.

Indeed this is precisely how long wavelength perturbations
are produced in the in8aton field from originally short wave-
length vacuum Suctuations as the comoving Hubble length
shrinks during in6ation [32]. This highlights the potential
importance of quantum effects which we shall neglect in this
purely classical treatment.

—1.5 1.5

conformal time

FIG. 1. The function Ã, de6ned in Eq. (3.20), plotted
against conformal time g. The solid line represents k = 01
the dotted line k = +1, and the short dashed line A: = —1
models. The long dashed line is the nonsingular function for
k = —1 given in Eq. (3.52).
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Y' X = f = const .

This latter result implies

(3.23)

Y—: 2~+3 d —dg. (3.24)

Now, notice that Eq. (3.19) has the first integral

X"+4k X' = A, (3.25)

where A = A for the solutions given in Eq. (3.21). Thus,
substituting Eq. (3.23) into Eq. (3.17) we obtain a rela-
tion between the constants f and A such that A = 6f

Given the definition of X, and the fact that we know
X(rl) from Eq. (3.20), we realize that provided we know
the particular form of u(P) we can obtain P(xI) froxn
Eq. (3.24), and then derive the scale factor a(g) as

a (rl) =-X.

crease or decrease with conformal (axxd thus also with
proper) time.

Note that for solutions where P ~const we have a2 ~
X, which is the general relativistic solution for a stiff
Quid. The nonminimally coupled homogeneous Brans-
Dicke field is equivalent to a nonminimally coupled stiff
Quid. As u —+ oo this coupling becomes negligible and
we recover the result for a minimally coupled field.

From Eq. (3.18) we obtain

and the initial singularity (with x'x ~ koo) can only be
avoided for u ~ 0. As can be seen &om the action,
Eq. (2.1), this corresponds to the (kinetic) energy density
of the Brans-Dicke field vanishing.

A necessary condition for any turning point in the evo-
lution of the scale factor is

6kX'
A -4kX (s.31)

Vacuum solutions in Bnans-Dickie gaseity

Let us consider first the case ur(P) = up ——const, corre-
sponding to the Brans-Dicke theory. Then

2ldp + 3

4p
' (3.32)

and thus

Thus for k & 0 a turning point can only occur when
u ( 0. This corresponds to the (V'P)2 terxn in the ac-
tion of Eq. (2.1) having the "wrong sign, " in that it can
contribute a negative effective energy density. 'Darning
points can occur in closed models even if u & 0, just as
they can occur in general relativity. Note that the sign
of the gravitational coupling P (and thus X) is irrelevant
in this vacuum case.

To obtain P we have to invert Y(P), given by the left-
hand side of Eq. (3.24) and use the fact that we know
the right-hand side:

(3.33)

Y(rI) = —dg = kine(g) + const .X (3.27) Pp 1+k72 ' (s.34)

/ 2

~ (Y')

Thus using Eq. (3.7) we have

1 (X'
2 gx

3 lX'
1~

2 ( 2ld+3) X

(3.28)

(s.29)

(s.so)

We see that as r ~ 0 or r —+ oo (at early or late tixnes)
the function Y must diverge. For instance, in the case of
Brans-Dicke gravity where cu is a constant, this implies
that P ~ 0 or P —+ oo. Only in open models does r -+
1 at late times. The evolution of Y is then &ozen as
the dynamics become dominated by the spatial curvature
which does not couple to the Brans-Dicke field.

There is a priori no prescription for u(P). Thus, we
are led to consider some specific ur(P) dependences which
hopefully will shed some light onto general results con-
cerning the dependence of the solutions on the form of
ur(P). However, even without solving these equations
for a particular u(P) we can come to some general con-
clusions about how these vacuum solutions behave. As
X -+ 0 and (X'/X) ~ oo the curvature becomes negli-
gible in Eq. (3.17) and we see that

where we have written p = /3/(2(up+ 3). These solu-
tions are plotted in Figs. 2 and 3.

The k = 0 solutions correspond to those derived by
O'Hanlon and Tupper [15]. If we convert them to proper
time they read a(t) = ap tx+ and P = Pp t~x s'x+l, where

3 QJ+1+
(3.35)

(see Fig. 4). Note that q~ ~ 1/3 as ur ~ oo and we
recover the general relativistic result for a stiff fluid. The
k g 0 solutions were obtained by Lorenz-Petzold [17] and
by Barrow [22]. As xI ~ 0, and thus a ~ 0 for u ) 0,
they approach the k = 0 power law behavior.

All solutions exhibit two branches. This is a conse-
quence of the identity A = +f between the integration
constants. Each branch corresponds to different signs of
P/P. In fact, the q+ branch is associated with an in-
creasing ~P~, which means that G approaches zero in the
t ~ oo limit. Since this branch corresponds to a slower
expansion, we shall follow Gurevich et al. [16] in calling
it the sloxp branch. On the contrary, the q fast branch
has a decreasing ~P~ and G, consequently, approaches Woo
with time.
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FIG. 4. Graph showing the exponents, q (u) (the fast
branch) and q+(!d) (the slow branch), of power law expan-
sion for k = 0 vacuum Brans-Dicke cosmologies.

0 ! ! !

0 .6
cosmic time t

.8

FIG. 2. Vacuum solutions for Brans-Dicke cosmologies
showing Brans-Dicke field P and scale factor a against proper
time in the Jordan frame for the fast branch where P = 0 at
a = 0. Again the solid line represents A: = 0, the dotted line
k = +1, and the dashed line k = —1 models.

scalar, for instance, diverges.
We can choose Pp to be either positive or negative and

thus the sign of the gravitational "constant" is arbitrary
as we would expect for solutions of the Geld equations in
vacuum. Of course a must remain positive so we require
PpA & 0. Because of our definition of v in Eq. (3.22) we
also have two distinct solutions corresponding to whether
'T decreases with time, corresponding to g & 0 and a
collapsing universe as 7 ~ 0 for u & 0, or increases with
g & 0 for a universe expanding from w = 0 if (u ) 0.

Note that w -+ 0 (and thus g -+ 0) coincides with
a ~ 0 for both branches if and only if u & 0 (and thus
P ( 1), in agreement with our earlier arguments. For
~ & 0 the solutions do not have zero size at v = 0 but
are still singular in the sense that the Ricci curvature

Vacuum, solution with u —+ oo

The simplest function which includes a divergent ur(P)
at a finite value of !t = P, is

2(u(P) + 3 = (2Idp+ 3) (3.36)
2 I

1.5—

I I

I
I I I

I
I I I

I
I

This is chosen as an example of a scalar-tensor gravity
theory that mimics general relativity in the weak-field
limit as P ~ P, [12].

The integral in Eq. (3.7) then yields

0 ! ! ! I ! ! ! I ! ! ! I ! ! ! I

0 .2 .4

ln
/

2~p + 3 & v 4" —V'4. —4 &

&~4. + v'4. —4)
= + 1nv + const,

which in turn gives

(3.37)

1.5—

I I I
I

I I I
)

I I I
i

I I I

~Po + p

+ TPO
'T

1+k72 '

(3.3S)

(3.39)

0 !

0
! ! ! I ! ! ! I I ! ! I ! I

.2 .4 6 .8
cosmic time t

FIG. 3. Same as Fig. 2 but showing the slow branch.

(see Fig. 5) where we have written pp —+/3/(2~p + 3),
although in fact the choice of + is irrelevant here for
7, g 0. Notice again that a —i 0 as 7 ~ 0 for u & 0.
The function P is always zero at the initial singularity
(o, = 0) and increases towards its maximum value P,
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Because Y(P) is divergent at both P = P, and P ~ oo
we again have two distinct branches according to whether

relativist
re e ized xa general

re a ivistic behavior P P, turns into the Brans-Dicke
solution P oc w~' as w -+ oo F 0oo. or 0 & 0 we have de-
creasing P, the fast branch and th b h) e e avior is reversed
as v ~ oo. Note that the w ~ oo limit is onl ach' d

always corresponds to the general relativistic behavior
with P -+ P, (1+~, ') as ~ -+ 1.

For~& ~&, we see that 2~ + 3 may reach zero. This
allows a far more complex behavior:

(3.44)

0 I I I

0 4 .6
cosmic time t

PoA 7
a

~Po 1+ k~2 (3.45)

FIG. 5. Vaacuum solutions for scalar-tensor gravit theor
with 2m+ 3 = 9P /(&P, —P) showing Brans-Dicke field and
scale factor against proper time in the Jordan frame. Note
that cu —+ oo is not a late time attractor. This is identical to

mo e in e presence of a stiKt e evolution of a Brans-Dicke model ' th
u1

Nootice now that P reaches zero wh en w = v;. is corre-
sponds to the divergence of the scale factor a at a finite
proper time. Thus, for instance, the closed model does
not recollapse, although its behavior is still singular as
7 W 7yo

where cu —+ oo. Boo. Because w reinams bounded (w & 1) in
an open universe, P will never reach P, if w, ) 1.

For~) ~„P then decreases towards zero (which it
attains for k & 0 as ww -+ oo). This demonstrates that,

ate time attractor solution. Instead we require that the
function Y must diverge as w m oo and thus P m 0

8. 'Vacuum solution with Brans-Dickie and general
relativistic limits

Consider the function ur(P) such that

C. Stiff fluid solutions

(X')' + 4kX —(Y' X) = 4M/, (3.46)

We consider in this section the case where matter is

sti matter
escribe y a barotropic equation of state with p = 2

wavelength modes of a massless scalar field. Because
the Brans-Dicke field itself is a homogeneous scalar field,
we find many similarities with the vacuum solutions dis-
cussed above.

t'
In terms of the same variables X d Y th fi

ions ecome
an e eld equa-

(3.40)
I )I 2M/

X (3.47)

2(up+3 (P
&4 )' (3.41)

and thus

Clearl y u -+const as P M oo, but is divergent at P = P„
giving Brans-Dicke and general relativist 1 ts, respec-
tively.

Considering only P ) P„ initially, we have

X"+ 4kX = 0. (3.48)

X + 4kX (3.49)

whxc upon insertion into the first of th fi lds o e e equations

The last equation is identical t tho e corresponding equa-
tion for the vacuum case and th Xus 'g' xs given by the

integral
same expressions [Eq. (3.21)j. This also yields the first

1+/ —
I(r~ )

(3.42)

(3.50)
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This requires that P ( A /4M. Notice also that unlike the
vacuum case A could be negative, but only if P is also
negative and only when k = —1 [so that the left-hand
side of Eq. (3.49) may be negative]. This gives one extra
solution for X(g) in addition to the vacuum solutions
when k = —1 and A = —A2,

A
X(q) = ——cosh 2il,

2
(3.51)

or, in terms of the variable v defined in Eq. (3.22),

S —k~'
X(~) = —A (3.52)1+k~2

For k = +1 note that this corresponds to X oc cos2g,
which is equivalent simply to a different choice of the
zero point of g, but in the open model we have a qualita-
tively difFerent behavior when A ( 0. X = a2$ remains
nonzero at all times and thus we can obtain nonsingular
models where a remains nonzero.

Now, &om Eq. (3.50) we derive

Y= A —4MQ —,dn (3.53)

and thus it is useful to de6ne

2(u, (P) + 3 2(u(P) + 3
A2 A —4M/ ' (3.55)

2ld + 3 dp H'g

ygA —4M' X(n)
'

(3.54)
where the right-hand side of this equation is just + ln7
as for the vacuum case. Thus, just as in the vacuum case
we required the function Y(P) to diverge as 7. —+ 0 or
-+ oo, in the stifF Huid case we require Z(P) to diverge in
these limits. %e see that if

1. Stig fiuid solution in Bmns Dicke gravity

Proceeding as for the vacuum case, we start by con-
sidering the 4) = (dp ——const case, which enables us to
compare our results with the k = 0 solutions existing in
the literature.

For A = +A2 ) 4M/ we have

2~e + 3 A —QA2 —4M/Ax Z= ln
A+ gA' —4M/

= +lnv+ const . (3.57)

"("'")'
M '+a2=—
A ]. +k7-2 '

(3.58)

(3.59)

where ~, is the constant of integration chosen to coincide
with the value of 7 for which P reaches its maximum
possible value P, = A /4M. For 7 ) 7„P decreases
back towards zero (see Fig. 5).

If k = —1, v is bounded and will never attain P, if
7; ) 1. In this case P remains a monotonically increasing
function of r approaching 4P, /(1 + r, )2 as w -+ 1 and
thus t tends to in6nity.

If on the other hand we consider A & 0, we find a
solution for P ( 0:

Notice that this is exactly the same result as found in the
vacuum case with 2u„,(P) + 3 = (2u, + 3)g, /(P, —P) if
we write 2ug, + 3 = (2uo + 3) and P, = A /(4M). This
is a demonstration of the equivalence between different
vacuum and stifF Huid solutions given in Eq. (3.55).

Thus, for A ) 0,

the vacuum solutions for a(t) and P(t) with u„,(P) carry
over to the stifF fluid solutions for ur(P). The reason for
the equivalence becomes more apparent when we discuss
the conformally transformed picture in the next section.
When A ( 0 we see that for 2u + 3 ) 0 we find the
vacuum equivalent 2u, + 3 ( 0, which is why we did
not 6nd the nonsingular open models in the vacuum case.

The condition for a = 0 now becomes

6(kX2 —MP)
A —4kX2 (3.56)

confirming that u ) 0 is compatible with a turning
point for k ( 0 when A ( 0. For k = 0 where we
must have A & 0, or as X + 0, the condition becomes
~ = —6M//A. Thus the sign of P becomes crucial. As
one might expect, if the gravitational mass, M/P is nega-
tive, the initial singularity can be avoided even for u & 0,
while for M/P ) 0 the presence of the stifF Huid requires
an increasingly negative value of u to avoid the singular-
ity. Thus we require a negative kinetic energy density of
the Brans-Dicke 6eld to counteract the positive gravita-
tional mass.

(3.60)

M
A 1+ k7-2 (3.61)

It is possible to see that these solutions correspond to
the uo ) —3/2 solution derived by Gurevich et al. [16]
(after the necessary translation to their time variable;
Gurevich et al. use ( such that d( = drI/a2). Notice that
a = 0 at both 7 = 0 and w = v;, demonstrating that a
turning point can indeed occur for cu ) 0 even in open
or Hat inodels in the presence of the stifF Huid if P ( 0.
As v approaches w, &om below, the solution approaches
Nariai's power law solution [14], but it is clear that this
is not the late time behavior suggested by Gurevich et
al. but rather a recollapse at a finite proper time. The
correct late time behavior for expanding k = 0 models
is where they approach the vacuum solution as w ~ oo
with P positive or negative.

When A = —A2, possible only for k ( 0, we have X(il)
given by Eq. (3.52) and
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2~+ 3 & g-4M' - A21
AxZ(+) =2

3
arctan

The field equations in the presence of radiation with
density p = 3r/8ma4 where I' is a constant, become

= +2 arctanv + const .

(X')' + 4kX' —(Y'X)' = 4I'X,
(Y'X)' = 0,

X"+4I X = 2I'.

(3.67)
(3.68)
(3.6S)

This gives

A
sec (c+P arctanr)

4M (3.63)

g. gtig /fraid eormation with Bmne-Dicke and generol
relativistic boite

If we consider again the function 2ur(g) + 3 = (2up +
3)$ /(P —P, ) this time in the presence of a stifF Ruid,
we can integrate Eq. (3.54) for P ) P, to give

2ldp+3 1

QA2 —4M',
QA2 —4M/ —QA2 —4M/,
QA2 —4M/ + QA2 —4M/.

(3.64)

Thus p & —A2/4M as required. However p ~ —oo
whenever r = tan[(vr /2 —c)/P], leading to a = gX/P ~
0. This can always occur when the arbitrary constant c
is sufficiently close to n'/2 regardless of the sign of k.

The final equation can again be integrated directly to give
the first equation where (Y'X)2 = A2 =const. Notice
that unlike the stifF Quid case this constant cannot be
negative. The general solution of the equation of motion
for X is then

r(A+ I'7)
1+kr2 (3.70)

Y(P) = + = + ln
Adg I'7.

X A+ I'~ + const . (3.71)

The evolution of P(g) is thus the same as for the vacuum
case if we replace the function 7 (Tl) by

in terms of the time coordinate T(g) introduced in
Eq. (3.22).

The Brans-Dicke field is not driven by matter and we
have the same integral for Y(P) as in the vacuum case,
although we have a difFerent X (q):

Here P must be constrained to lie within P,
A2 /4M and so can never reach the asymptotic Brans-
Dicke limit as P -+ oo. We find

rr(&)
A+ rr(rI)

(3.72)

(TB —TB)2$ + TBTB(A2/M)
(TB + TB)2 (3.65)

where we have written

A2 —4M/, 3 p.
A 2(dp+ 3 (3.66)

Thus P = P, at r = 0, and reaches a maximum of P =
A2/4M when r = r, (possible only for 7; & 1 in the open
model). At late times for k ) 0, as r —+ oo, P returns to
the general relativistic result, P ~ P„u —+ 0.

Once again for P ( P, we find a considerably more
complicated behavior where we may have P —+ 0 for
nonzero X.

D. Radiation solutions

The other case in which the nonvacuum equations
of motion simplify considerably is where the energy-
momentum tensor is traceless (p = 4/3), i.e., a radiation
Quid corresponding to the short wavelength modes of a
xnassless Geld. As this case has been discussed elsewhere
[22] we will describe the behavior only brie8y for compar-
ison with the stiff Quid case, while presenting our results
in a xnore compact form in terms of the time coordinate
r(g).

Note that in spatially Qat or closed models as ~ + oo we
find s —+ 1, i.e., Y approaches a fixed value. Thus the
evolution of Y is similar to the open models in vacuum
where v -+ 1 at late times. This time the Geld becomes
&ozen in as 8 ~ 1 due to the radiation, which like spa-
tial curvature does not couple to the Brans-Dicke field,
dominating the dynamics. In open models as 7. ~ 1 we
have e -+ I'/(A+r). On the other hand at early times all
solutions approach the vacuum solutions as s (r/A)r
amounts simply to a rescaling of the conformal time or,
equivalently, the scale factor, thus the Brans-Dicke Geld
dominates the dynamics for r (( A /I'.

It is now straightforward to write down the radiation
solutions for the particular choices of u(P) given in the
vacuum and stiff Quid cases.

The value of the u at any turning point is now given
by

6(kx' —rx)
A2 —4(kX2 —rX) '

( 6rx
fork =OorX mO.gA'+ 4I'X

y

(3.73)

(3.74)

The denominator must always be positive [by Eq. (3.68)]
and thus we find again that to obtain. a turning point
with u ) 0 requires either k ) 0, which corresponds to
the usual recollapse in closed models, or X (and thus P)
negative.
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f. Radiation soLution in Brune-Dicke greeity

We have

1 s+~7-(A + F7.)
1+&~2

(3.75)

(3.76)

As is well known, this Brans-Dicke solution approaches
the general relativistic solution with constant P at late
times during the radiation-dominated era.

2. Radiation 8olution miCh Butane-Dicke and genes aL
reLatieistic Lim, its

When 2~(P) + 3 = (2uo + 3)f /(P —P, ) we find

(el1+( —
I

1 s~' ~(A + I'~)
sPO + sPO 1 + kw2

(3.77)

(3.78)

Once again P approaches a constant at late times; how-
ever, unlike the stifF Quid case considered earlier, this
constant value may not be close to P, so this need not
colnclde with & M QG.

IV. CONFORMALLY TRANSFORMED FRAME

It has long been realized that a theory with varying
gravitational coupling such as scalar-tensor gravity must
be equivalent to one in which the gravitational coupling
is constant but masses and lengths vary [33]. Matheinat-
ically this equivalence can be shown by using a confor-
mally rescaled metric

(Pl
gai =

~

—
I g~s .

o
(4 1)

Po is just an arbitrary constant introduced to keep the
conformal factor dimensionless. Written in terms of this
new metric and its scalar curvature B the scalar-tensor
action given in Eq. (2.1) becomes

we shall refer to this as the Einstein kame.
The arbitrary dimensional constant Po plays the role of

Newton's constant, G = Po . In order to avoid changing
the signature, the conformal factor relating the metrics
must be positive. So for P ( 0 we must pick Po ( 0,
giving a negative gravitational constant in the Einstein
kame. Not surprisingly then, the usual singularity theo-
rems need not apply even in the Einstein kame for P ( 0.
Similarly, in the definition of Q we require Po (2a!+3) ) 0.
If this were not the case we could instead define a scalar
field

2(u+ 3 dP
o

16vr
(4.4)

but this would have a negative kinetic energy density,
again invalidating the usual singularity theorems by
breaking the dominant energy condition. However, for
P ) 0 and u ) —3/2 the FRW models must contain sin-
gularities in the conformal Einstein kame where a -+ 0.

A. Vacuum salutians

8m p II:H '!

3ud~ =0
dt2 dt

+
dH -2 4~ P+ 3P
dt 3 Po

(4.5)

(4 6)

(4.7)

where the scale factor in the conformal kame a
(P/Po) i~ a, dt = (P/Po) ~ dt, and II = (da/dt)/a. (Note
that t is the time in the conformal kame and not to be
confused with the conformally invariant time g used ear-
lier. ) The massless scalar field behaves, as it must, as a
stifF Quid with density p = p = (deja/dt) 2/2.

Notice now that the variables X and Y introduced in
the preceding section correspond to the square of the
conformal scale factor and the scalar field g, respectively:

The field equations are then, at least in vacuum
(l: &i„——0), just the usual Einstein field equations of
general relativity plus a massless scalar field, @. In par-
ticular, in a FRW universe (which remains homogeneous
and isotropic under the homogeneous transformation) we
have

1 4 1 -ab
16m

d xg—g PoR —16' ——g2

+
I

—
I

&-.ee., ),) (4 2)

4o
'

2'+ 3 16m.

34o

(4.8)

(4.9)

where we introduce a new scalar field @(P) defined by

2a!+3
16m (4 3)

The gravitational Lagrangian is reduced simply to the
Einstein-Hilbert Lagrangian of general relativity, albeit
at the expense of altering the matter Lagrangian. Thus

The equations of motion for the conformal scale factor
written in terms of X and for @ written in terms of Y
and derivatives with respect to the conformal time g are
then precisely Eqs. (3.17)—(3.19) solved in Sec. III B.

We can solve explicitly for I and Y as functions of
g because the stifF Quid continuity equation can be in-
tegrated directly (as for any perfect barotropic fluid) to
give p oc a . These results are independent of the form
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of tu(P). A particular choice of ug(P) determines how P
is related to the stiff Quid field @. To obtain P(g) we
inust be able to perforin the integral in Eq. (4.9), and
thus we also obtain the scale factor in the original &arne,
a —= (&./&)'"a.

B. Nonvacuum solutions

(Po l'
~matter

~ ~
~matter .

&+& )
(4.10)

Thus the matter energy-momentum tensor, defined in the
Einstein metric,

(4.11)

is no longer independently conserved,

If we include the matter lagrangian for a perfect Quid in
the original scalar-tensor frame, then there is a nontrivial
interaction between this matter and the scalar field @ in
the Einstein frame:

This is precisely the case considered recently by Bar-
row [22] (although without explicitly invoking the con-
formal frame) and discussed in Sec. III D.

The second case in which we can find exact solutions is
where the original Quid is itself a stifF Quid (or massless
scalar field) in which case although there is an interaction
between the two Quids, their combined dynamical efFect
is that of a single perfect stifF Quid, or massless scalar
Geld y, say

8' 8m'

Px =
3~ (P+ P) =

4a6 (4.19)

This is why we find exactly the same equation of motion
for the scale factor in the conformal &arne, a2 oc X, in
the stiK Quid case as in the vacuum case. Notice now
that in the conformal &arne we must have A = +A & 0
for a positive energy density. The nonsingular solutions
found when k ( 0 and A ( 0 with a stifF Quid in the Jor-
dan &arne correspond to solutions with negative energy
density in the Einstein &arne.

The continuity equation for the original Quid can al-
ways be integrated to give

(4.12)
(~ ) (4—3~)/2

34o a" q4 &

P=-, (4.20)

-2 87l. p+ p
4o

dH -2 4' p+ p+3(p+p)
dt 3 Po

(4.13)

(4.14)

and the interaction leads to a transfer of energy between
the original Quid and the stifF (vP) Quid:

dp - 1 16m. dvP

dt
3H(p+I)+ — (3P —p) - (4»)

2 4'o 2~+3 dt

dp - „1 16~ dQ

dt 2~/A 2& + 3 dt

unless it is traceless, i.e., vacuum or radiation. The con-
formally transformed density p = (Po/P) p and pressure
p = (Po/P)2p of the Quid become dependent on P and
thus vP, so while the fiuid retains the same barotropic
equation of state it is no longer a perfect Quid in gen-
eral. Note however that the overall energy-momentum
tensor of the matter plus the @ field must be conserved
as guaranteed in general relativity by the Ricci identity.

We have the usual general relativistic equations of mo-
tion in a FRW model

and so in the stifF Quid case we have

87r „4m f dQ ) A2 —4M/
3$o 3$o ( dt ) 4as (4.21)

We have a oc X as a function of g and we must now per-
form the integral in Eq. (3.54) to obtain P(q). The change
in the relation between P and the total stifF Quid density
in the Einstein &arne compared with the vacuum case is
equivalent to a difFerent choice of u(P) (which relates P
to g), as demonstrated in Eq. (3.55). The vacuum case
can of course be seen as a special case amongst the stifF
fluid solutions, where M = 0, and thus u(P) = u, (P).

We can also obtain exact solutions for radiation and
stiK Quid in the original Jordan &arne as the radiation
remains decoupled in the Einstein &arne and the interac-
tion is solely between the two stiK Quids in that &arne.
Thus the equation of motion for the scale factor in the
conformal &arne is exactly the same as in the radiation
only case, Eq. (3.69), while the equation for P is the same
as in the stifF fluid case, Eq. (3.54).

Stig fluid plus radiation in Brans Dicke gravity. T-o

solve for the evolution of Brans-Dicke models (where
(do =const) in the presence of both radiation and a stifF

8~ . A'

3$ 4as '

8~ I'
Prad 4

(4.17)

(4.18)

Again we Gnd two cases in which the problem simpli-
fies. Firstly for radiation (P = 3p) there is no interaction
and both continuity equations can be directly integrated
and the conformal picture contains two noninteracting
Quids: The combined energy-momentum tensor of two interacting

fluids is equivalent to that of a single perfect fIuid provided
their velocity fields are parallel. This must be true if both Bu-
ids are homogeneous as is the case here. Futhermore as they
are both stifF Quids, p = p, in this case, their total pressure
must be equal to their total density.
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Quid, the conformal frame is particularly useful, since the
evolution of the conformal scale factor (or X = a2/Pp) is
exactly the same as for radiation only [Eq. (3.69)]. The
evolution of P then follows directly from Eq. (4.21) as

3$p (2(u+ 3) (1 dP)
) ««)

3gp A —4M/
32vr X3 (4.22)

so that, &om the definition of g in Eq. (4.3),

2~p + 3 A —QA2 —4M/
ln

A+ gA' —4M/

I'7.= +in + const . (4.23)A+ I'~

Rewriting this to give P and thus a = gX/P yields

I
A2

s~s~

(a~+ a~)2

(a~ + a~)2 ~(A+ I'~)
sPs &+ I

(4.24)

(4.25)

where

(4.26)

a, is a constant of integration, and P = /3/(2up + 3).
Thus the behavior is very similar to that seen for stiK
fiuid only, except that the variable s takes the place of 7.

Unlike ~, a ~const at late times for k = 0 [where
a m 1] as well as for k ( 0 [where a -+ I'/(A+ I')]. Thus
the Brans-Dicke field becomes &ozen in at late times in
the Qat FRW universe, dominated by the &iction due
to Hubble expansion driven by radiation, just as it is
in the open FRW model, where the expansion becomes
driven by the curvature. Only in the closed universe does
the dynamical efFect of the stifF Quid remain important.
Note, however, that the radiation delays the recollapse
which occurs at g ) m/2. This means that r = tan(g)
becomes negative, but the solution is still well behaved
as s & 0 and both the conformal Einstein and Jordan
(for &u ) 0) scale factors recollapse, X,a -+ 0, when g =
~ + arctan( —A/I'), as a m oo.

Notice once again that the presence of a stifF Quid in
the Jordan kame just leads to solutions which would be
obtained in the absence of the sti8' Quid but with the
modified u, (P) given in Eq. -(3.55).

eral u(P) scalar-tensor gravity theories with a stifF Huid
in addition to vacuum or radiation solutions in a FRW
metric. These two nonvacuum cases correspond to the
extreme long and short wavelength modes, respectively,
of a minimally coupled massless scalar field. We show
that these solutions can be obtained due to the partic-
ularly simple evolution of the corresponding scale factor
in the conformally related Einstein frame which is inde-
pendent of the form of ur(P). This is no longer true when
considering other matter such as dust or a cosmological
constant. Then the form of ur(P) afFects the dynamics in
the Einstein kame as well as the original Jordan kame
so we cannot obtain the scalar-tensor cosmology simply
from known general relativistic solutions. An alternative
approach to deal with this situation is presented in [30].

In the presence of a stiH' Quid the physical scale fac-
tor evolves like a vacuum scalar-tensor cosmology with
a modified ur(P) ~ u„,(P), as defined in Eq. (3.55).
(This is because introducing a new scalar field modifies
the relation between P and the total energy density in
the homogeneous scalar Huid in the Einstein frame. ) For
example the Brans-Dicke model (tu =const) in the pres-
ence of a stifF Quid evolves like a vacuum model with
~„,(P) oc P, /(P, —P). This significantly modifies the
evolution of the Brans-Dicke field leading to an upper
bound on P ( P, .

We find that even for functions tu(P) that diverge at
a finite value of P, this need not be a stable late time
attractor for k = 0 models, in contrast to Damour and
Nordtvedt's rule [20] that u -+ oo is a cosmological at-
tractor. Instead (due to the absence of the damping
efFect of matter with p ( p, required by the result of
Damour and Nordtvedt) we find that the late (or early)
time attractor in vacuum, as a -+ oo (or a ~ 0), is
associated with the divergence of the function Y(P) ocjg2u + 3dg/P. In the presence of a stifF Huid the func-
tion Z(Q) oc J(Q(2(v+3)/(A~ —4M/)dg/P must di-
verge as a -+ 0 or -+ oo.

The stifF Quid solutions are expected to be of primary
importance as the scale factor a ~ 0. When spatial
curvature is negligible (k = 0), the condition necessary
for a turning point, a = 0, in the stifF Quid cosmology
is simply u = —6M//A, where A and M are positive
constants of integration. In vacuum this reduces to u = 0
and the sign of P is irrelevant. In the conformally related
Einstein kame we have seen that the evolution is simply
that for a stifF Huid irrespective of the form of u(P) and
thus singularities are always present here provided u &
—3/2. Only for cu ( —3/2 does the energy density of the
stifF Quid in the Einstein kame become negative and so
nonsingular behavior becomes possible.
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