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Foliation by constant-mean-curvature hypersurfaces of the Schwarzschild spacetime
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In this Brief Report a procedure for the complete foliation of the Schwarzschild spacetime by
spacelike hypersurfaces of constant York time is proposed.

PACS number(s): 04.70.Bw, 04.25.Dm

r3
E = H —K—,A' = E'+ r'(r —2m),3' (2)

the Hamiltonian H being a given constant. The mean
intrinsic curvature is [6]

For a foliation of spacetime by hypersurfaces of con-
stant mean extrinsic curvature, York defined a time pa-
rameter [1] proportional to the mean extrinsic curvature.
It has been argued [2] that such hypersurfaces have spe-
cial significance in a cosmological context. While it may
not be possible to obtain a maximal slicing [3] (K = 0
hypersurface foliation), it may be possible [4] to obtain
a constant mean extrinsic curvature K slicing of space-
time and hence define a York time there. Brill et al.
[5] have provided a thorough discussion of K slicing a
Schwarzschild spacetime but were unable to provide a
complete foliation of it. They used only non-negative
values of K. However, they conjectured that if the full
range of values of K was used, a complete foliation of
the Schwarzschild spacetixne could be obtained. Eardly
and Smarr have shown that there is a K slicing of the
Schwarzschild spacetime, but have not shown explicitly
how to construct it. Here we describe a procedure which
we believe should explicitly produce such a slicing. We
describe this procedure and provide numerical evidence
that it works.

Spacelike hypersurfaces for K slicing the Schwarzschild
spacetime in Kruskal-Szekeres coordinates are generated
by [5]

dv Av+ Eu
du Au+ Ev'

where

(4)

@ = arctan(v + u) + arctan(v —u),

( = arctan(v + u) —arctan(v —u),

the equation

dg Av(u —v —1) + Eu(v2 —u2 —1)
d( Au(v2 —u2 —1) + Ev(u —v —1)

(6)

at u = 0 = ( gives the same condition as
u=O=('

0, namely, that A = 0. However, the requirement that
V be minimized at u = 0 does not guarantee that the
hypersurfaces rise the least. In fact, it does not even
guarantee that their rate of increase at u = 0 be the least.

d2It can be verified that d, ——0 gives a difFerent
u=O=A

requirement from

is minimum at u = 0, i.e., dV/dr = 0. This was done for
the following reason. All the K surfaces rise up in the
Kruskal diagram as u increases up to some finite distance.
They must not be allowed to rise too steeply up or they
will hit the singularity and thus limit the height to which
they can rise.

A problem arises in foliating the Penrose diagram us-
ing the noncompact Kruskal-Szekeres coordinates. In the
compactified coordinates [7]

HB=6i

which remains finite as r goes to inanity and infinite only
at the singularity r = 0. On the other hand, the mean
extrinsic curvature K varies &om surface to surface. Fol-
lowing Drill et al. , all slices were chosen smooth and 8at
at the throat of the Einstein-Rosen bridge u = 0. For
this purpose we must set A = 0. To fix H for given K,
Brill et al. took the K surfaces such that the potential

r™0

)0

'Present address: Military College of Electrical and Mechan-
ical Engineering, National University of Science and Technol-
ogy, Rawalpindi, Pakistan.

FIG. 1. Foliation of the Schwarzschild spacetime by York
slicing in the Penrose diagram is shown. Only a few
typical spacelike hypersurfaces are shown corresponding to
K = —0.2, —0.09) —0.05, —0.03, —0.01, 0.0) 0.01, 0.03) 0.05,
0.09, 0.2.
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TABLE I. Twenty-one York slices for difFerent values of the mean extrinsic curvature are described by the corresponding
values for the initial value of r, r, , the constant H, the initial value of g in the Penrose diagram, @„andthe maximum
(minimum for K & 0) value that @ attains on the given hypersurface. Notice that Q„is the maximum value for eleven of them.
The last column gives bg = g" —Q . Notice that 8~ rises to a maximum and then starts decreasing again so that we can see
that in the limit as K:oo, the hypersurface tends to {Q = rr/2)UZ+ and as K:—oo it tends to (g = rr/2)UZ

Number
0

+1
+2
+3
+4
+5
+6
+7
+8
+9
+10

K
0.0

+0.01
+0.03
+0.05
+0.07
+0.09
+0.11
+0.15
+0.2
+0.5
+1.0

r, /2m
1.0
0.99
0.951
0.89
0.85
0.815
0.785
0.751
0.7278
0.67724
0.6054792

II
0.0

~0.09527
~0.19669
~0.26672
~0.28918
~0.30022
~0.30476
~0.30358
~0.29824
+0.26486
g0.22194

0.0
+0.3252
+0.6842
+0.9552
+1.0696
+1.1478
+1.2033
+1.2565
+1.2879
+1.3459
+1.4092

0.0
+0.3252
+0.6842
+0.9552
+1.0696
+1.1478
+1.2038
+1.2852
+1.3654
+1.3940
+1.4305

by
0.0
0.0
0.0
0.0
0.0
0.0
0.0001
0.0287
0.0775
0.0481
0.0213

d2$

u=O=A.

4mr(v + 1)(2r —3m —KE) —E (v —1)
2vE2

being zero. Further, this does nol]! guarantee that the
hypersurface rises least in the Penrose diagram.

The procedure adopted to solve Eq. (6) with Eq. (5)
is the following. We choose a particular value of K and
require that A = 0 at ( = 0 in Eq. (2). This provides a
relationship between H and. the initial value, r;, of r:

Thus, for some Ki, if we choose some r; (0 & r, ( 2m), we
get two possible choices of H, of which we choose the sign
opposite to that of K. (The expression with the same
sign does not yield a foliation. ) We thus have some initial
value of g, call it @,. In general the maximum value of
@ on such a hypersurface, call it @*,can be greater than

We first try to find such an r; that g* —@, be
least. In general such hypersurfaces do not reach I in

the Penrose diagram. We now Gne-tune r, to extend the
point of intersection of the hypersurfaces with the line
g = 0 or 2+ so that it attains the largest possible value
of (, say (*. This value will never quite be rr, but can
approach it arbitrarily closely for sufFiciently small step
sizes in our integration. The appropriate r; lies between
those values which give hypersurfaces that intersect 2'+
and g = 0. The hypersurfaces are symmetric functions of
(. Further, for Ki & —Ki we get the solution by taking
H» - ', —Hq. Thus there is a reflection symmetry in both
the g and ( axes. For K ( 0, @* will be the minimal
value instead of the maximal value. The foliation has
been carried out up to ~K] = 1 and r; = 1.2109584m.
The results of this foliation up to ~K] =- 0.2 are shown in
Fig. 1 and the corresponding values of K, r, , II, g„and
@*are given in Table I up to ]K~ = 1. The step size in all
the calculations is taken to be 10 except for K = +0.5
and +1.0, where it is 10 and 10, respectively. In the
latter cases, due to loss of sensitivity, we were unable to
And hypersurfaces intersecting X+, though it was clear
that still smaller sizes would allow us to complete the
procedure. Computing time becomes prohibitive in these
cases.
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