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We investigate fermion production in the background of Minkowski space solutions to the equa-
tions of motion of SU(2) gauge theory spontaneously broken via the Higgs mechanism. First, we
atteinpt to evaluate the topological charge Q of the solutions. We find that for solutions Q is not
well defined as an integral over all space-time. Solutions can profitably be characterized by the
(integer-valued) change in the Higgs winding number ANH We sh. ow that solutions which dissipate
at early and late times and which have a nonzero AN& must have at least the sphaleron energy.
We show that if we couple a quantized massive chiral fermion to a classical background given by a
solution, the number of fermions produced is AN~, and is not related to Q.
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In this paper we study general properties of classi-
cal solutions in SU(2) gauge theory with spontaneous
symmetry breaking introduced via the Higgs mechanism.
The bosonic sector of the model we consider is that of the
standard electroweak theory without the U(1) gauge bo-
son. We work entirely in Minkowski space and look at
solutions with finite energy. We add a massive quantized
SU(2) doublet chiral fermion and discuss fermion produc-
tion in the background of classical gauge and Higgs field
solutions. We find that the change in fermion number
is not determined by the topological charge, but rather
equals the change in the winding of the Higgs field.

In previous work [1],classical solutions in SU(2) gauge
theory with no Higgs field were studied. These solutions
have the property that in the far past and far future
they can be described as spherical shells which prop-
agate without distortion. Furthermore, such solutions
have nonzero, noninteger topological charge. In this pa-
per the Higgs field is included and we do not restrict
ourselves to the spherical ansatz. As we will see, the so-
lutions we consider here are qualitatively different than

those considered in Ref. [1].
The topological charge is defined as

g d xe"" ~Tr(F„F p) .

The usual argument [2] that leads to integer topological
charge requires that the region in space-time where the
energy density is nonzero be bounded. For solutions to
the equations of motion, energy is conserved and the en-
ergy computed on any equal time surface is nonvanishing.
Thus, for Minkowski space solutions, we have no reason
to expect integer values of Q.

The integral in (1.1) is over all of space-time. We can
attempt to evaluate it as the limit of a sequence of inte-
grals taken over larger and larger regions of space-time.
Q is well defined if we get the same finite result for (1.1)
no matter what sequence of integration regions is chosen
so long as in the limit all of space-time is included. We
find that Q evaluated on solutions to the classical equa-
tions of motion for spontaneously broken SU(2) gauge
theory is not well defined in this sense. Specifically, we
first evaluate (1.1) by doing the integration inside a rect-
angular space-time box whose size we take to infinity,
and obtain a finite result. Then, we redo the calculation
using a differently shaped convex box and obtain a dif
ferent finite result. Therefore, the topological charge of
solutions to the equations of motion cannot be defined.

Suppose we couple a quantized chiral fermion to the
classical gauge and Higgs field backgrounds considered
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At points x where p(x) = (pili + &pzp2) ~ is nonvan-
ishing, the Higgs field can be associated with a special
unitary matrix U(x) through

4(x) = p(x)U(x) .

We consider only those configurations for which the fields
approach their vacuum values in the ~x~ ~ oo limit.
Without loss of generality we can impose the boundary
conditions

lim U(x) = 1,
JxI —+ao

(1.4a)

in this paper. The anomaly equation relates Q toj d x O„J"(x) for an appropriately defined fermion cur-
rent. However, for solutions to the equations of motion
Q is not defined and the implications of the anomaly
equation for fermion production are murky. Consider
a continuous sequence of configurations (which is not a
solution) with the gauge field chosen so that the back-
ground has a well-defined nonzero Q and with the Higgs
field a nonzero constant. Because the fermion mass is
generated by a Yukawa coupling to the Higgs field, the
fermion mass is also a nonzero constant. If we make the
fermion mass large while keeping the background gauge
field fixed, surely no fermionic level will cross the mass
gap as we follow the sequence from beginning to end.
Thus, in a theory with a massive fermion in a background
that does not go from vacuum to vacuum, fermion pro-
duction cannot simply depend on Q, which is determined
only by the gauge field. Since the Yukawa coupling is pro-
portional to the fermion mass, it seems reasonable that
the background Higgs field plays a crucial role in fermion
level crossing [3]. In fact, we will argue in Sec. V that
the number of fermions produced in a background given
by a solution which dissipates at early and late times is
equal to the change in the winding number of the Higgs
field.

Solutions to the equations of motion are particu-
lar examples of continuous sequences of configurations
parametrized by t which move through a configuration
space described by the gauge field A~(x) and the Higgs
field 4'(x). Vacuum configurations can be characterized
by the integer-valued winding number of the gauge field.
Sequences of configurations beginning and ending in dis-
tinct vacua have a nonzero, integer-valued topological
charge given by the di8'erence between the winding num-
ber of the gauge field in the final and initial vacuum con-
figurations. The sphaleron [4] is the lowest energy point
on the barrier which a path in configuration space con-
necting two topologically distinct vacua must surmount.
Therefore, vacuum to vacuum sequences of configurations
which have Q g 0 must pass over the sphaleron barrier.
However, Q cannot profitably be used to characterize so-
lutions since for solutions Q is not well defined.

The integer-valued Higgs winding number can be used
to characterize even nonvacuum configurations. Let p =
(Ip i, p2) be the usual Higgs doublet and define

lim A„(x) = 0,
ixfmoo

(1.4b)

and accordingly only consider gauge transformations
which approach unity as ~x~ ~ oo. Configurations with
p g 0 throughout space can be characterized by the Higgs
winding number

N~ = zu[U], (1.5)

where the integer-valued winding number of a special uni-
tary matrix U satisfying (1.4a) is

1
io[U] = d x e""Tr(UtB,UUtB, UUtOi, U) . (1.6)

AN~ = lim NIi(t) — lim NH(t) .

Note that this diBerence is gauge invariant even under
large gauge transformations. We will show in Sec. IV
that if a solution which dissipates at early and late times
has KNH g 0 then it must begin and end near distinct
vacua and must therefore have at least the sphaleron en-
ergy.

What do we learn in this paper about fermion pro-
duction in the background of solutions to the Minkowski
space equations of motion which dissipate at early and
late times? Such solutions do not have well-defined topo-
logical charge; they do have a well-defined change in the
Higgs winding number; it is ANH which counts the num-
ber yf fermions produced. For a solution to have nonzero
LN~, it must have at least the sphaleron energy. This
means that nonzero AN~ and the associated fermion
production cannot occur at finite order in perturbation
theory.

The logical next step in our investigation is to consider
quantum scattering of massive gauge bosons, rather than
the classical Geld configurations which are the subject
of most of this paper. Because we have introduced the
Higgs field into the theory, the asymptotic states in the
quantum theory are in fact gauge bosons (and not glue-
balls) and we can therefore begin to consider quantum

N~ is gauge invariant under small gauge transformations,
but it changes under large gauge transformations.

Now, we return to our discussion of solutions to the
equations of motion, which can be viewed as continuous
sequences of configurations parametrized by t. Solutions
typically have zeros of p isolated in space-time. At times
when p is everywhere nonvanishing we define NJi (t) as
the Higgs winding number of the configuration at time
t. Although solutions with nonzero energy do not be-
gin and end in vacua, those which we consider have their
energy density approach zero uniformly in space in the
t ~ koo limits. We refer to this behavior as dissipa-
tion, noting that it is the energy density which dissipates
while the energy is conserved and may be large (relative
to the sphaleron energy. ) In this sense, the solutions we
consider begin and end near vacua. At very early and
late times p is approaching its vacuum value and is ev-
erywhere nonzero. Therefore, NII(t) becomes constant
in time in the far past and in the far future and we can
define.
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scattering. We show that the unexpected behavior of the
topological charge of classical solutions (namely, that it
is not defined) has an analogue in quantum scattering.
We attempt to define a quantum operator for which the
difFerence between its expectation value in the initial and
final states in some scattering process measures the topo-
logical charge associated with that process and find that
we cannot do so in a Lorentz invariant fashion.

II. SOLUTIONS TO THE EQUATIONS OF
MOTION

In this section we discuss the behavior of solutions to
the classical equations of motion for SU(2) gauge the-
ory spontaneously broken via the Higgs mechanism. The
action is

D/" + —p A =0,
2

(2.6a)

For the solutions we wish to treat, at early and late
times the magnitude of the Higgs field is everywhere close
to its vacuum value and, in particular, does not vanish.
This suggests that we work in unitary gauge, in which U
defined in (1.3) is set to unity. However, if ANIr g 0,
then it is impossible to choose a gauge in which U = 1
both in the future and in the past. It is, however, possible
to choose one gauge in which U = 1 in the far past and
another gauge in which U = 1 in the far future. These
two gauges will difI'er by a large gauge transformation
with winding LN~.

At either early or late times we can go into the unitary
gauge, in which U = 1 and the equations of motion for
A„and p are

d x —-Tr E" E„+—Tr D"4 tD„C
1 1

2

O„B"p—2g p Tr(A" A„) + 2A
~ p ——p = 0 . (2.6b)

——(Tr@t@—v ) (2.1)

F„=B„A —O„A„—ig[A„, A ],

where the 2 x 2 matrix C is related to the Higgs doublet
Ip by Eq. (1.2) and where 6h=p— (2 7)

There is only one vacuum configuration in unitary gauge:
A„= 0, p = v jv 2. We therefore expand the equations
of motion as power series in A~ and in the shifted field

D„4 = (oi„—i gA„)4,
(2 2) To linear order, the equations of motion are

gP(g Alin g Alin) + 2Alin (2.8a)

with A~ = A o /2. We use the conventional metric
q~„= diag(1, —1, —1, —1). The action is invariant under
the transformation (0"oi„+m„)h'" = 0, (2.8b)

A„GA„Gt —'GO„Gt—:A„, 4 GC,
g

(2 3)
where

m = 2gv, mg = ~2AV (2.9)
where G(x) C SU(2). The equations of motion are

D~F" = —[4'(D"4')' —(D 4')O']
4

(2.4a)

By taking the divergence of (2.8a) we get

gP Alin 0P (2.10)

where

D„D"4 = —A(Tr4't4 —v )4, (2.4b)
Equation (2.10) is the same equation as the Lorentz
gauge condition, which here arises as a consequence of
the linearized equations of motion in unitary gauge. Us-
ing (2.10), Eq. (2.8a) becomes

D„F" = O„F" —ig(A„, F"
] . (2 5) (oi„0 + m )A„'" = 0 . (2.11)

We expect a "typical" solution to dissipate both in
the far future and in the far past. By dissipation we
mean that at early and late times the energy density
approaches zero uniformly throughout space. Not all so-
lutions exhibit dissipation. For example, the sphaleron
is a static solution and therefore its energy density is
constant in time. One can also imagine solutions which
are asymptotically equal to the sphaleron for early (late)
times but which dissipate at late (early) times. Thus, by
restricting ourselves to solutions which dissipate both in
the future and the past we are excluding some solutions
from our treatment.

Note that (2.11) are the equations of motion of indepen-
dent massive vector fields labeled by an SU(2) index but
there is no remaining gauge invariance.

The solution to (2.11) takes the form

A„(x)
d3k

[e
'" e„(k) + e*"' e„*(k)],

(2.12)

where k" = (ivA, , k) with urA,
—— (k + m ) ~, and

where the SU(2) valued polarization vector e& transforms
as a vector under Lorentz transformations and satisfies
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e~ki' = 0. There is a large class of solutions to (2.11) for
which A„'"(x, t) -+ 0 uniformly in x as t m +oo. This
will certainly be the case if at some time to, A'„'"(x, to)
and BiA„'"(x,to) are sufficiently smooth and vanish for
~x~ greater than some R. Under analogous conditions,
solutions h '" to (2.8b) also approach zero uniformly in x
at early and late times. Also, the energy density of these
solutions to the linearized equations vanishes uniformly
in w as t + +oo.

We now have a picture of the behavior of solutions to
the equations of motion which dissipate. We choose to
work in a gauge in which U = l in the far past. In this
gauge, A„ is well approximated at early times by (2.12)
with some polarization tensor e"„(k). This "past" polar-
ization tensor may be such that as the solution evolves
forward in time, energy that was widely separated in
space comes together, energy densities grow, and nonlin-
ear efFects become important. If the nonlinearities con-
spire to prevent the energy density from dissipating in the
far future, as, for example, if a sphaleron is created, then
we exclude the solution from our discussion. It is more
likely, however, that at late times the energy density is
once again spread over a large region of space. There is
then a gauge in which A.„is again well approximated by
(2.12) this time with a diff'erent polarization tensor e„(k).
In the gauge in which U = 1 in the far past, however, A„
in the far future is given by

d xO„K", (3 2)

where the topological current is

2
K" = e" PTr(A 8 Ap+ sigA A Ap) . (3.3)

Ncs(&) = d'~ K'(x, &),

keeping in mind that Kcs is not integer valued. Then,

For solutions to the equations of motion described in the
previous section we now perform the integration in (3.1)
in two diferent ways and obtain finite, but diR'erent, an-
swers.

In our first attempt at evaluating (3.1) we do the inte-
gration in a finite space-time box extending from t = —T
to t = T, then take the spatial extent of the box to in-
finity, and finally take T to infinity. We call the result
of this calculation. Qi. We consider only solutions with
compact support, by which we mean that at any time t
the fields have vacuum values for ~x~ greater than some
(t dependent) B. We work in a gauge such that for ~x~) R, A„= 0 (and U = 1) and therefore there is no con-
tribution to (3.2) from the surface at spatial infinity. It
is convenient to define the Chem-Simons number

d3k
Uf (*)[

*"'*
i, (k)

24)k

+e'" ef*(k)]Uft

+ Uf (*)~~Uf'-(&)
g

(2.13)

where

cs —Ncs,f p

lim Ncs(&)

(3.5)

III. UNDEFINED TOPOLOGICAL CHARGE

The topological charge of a sequence of configurations
parametrized by t is defined by

2

Q = d42:e" PTr(F„F p),327r2
(3.1)

where the integration is over all space-time. The inte-
grand in (3.1) is a total divergence and Q can be written

where Uf (x) is an SU(2) valued gauge function satisfying
the boundary condition (1.4a) and where io[Uf] = AN~.

It is possible to go much farther in solving the equa-
tions of motion. They can be expanded order by order
in g and A, and the resulting equations can be solved
for specified initial data using Greens function methods.
This procedure can be organized using tree-level Feyn-
man diagrams. Given e„(k) (and suitable initial data for

h) one could solve order by order in g and A for ef (k). In
discussing topological properties of solutions in the rest
of this paper we will not need to obtain e (k) explicitly
for a given ei'(k), and therefore we will not need to solve
the higher order equations of motion.

Ncs = lim Ncs(T) .
T~ —Qo

g 1
32~2 (2%)s

d~k
n„e" P Tr [e"*(k) e~p (k)],

2&A. 60'

(3.8a)

We are considering solutions that have the property
that A„(x, t) ~ 0 for any fixed x as t ~ —oo, and
one might naively conclude that Ncs is zero. However,
care is needed when interchanging time limits and spatial
integrals Eq. (3.7) requires us to do the dsx integration
at finite time, and only then to take the T + —oo limit.
For example, the energy density also has the property
that it vanishes at any fixed spatial point in the infinite
past; however, its spatial integral is constant in time and
nonzero.

At early times the solutions we are discussing are well
approximated by solutions to the linear equations. We
choose the gauge such that in the far past A„ is of the
form (2.12) with polarization vector e". In evaluating the
right-hand side of (3.7) we find that only terms quadratic
in A„which involve products of e" and e"* are nonzero.
All other terms, including the cubic terms in A„, vanish
by the Riemann-Lebesgue theorem. We obtain
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where ni' = (1,0, 0, 0). The trace is over the SU(2) in-

dices on the polarization vectors. To evaluate N&s, we
use (2.13) in (3.6), noting that gauge transforming a con-
figuration by a gauge function U adds tu[U] to the Chern-
Simons number, and obtain

f g
32vr2 (27r)s

+w [Up],

d3k n„e"" ~ Tr[e~*(k)ep~(k)]

(3.8b)

where the polarization vectors e~(k) characterize the so-
lution in the far future. The topological charge given by
(3.5) is generically nonzero, finite, and not an integer,
and one may be tempted to stop here.

However, we now redo the calculation using a differ-
ent sequence of integration regions. Whereas above we
considered space-time boxes bounded in time by t = +T
we now consider space-time regions bounded by t' = —T
and t = T, where t' is a Lorentz transform of t. For
concreteness we take the Lorentz transformation to be
a boost of velocity P in the three-direction, and so have
t' = p(t+ px ) with p = 1/gl —p2. The surfaces t = T
and t' = —T intersect and we take the integration region
to be the wedge which includes the origin w = 0, t = 0.

Q2 = Ncs Ncsf ]p (3.9)

with Ncs as before and with

e"s = »m
T~oo

d x'K' (»', T), — (3.10)

where x'" is the Lorentz transform of x" and where K'"
is the Lorentz transform of K". For (3.10) we obtain an
expression identical in form to (3.8a) but with k„and e~
replaced by their Lorentz transforms k„' and e' . Thus,

Note that as T goes to infinity, this wedge includes all of
space-time, and we call the result of this calculation Q2.
As before, we do the integration as a surface integral. For
solutions with compact support, there is no contribution
from the surface at spatial infinity. Also, note that for
sufficiently large T the surfaces t = T and t' = —T in-
tersect in a region of space-time where A~ = 0, and the
parts of these surfaces which do not bound the wedge
over which we are integrating have A„= 0. Therefore,
doing the integration in (3.1) over the wedge between
t = T and t' = —T which includes the origin and then
taking the T m oo limit yields

2
lp g 1

32vr (2vr)
(3.11)

[Note that in (3.11) we mean n„and not n' .] Using the fact that k„and e~ are Lorentz vectors and that d k/wg is
Lorentz invariant we write

2
g 1

32vr' (2~)s
d3k

n„e" ~ "Tr[e"'(k)e~p(k)],
2(dI (dI, I

(3.12)

where wi, ~ = p(wi, + Pk ) and n" = (p, 0, 0, —pP). Then, using e"„ki' = 0 to elimPina~te, we find

2 1

32vr (2vr) 2~i, ~g((ui + pk )
(3.13)

where Ncs is the previous result (3.8a). We have found

Ncs g N&+s, and therefore Q2 g Qi.
We have now evaluated the integral (3.1) u»ng two

different sequences of regions of integration. Once the
T -+ oo limit has been taken, Qi and Q2 are integrals
of the same integrand over all space-time, and yet they
differ. This implies that for solutions with compact sup-
port J' d4x~e"" ~Tr(I'„ I' p) ~

is infinite; i.e. , the integral
(3.1) is not absolutely convergent. Some integrals which
fail to be absolutely convergent can be defined unambigu-
ously by integrating over larger and larger convex regions
which grow to encompass all of space-time. [As an exam-
ple, consider f dtdx exp( —x )(sint)/t. ] Since Qi g Q2,
however, the integral (3.1) cannot be defined in this way
and thus fails to be absolutely convergent in a particu-
larly bad way.

The reader may wonder whether the topological charge
could be defined by requiring that the integral (3.1) be
evaluated between parallel spacelike surfaces as for Qi.

To investigate this, evaluate the integral between t' = —T
and t' = T, take the T ~ oo limit, and call the result
Qs. Qs is given by the difFerence between Ngs of (3.13)
and the analogous N&&. Is it possible for Qs and Qi to
be equal for arbitrary Lorentz transformations? For this
to occur, it would be necessary that the integral on the
right-hand side of (3.13) be the same if e" is replaced by
e for all values of P. Although e~ is determined by e"
so they cannot be viewed as independent, we know of no
conservation law strong enough to guarantee this for all
P. Thus we believe that Qs P Qi.

In summary, the integral (3.1) cannot be defined as
an absolutely convergent integral over all space-time and
cannot be defined as the limit of the integral over ar-
bitrary sequences of larger and larger convex regions of
space-time. We know of no reasonable way to deGne the
topological charge of solutions to the equations of motion.

Note, however, that by setting m = 0 in Eq. (3.13)
we see that in the massless theory, Qi and Q2 are iden-
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tical. In fact, it can be shown that in the massless case

Id x~e" ~Tr(P~ I' p)~ is finite and therefore the topo-
logical charge is well defined. This result can be estab-
lished by using the explicit form of the massless Green's
function to show that for solutions with compact sup-
port, f dsx~e"" ~Tr(I"„ I" p) ~

falls like 1/~t~ for l~rg~ ~t].
Since the topological charge of solutions in the massless
theory is well defined, the explicit calculations done in
Ref. [1] are unambiguous.

Note that Eq. (3.13) can also be seen as a demon-
stration that the early time Chem-Simons number is not
Lorentz invariant in the massive theory, but is Lorentz
invariant in the massless theory. (The quantum ana-
logue of this fact is discussed in Sec. VI.) Given a Lo-
rentz vector K~, the standard proof that f dsx Ko(x)
is Lorentz invariant requires that K be conserved, i.e.,
that 8~K~ = 0. In this sense, it is actually the Lorentz
invariance of Ncs(t) at early and late times in the mass-
less theory which is more surprising than the lack of
Lorentz invariance of N~s(t) at early and late times in
the massive theory, since K" is not a conserved current
in either case.

IV. 6 N~ AND THE SPHALERQN

The sphaleron was introduced [4] in the context of
studying sequences of configurations in spontaneously
broken SU(2) gauge theory. One way of stating the re
suIt of Ref. [4] is that if a continuous sequence of config-
urations which begins and ends in vacuum has nonzero
topological charge, then it must include configurations
with at least the sphaleron energy. However, topologi-
cal charge cannot be used to distinguish solutions to the
equations of motion which pass over the sphaleron bar-
rier from those which do not, because solutions do not
have well-defined topological charge. As we discussed in
the Introduction, solutions can be characterized by the
gauge invariant integer LNH, and we show in this section
that for solutions which dissipate at early and late times
AN~ g 0 only for solutions which cross the sphaleron
barrier and consequently have energies exceeding that of
the sphaleron.

Consider configurations specified by A, (x) and 4(x)
where we always take Ao ——0. Following Ref. [4], we de-
fine a non-negative potential energy functional V[A, , 4']
by taking the Hamiltonian associated with (2.1), setting
Ap = 0 and dropping all terms involving time deriva-
tives of fields. (Note that configurations are specified by

the values of the fields, without reference to their time
derivatives. ) We obtain

(4.1)

(4.2a)

h V[A, , 4']
bc* (4.2b)

which we refer to as the energy of the configuration A, , C.
A continuous sequence of configurations parametrized

by t with NIi (ti) g N~(t2) can consist entirely of con-
figurations with arbitrarily low energy for t between ti
and t2, as we now show. Imagine a sequence along
which p is everywhere nonzero and along which, there-
fore, U is everywhere defined. Since each configuration
along the sequence is obtained from preceding configu-
rations by continuous transformations, U varies contin-
uously as t changes, and N~(t) is constant. To obtain
N~(ti) g N~(t2), it is necessary that at some t between
ti and t2 there is a point in space at which p vanishes
(U is undefined) and accordingly the energy density is at
least Av4/4. While such a configuration does not have
arbitrarily low energy density, it can have arbitrarily low
energy. Consider a configuration with A, (x) = 0 every-
where in space, and with p vanishing at one point xp.
Further, suppose that 4 deviates from its vacuum value
only in some region of characteristic size L about xp.
Then, the energy of this configuration can be reduced
to an arbitrarily small value by reducing L. Thus, a se-
quence of configurations with N~(ti) g NH (t2) can have
arbitrarily low maximum energy.

In the remainder of this section we show that for solu-
tions which dissipate at early and late times, as opposed
to more general sequences of configurations, obtaining a
difFerent N~ for t M oo than for t M —oo does require at
least the sphaleron energy. To this end we introduce the
gradient descent integer NcD which characterizes non-
vacuum configurations and which, as explained below,
has the property that NGD changes only if the sphaleron
barrier is crossed [6].

To define N~D of a configuration we use that configu-
ration as the w = 0 initial condition in the equations

Any sequence of configurations which begins and ends in
distinct vacua has some maximum energy. We assume, as is
generally assumed, that this maximum energy cannot be ar-
bitrarily close to zero. It is also generally believed that of all
the maximum energy configurations, the one with the lowest
energy is the sphaleron of [4] if A/g is sufficiently small, while
for larger A/g the deformed sphalerons discovered by Yaffe
[5] play this role. What we refer to as the sphaleron is the
highest energy configuration on the path of minimum maxi-
mum energy, independent of the form of this configuration.

These equations evolve the initial (r = 0) configuration
in a direction in configuration space which is along the
gradient of V with the sign chosen so that V decreases as
7 increases. [Equations (4.2) are the equations of motion
(2.4) with Ao ——0 and with second-order time derivatives
replaced by first-order r derivatives. ] We will assume
that there are no local energy minima in configuration
space except the true vacua with V = 0. Then, there
are two possible outcomes as w —+ oo. For most config-
urations, the gradient descent equations (4.2) evolve the
configuration toward a vacuum configuration as w —+ oo.
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ANcD = lim N~D(t) — liin N~D(t),
t —+oo t —+—oo

(4.3)

which is gauge invariant even under large gauge trans-
formations. We now show that for such a solution
LNGD ——LN~. This is equivalent to showing that for
sufFiciently early and sufIiciently late times, when the gra-
dient descent procedure is performed on the configura-
tion, the Higgs winding number does not change during
the descent.

First, we gauge transform the solution to Ao = 0
gauge. We use the solution to give the v = 0 initial
configurations in the gradient descent equations

0 A, = D~ F~; + [4(D,4) t —. (D;4—)4t],

8 4 = D,D, C —A(TrCt4 —v )4',
(4.4)

For such configurations we define NGD as the Higgs wind-
ing number of the vacuum configuration reached from the
original configuration as w -+ oo. (NGD is gauge invari-
ant under small gauge transformations, but it changes
under large gauge transformations. ) For vacuum config-
urations, NGD ——N~, while for nonvacuum configura-
tions NcD is the winding number of the nearest vacuum,
found by sliding down the potential. NH can change
during the slide, and therefore NGD and NH can difI'er.
There are special configurations for which the gradient
descent equations do not lead to a vacuum configuration
as ~ + oo. These configurations mark the boundaries
between the basins of attraction of diferent vacua. For
these configurations, NGD is not defined.

A continuous sequence of configurations parametrized
by t (not necessarily a solution) which has been put into
the Ao ——0 gauge by a t dependent gauge transformation
can be characterized by NGD(t), the gradient descent in-
teger of the configuration at time t. Consider a sequence
for which the gauge invariant integer NGD(t2) —N~D(ti)
is nonzero. At some intermediate time there must be a
configuration in the sequence with at least the sphaleron
energy. This can be seen by constructing the following
vacuum to vacuum sequence of configurations: append
to the sequence from ti to t2 the two sequences of config-
urations obtained during the descents from the ti and t2
configurations to their respective vacua. This vacuum to
vacuum sequence of configurations connects vacua with
difFerent winding numbers. Therefore, the reasoning of
Ref. [4] can be applied, and we conclude that for some
t between tj and t2, the configuration has energy equal
to or greater than the sphaleron energy. Thus, changing
NOD requires at least the sphaleron energy.

I et us consider a solution to the Minkowski space clas-
sical equations of motion of the kind we discussed in Secs.
II and III. Since N~D(t) is integer valued and is typically
not constant, there will be times t whew it is not defined.
However, at very early and late times, when the solu-
tion has all fields approaching vacuum values, NGD(t)
becomes constant in time and we can define

of p and U instead of C. This will be justified a posteriori
when we show that for configurations characteristic of
solutions at early and late times p never vanishes during
the descent. It is also convenient to introduce the gauge
invariant variable

R', —:—UtD;U = U~A; U + —UtO, U = A,
g g

(4 5)

we write the gradient d.escent equations (4.4) as

g
2

Ut(B A, ) U = D I"„— p W', , (4.7a)

U"0 U = igp 0;(p—W, ), (4.7b)

V2)

l
(9 p = 8;cl,p — p Tr(W;W;) —2A

~ p ——
~ p, (4.7c)

where D I"~ is de.fined as DzE~; of Eqs. (2.5) and (2.2)
with A, replaced by W, . (This is a slight abuse of nota-
tion since W; is gauge invariant. ) We now use (4.7a) and
(4.7b) to obtain

2

a.W, = D~~,~ —g—p'W, —xg[W, , p-'a, (p'W, )]2' 2

+&'(p '~~(p'~ )f . (4.8)

We now have gradient descent equations (4.7c) and (4.8)
involving only the gauge invariant variables W, and p.
We can solve them first, and then use (4.7b) and (4.5) to
obtain U and A, .

We wish to apply the gradient descent procedure to
configurations taken &om solutions at very early and late
times when the energy density is everywhere small. Small
energy density means that W, and h = p —v/~2 are
everywhere small. Therefore, we linearize Eqs. (4.7c) and
(4.8) in W, and h, and obtain

0 W, = (B~B, —mdiv)W. , , (4.9a)

el h = (0,B~ —m„)h. . (4.9b)

We start at 7 = 0 with a configuration in which ~h~ is
everywhere less than some ho. The solution to (4.9b)
valid for all 7 & 0 is determined by h, at w = 0 and is

d ye ~ "l ~ h(o, y) . (4.10)

Using 4 = pU, definition (4.5), and with the help of

TrUtt9 U=0,
(4 6)

UtD, D, U = —g TV;R', —igO;R', ,

obtained from the potential energy (4.1). As long as p
does not vanish, it is convenient to rewrite (4.4) in terms Using (4.10) and noting that ~h(0, y) ~

& ho we find that
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—m2r

ih(~, x)
i

& d3 —(x—y) j4~ I gfermion d x 4 ip"D„— (4PR+ 4 tPI, )
i/2 mf

m Th

&hp. (4.11)

V. FERMION PRODUCTION IN A CLASSICAL
BACKC ROUND

By starting with a conBguration taken from the solution
at arbitrarily early or late time, we can make hp arbitrar-
ily small and in particular much less than v/~2. Because
~h~ & ho for all x and for all r ) 0, we conclude that the
solution to (4.9b) is arbitrarily close to the solution to the
full nonlinear descent equations. Therefore, there are no
places where h = —v/~2 and p = 0 during the descent.
We see that NH cannot change during the descent.

We have shown that when configurations with arbitrar-
ily small energy density are used as initial conditions for
the gradient descent procedure, N~ ——NOD. This implies
that for solutions to the classical equations of motion
which dissipate at early and late times, LN~D ——AN~,
and thus solutions with ANH P 0 have at least the
sphaleron energy.

Let us recapitulate. For vacuum to vacuum sequences
of configurations, Q = AN~ = AN~D is an integer which
is nonzero only for sequences which cross the sphaleron
barrier. For sequences which do not begin and end in
vacuum, the situation is more complicated. Such se-
quences include solutions, and for solutions Q cannot be
defined. A nonzero value for LNG. D arises only for se-
quences which begin and end near diferent vacua and
which therefore include conBgurations with at least the
sphaleron energy. However, there are sequences of con-
figurations for which ANII g 0 which oiily include con-
Ggurations with arbitrarily low energy. For the partic-
ular case of solutions which dissipate at early and late
times, LN~ ——LNGD, and such solutions therefore have
AN~ g 0 only if they cross the sphaleron barrier.

(5 1)

where D„= 8„—igA„PI. , Pl, = 2(1 —p5), and P~ =
2 (1+ps). Here A„= A„cr /2 so the left-handed compo-
nent of ilJ is an SU(2) doublet. For simplicity, both the
up and the down components of 4 have the same mass
mf. The gauge invariant normal ordered fermion current

J" =: Cp"0 (5.2)

is not conserved; that is,

(5.3)

a

A, (x, T) = —U„(x—)0,Ut (x),

4(x, T) = U„(x—),2"
(5.4a)

and

As discussed in the Introduction, in a background
which does not begin and end in pure gauge, fermion pro-
duction cannot simply depend on Q. In this section we
show that in the background of a solution whose energy
density dissipates for t ~ koo, the number of fermions
produced is LN~. Our argument applies equally to any
background whose energy dissipates uniformly in x at
early and late times, solution or not. Such backgrounds
may have mell-defined Q, integer or noninteger, or they
may have undefined Q. Viewed as an index theorem,
our (3+1)-dimensional non-Abelian result generalizes an
index theorem of Weinberg [7] for the two-dimensional
Abelian Higgs model.

To begin, consider as a background not a solution but
rather a sequence of configurations A;(x, t) and 4(x, t)
(with Ao ——0) for T& t & T —with the fields pure gauge
at +T, that is

In this section we address the question of fermion pro-
duction in the background of the classical solutions which
we have described. We introduce a quantized fermion
Beld 4, and as in the standard electroweak theory, we
couple only the left-handed component of the fermion
to the non-Abelian gauge Beld and introduce a Yukawa
coupling between the fermion and the Higgs field to give
the fermion a gauge invariant mass. The action for the
fermion is

Our proof that AN~ = ANcD goes through for any con-
tinuous sequence of configurations parametrized by t ranging
from —oo to cm for which the energy density of the configu-
rations dissipates uniformly in w as t ~ Woo. This class of
sequences includes the solutions to the equations of motion
we consider in this paper, but is more general.

A, (x, T) = Uf (x)0;—U~t (x),
g

4(x, T) = Uf(x) .
2

(5.4b)

Q = w [Up] —co[Up] (5.5)

which is also the change in the Higgs winding number
AN~ between —T and T. Under these circumstances a
fermion state which at t = —T has n fermions will evolve

This means that at t = +T the fermion Hamiltonian is
gauge equivalent to the free Hamiltonian for a fermion
doublet of mass mf. Also, assume that the background
is localized in the sense that there is an RT such that
if ~x~ ) B~ then A;(x, t) = 0 and 4'(x, t) = v/i/2. In
this case the topological charge Q given by (3.1) with
the integral over t going from —T to T is an integer
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into a state with n + Q = n + AN~ fermions at t = T.
This result is established by a direct application of the
work of Christ [8] who studied the evolution of the in
vacuum ~0'") in a background which begins and ends in
pure gauge. He showed that ~0'"), which in the far past
contains no particles, in the far future is a superposi-
tion of states each of which has Q more fermions than
antifermions. Although Ref. [8] is restricted to massless
fermions, the formalism is immediately generalizable to
massive fermions as long as the mass terms are gauge
invariant as they are in (5.1).

The field theory calculation of fermion production is
consistent with the more intuitive level crossing picture.
Consider the instantaneous Hamiltonian

~~, (», —To)~ & em'/4g,

~p(x, —Tp) —~/V2~ «i)/8v 2,
(5.7a)

late times the fermion Hamiltonian is close to the free
Hamiltonian and we should be able to make sense of the
question of how many fermions are produced.

At early and late times )o, given by 4(x, t)
p(x, t) U(x, t), approaches v/~2 and since p does not van-
ish U can be de6ned. At early and late times the gauge
invariant field W; = A; of (4.5) also approaches zero.
More specifically, we can choose Tp big enough to ensure
that

R(t) = p ip*D; +— mf (4PR + C tPL, )
V

(5.6)

which acts on single particle spinor wave functions. For
~x~ ) Rz we have that A;(x, t) = 0 and 4(», t) = v/~2
so we can impose periodic spatial boundary conditions
on the wave functions. This makes the spectrum of 'R(t)
discrete. (We further make the spatial box so large that
the level spacings are much less than mf. ) The spectral
flow X of 'R(t) is defined as the number of eigenvalues
of 'R(t) which cross zero &om below minus the number
which cross zero Rom above as t ranges &om —T to T.
Given the conditions (5.4) we know that the spectrum of
'R( —T), which is the same as the spectrum of 'R(T), has a
gap between —mf and mf . Thus T can also be viewed as
the number of levels which go from below —mf to above
mf minus the number which go from above mf to below
—mf as t ranges from —T to T. Now the Atiyah-Patodi-
Singer theorem [9] (including the identification of the in-
dex with the spectral fiow) tells us for the case at hand
that X = Q. Thus, the Fock space calculation which
gives that the number of particles produced is Q = AN~
is consistent with the intuitive notion that the number
of particles produced is equal to the net number of levels
which cross the mass gap.

We now turn to a background which is a solution to the
Minkowski space equations of motion which dissipates at
early and late times. In this case, Q is not defined. How-
ever, we are only interested in solutions which approach
pure gauge as t —+ Woo. Thus at very early and very

~W. (x Tp)) & emf/4g

(p(x, Tp) —v/~2( & ev/8~2,
(5.7b)

where e is a dimensionless number which can be made
arbitrarily small by going to large enough Tp and where
the constants multiplying e have been chosen for later
convenience.

Now we pick Tp so large that conditions (5.7) are sat-
isfied with e (( 1 and we ask how many fermions are
produced between Tp and Tp—. The formalism of Ref. [8]
requires that the background start and end in pure gauge.
We therefore construct a background which agrees with
our solution for —Tp & t ( Tp but is pure gauge at
t = +T where T ) Tp. We want the pure gauge con-
6gurations reached at t = +T to be close to the con6gu-
rations of the solution at t = +Tp. By (5.7),

A, (», +To) = —U(x, +Tp))9;U (», +To)
g

and

4'(», +Tp) = U(x, +Tp),
2

so we choose the pure gauge configurations of (5.4) to
have U„(x) = U(x, —Tp) and Uy(x) = U(x, Tp). The
background we construct is

C(x t) =
& p(x, t)U(x, t), T, & t & T, ,

—

P~)Tp t + ~ ~ — t U xTp, Tp&)(T,

(5.8a)

' —;U(» —To)c)'Ut(», —To)f(t) + A;(», —To) [1 —f(t)], T& t & —Tp, —

A;(x, t) = & A (x, t), Tp & t & Tp-
A'(», Tp) f(t) + —'U(x, Tp)B Ut(x, Tp) [1 —f(t)], Tp & t & T,

(5.8b)



4570 EDWARD FARHI et al.

where f (t) goes smoothly and monotonically from 1 to 0
as t goes from T—to T—o and f (t) goes smoothly and
monotonically from 1 to 0 as t goes from Tp to T. For this
background the topological charge is Q = ur[U(x, To)]-
ut[U( x, —Tp)] which is the change in the Higgs winding
number of the solution between To—and To. [Recall
that To has been chosen so large that U(x, t) does not
change its winding for ItI ) To.] The number of fermions
produced in the background (5.8) is therefore AK~ of
the solution.

The background (5.8) only matches the solution for
—Tp & t & Tp. We now argue that in the background
(5.8) no fermions are produced while t is between T—
and —Tp and while t is between Tp and T. For Tp
t & T let us examine the spectrum of the single particle
Hamiltonian 'R(t) given by (5.6) with the fields A, and
4 of (5.8). Since the spectrum is gauge invariant we can
just as well use the fields gauge transformed by Ut (x, To),
which for Tp & t & T gives

where

'8 (t) = 'Rr...+ '8'(t) , (5.10a)

R'(t) = f(t) gp p—*PI,W;(x, Tp)

~2 0( vl
myp I p(x, To) —

I

. (5.10b)
2i

For any n x n Hermitian matrix M, the maximum of
the absolute value of its eigenvalues,

II
M II, is less than

or equal to n times the maximum of the modulus of its
entries. Now 'R'(t) acts on eight component spinors and
since 'R'(t) is already diagonal in the x basis we have that

A,.
'" '(x, t) = f(t)W, (x, T,), (5.9a)

U (,To)C'(x, t) = f(t)p(x, T ) + [1 —f(t)] . (5.9b)
2

The Hamiltonian (5.6) for To & t & T now takes the
form

~~
w. '(t) ~~& 8ft'f1 max —~w, (x, Tp)~, my~p(x, T )

—
ov/%2~I

g
(5.11)

Because of (5.7b) we have that

II &'(t) II& f(t)nn f & em f . (5.12)

We can make e arbitrarily small by choosing Tp suK-
ciently large. Equation (5.12) implies that, for any nor-
malized state Ig),

(&I&'(t)'I&) «™f (5.13)

whereas for 'Rg, , we have that

(&I+&'...I&) & mf . (5.14)

Let Ig) be an eigenstate of 'R(t) with eigenvalue E, that
is ('Rr„, + Q')Iv)) = EIg). Now if E = 0 we have
&r„,I4) = —R'I@) which by (5.13) and (5.14) is impossi-
ble. A simple generalization of this argument shows that
if E is an eigenvalue of 'R(t) for any t between To and T
it must satisfy

El &m, —.m (5.15)

Thus the spectrum of 'R(t) has no eigenvalues between—my(1 —e) and mf (1 —e) for all t between To and T and
we conclude that no levels can cross zero as t goes from
Tp to T.

We have not developed a field theoretical formalism
for discussing particle production in a background which
does not go from pure gauge to pure gauge. For the
case at hand, however, with the background (5.8) we are
confident that no fermions are produced between Tp and
T because the instantaneous single particle Hamiltonian
maintains a gap from —mf (1 —e) to mf (1 —e) between
Tp and T. An identical argument leads to the conclusion
that no fermions are produced between —T and —Tp.
Since the number of fermions produced between —T and

l

T is AN~, we have that the number of fermions produced
between —Tp and Tp is AN~. Between —Tp and Tp the
fields in (5.8) are those of our Minkowski space solution.
Therefore we conclude that for Tp arbitrarily large the
number of fermions produced in the background of a so-
lution between —Tp and Tp is LNH. The fact that the
topological charge is not defined does not alter this con-
clusion.

Our result is similar in spirit to that proposed for mass-
less fermions coupled to unbroken SU(2) gauge theory
by Christ in the concluding section of Ref. [8] and con-
sidered recently by Gould and Hsu [10]. At early and
late times, solutions have the form (2.12) and (2.13) with
cui, = IkI. Because we have imposed the boundary con-
dition (1.4b), there is an integer iv[Uy] associated with
solutions to the equations of motion. Christ proposed
that the number of fermions produced in a background
of this form is iv[Uf]. For our solutions in the theory
with the Higgs field, iv[Uy] = 6K~ and we have shown
that the number of massive fermions produced is AN~.
Our result holds even for fermions with arbitrarily small
mass, but our analysis relies on the existence of a gap in
the fermion spectrum and cannot be applied to a theory
with massless fermions.

We have shown that classical solutions which dissipate
at early and late times must have at least the sphaleron
energy for the Higgs winding number to change. This
means that for solutions with energies below this thresh-
old, no fermions are produced. As we discussed earlier, it
is possible to solve the classical equations of motion order
by order in perturbation theory in g and A. This is equiv-
alent to solving them order by order in the amplitudes of
the fields. Any process that happens only for solutions
with energy above some threshold will never be seen in
such a perturbative expansion. Therefore, fermion num-
ber violation does not occur in backgrounds obtained by
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solving the classical equations of motion to any finite or-
der in perturbation theory.

VI. QUANTUM SCATTEHINC

Until now we have kept the gauge and Higgs fields clas-
sical. Here, we make a few remarks on quantum scatter-
ing of massive gauge bosons. If we were working with
an unbroken SU(2) gauge theory, it would be difficult to
proceed from a classical treatment to quantum scatter-
ing, since the asymptotic states of the quantum theory
are glueballs, which have no classical counterparts. How-
ever, in the spontaneously broken theory which we are
discussing, the asymptotic states in the quantum theory
are the massive quanta of the gauge field itself, whose
classical analogues are the solutions to (2.8). We do not
attempt a complete quantum mechanical treatment here.

The point of this section is only to show that there is a
direct quantum analogue of the result of Sec. III that the
topological charge of solutions cannot be defined.

Consider the theory whose action is given by (2.1). Us-
ing standard diagrammatic methods one can construct
the S matrix describing the scattering of massive gauge
and Higgs bosons order by order in perturbation theory.
We do not require that there be many gauge or Higgs
bosons in the initial or final states. Because of (3.5) we
attempt to construct a Chem-Simons number operator
Ncs and then define the topological charge as the di8'er-
ence between the expectation value of Ncs in the final
and initial states of the scattering process. Because we
are only interested in (%cs) in the initial and final states
which consist of massive gauge bosons propagating freely,
we can use the free field expansion for the gauge field op-
erator:

d3k
, 2 ) [e

'" e"„(k,A)a„(k) + e*" e„*(k,A)a~" (k)],2M' (6.1)

where the color index 6 is not summed over. The
sum on A runs from 1 to 3, the polarization vec-
tors satisfy e (k, A) k" = 0 and e (k, A) e "(k, A')

bye, and the creation and annihilation operators satisfy

[a&(k), a&, (k')] = h (k —k')bgpibigr. We now define

topological charge as the difFerence between (Kcs) in the
initial and final states of a scattering process.

VII. CONCLU SIGNS

2
&mn

327r2
dsx Tr[AiB A„+ sigAiA A„] .

(6.2)

Ãcs = g
t~ Woo ) [ ', (k) — ' (k)] ,

2&A.
b

(6.3)

where n~&(k) and n&(k) are the number operators for
left- and right-handed particles with color index 6 and
momentum k. [For a particle with color label b and
with positive momentum in the three-direction, aL

(ai + iaz)/~2 and a& ——(ai —iaz)/~2 and n& ——aL, aL, .]
In taking the t -+ joo limit of (6.2) to obtain (6.3),
any terms which do not have the same number of cre-
ation and annihilation operators vanish by the Riemann-
Lebesgue theorem. At first glance, it seems that (6.3) can
be used to compute the difkrence between the expecta-
tion value of Ncs in the initial and final states of a scat-
tering process. This result would be interesting, because
it is certainly possible to have perturbative (tree level, in
fact) 2 + 2 scattering processes in which the difFerence
between the number of left- and right-handed massive
gauge bosons changes. In the massless theory &uk = ~k~

and (6.3) is Lorentz invariant. In the spontaneously bro-
ken theory, however, (6.3) is not Lorentz invariant. It
is not possible, therefore, to define a Lorentz invariant

Substituting (6.1) in (6.2), normal ordering, and taking
either the t —+ oo or the t —+ —oo limit, we obtain

Classical backgrounds given by solutions to the equa-
tions of motion have undefined topological charge, but
they can nevertheless be characterized by the integers
ANH and ANGD. For general sequences of configura-
tions, LNGD is nonzero only if the sphaleron barrier is
crossed. This is not true in general for ANH, but for
solutions to the equations of motion which dissipate at
early and late times, AN~ ——ANGD. Thus, for dissipa-
tive solutions, the Higgs winding number changes only if
the energy is greater than the sphaleron energy. When a
massive chiral fermion is coupled to such a solution, the
number of fermions produced is given by AN~, and is
not related to the topological charge.

In previous work in unbroken SU(2) gauge theory [1],
it was found that the topological charge of classical so-
lutions can be nonzero at finite order in perturbation
theory. This might hint that, in nature, fermion number
violating processes could occur at Finite order in pertur-
bation theory. Now, with the Higgs field included in the
theory, we see how nature can avoid this outcome. First,
it is impossible to define the topological charge of classi-
cal solutions. Second, while at first glance it seems that
topological charge could be generated at finite order in
quantum scattering processes, here too it turns out to be
undefined. Third, for classical solutions we have shown
that the number of fermions produced is not given by the
topological charge, but by the change in Higgs winding
number. This means that fermion number violation does
not occur at Finite order in classical perturbation theory.
Thus, it seems reasonable to assume that in quantum
scattering there is no fermion number violation at any
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finite order in perturbation theory. This is not a sur-
prising conclusion. What is surprising is that we have
arrived here not by finding Q = 0, but by finding that Q
is not well defined and does not determine the number of
fermions produced.
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