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We analyze the high-energy behavior of tree-level graviton Compton amplitudes for particles
of mass m and arbitrary spin, concentrating on a combination of forward amplitudes that will be
unaffected by eventual cross couplings to other, higher spins. We first show that for any spin > 2,
tree-level unitarity is already violated at energies ~ /mMpi, rather than at the Planck scale Mp,
even for m < Mp,. We then restore unitarity to this amplitude up to Mp; by adding nonminimal
couplings that depend on the curvature and its derivatives, and modify the minimal description,
including particle gravitational quadrupole moments at ~ m ™' scales.

PACS number(s): 11.15.Bt, 04.60.—m, 04.62.+v, 11.90.+t

I. INTRODUCTION

It is fortunate that no higher (s > 2) spin elementary
excitations have been observed: massless ones are well
known to suffer from grave consistency problems when
they, unavoidably, couple to gravity! [1]; massive ones,
with which we will be concerned here, are not directly
touched by this difficulty, related to the loss of free-field
gauge invariance when ordinary derivatives are replaced
by covariant ones. Instead, we shall see that they in-
herit from their m = 0 parts an obstacle of a more intu-
itive kind, namely that tree-level unitarity is already vio-
lated at energies /s ~ v/mMp), well below Planck mass
Mp, for ordinary m in, e.g., graviton Compton scatter-
ing. One of the motivations for our study is the fact that
massive excitations of any spin are necessarily present
in the context of string theory, at least at levels where
particle expansion is meaningful. Those masses can be
much smaller than the Planck scale if the string is weakly
interacting; thus, one would like to see how field theory
arranges itself “optimally” in this context and compare
this with the description arising from the (-function ex-
pansion, say, of the string.

A very similar problem arises in the electromagnetic
coupling of higher-spin charged fields, and provides an-
other motivation for the gravitational analysis. In the
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LA consistent scheme may perhaps be achieved in the pres-
ence of a negative cosmological constant A [2]. Here we deal
only with A = 0 gravity.
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Maxwell case, it was found [3] that judicious addition
of nonminimal, Pauli, couplings restores low-energy tree
unitarity in Compton scattering with the added bonus
that the new terms give rise to a universal value g = 2
of the g factor for all spins. The corresponding question
here would be about the gravitational quadrupole mo-
ments of the matter system. The first example, s = g, of
our topic was treated recently [4]; both the gravitational
Compton amplitude difficulty and its (partial) cure were
exhibited. Here we shall generalize these results to cover
all bosonic and fermionic spin > % We shall also em-
phasize that there are in fact two very different contribu-
tions to the graviton-particle vertex or current, defined
with respect to the gauge transformations permitted by
the massless parts. Here we shall deal with the “gauge-
longitudinal” parts of the currents, where our nonmini-
mal completion will indeed improve the high-energy be-
havior. These new terms will also contribute to (but not
remove) the unwanted behavior of the “gauge-transverse”
currents; we conjecture that more radical means will be
required here, including (at least) the addition of infinite
Regge towers of higher-spin modes, and corresponding
corrections to the Einstein action, as automatically hap-
pens in string theory.

Let us briefly review the problems of and differences
between massive and massless spin > % fields. The
field equations of the latter are always of the schematic
form D,F#" " = 0 for bosons, where F' is the anti-
symmetric field strength. Hence the Bianchi identity
2D, D, F* = [D,,D,]JF* will lead to unacceptable
local constraints of the form RF = 0 on the matter field
and full curvature tensor R (only spin 1 and 2 escape this
difficulty). A similar problem occurs for fermions, where
F is proportional to the fermionic potential itself (here
only spin % escapes because just the Ricci tensor enters in
the above constraint). In the massless case, there can be
no nonminimal help for these problems, by gauge invari-
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ance and dimensions. For massive models, on the other
hand, the loss of Bianchi identities is not as catastrophic
because the resulting constraints simply relate the RF
term to terms ~ m2D,¢* ", where ¢ is the bosonic am-
plitude, for example, thereby merely shifting the usual
m?8,¢* " = 0 condition of flat space. Furthermore, once
a mass parameter is present, it becomes possible to add
terms such as ~ m~!Ry (for fermions), a mechanism
we will indeed exploit here. There are two equivalent
ways of performing the analysis: either directly, at the
level of the matter field equations (where one can in turn
either attempt an all-order analysis or expand in powers
of the metric deviation h,, = g,, — 7y, from flatness), or
by considering the Compton scattering amplitude, where
the field equations’ characteristics are divided into their
linear parts in h,, (the vertices) and their flat-space parts
(the propagators). Here we proceed in the latter way, the
fundamental difference, for our purposes, between s < 2
and s > 2 fields being that, for the former, the scattering
amplitudes remain small up to the Planck scale. In order
to convince ourselves that this lower-spin property is not
obvious, let us consider, for instance, the elastic scatter-
ing of a graviton off a massive spin-s particle, depicted
in Fig. 1.

The corresponding scattering amplitude involves the
propagator II of the massive field ¢. For s > 1 this prop-
agator contains, in its numerator, terms proportional to
1/m?, related to the existence of (restricted) gauge in-
variances in the m — 0 limit. These mass singularities
could, in principle, give rise to a scattering amplitude
containing terms O(s?/m2Mg,;). Such a scattering am-
plitude would become large, and eventually exceed the
unitarity bounds, at /s &~ vmMp,. If m < Mp, this en-
ergy lies far below the Planck scale; also, the amplitude
would have no massless limit due to its dependence on
powers of m™!.

The reason why O(s?/m?M3,) terms are absent for
s=1, %, 2 is the following: The diagrams in Fig. 1 giv-
ing rise to the dangerous O(s?/m2M§g,) terms have the
form? JIIJ. The tensor current J is obtained by varying
the action S[¢, ef] with respect to the field ¢, and keep-
ing only terms linear in the fluctuation of the metric or
vierbein® about the flat-space background. This vertex
is thus universally defined by

6S[p, e
% =J. (1.1)
L
As noticed above, terms proportional to 1/m? in the
propagator II are related to gauge invariance in the mass-

less limit. More precisely H(?) = m”‘z:i; iff ;S is a pure

gauge. The standard form of 2) for s = 1, %,2 reads

2The “seagull” diagram in Fig. 1 does not contribute to the
leading zero-mass singularity.

3By working in the symmetric gauge €., = eua for the vier-
bein, we have eua = Nua + Lhua-
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FIG. 1. The tree-level graviton Compton diagrams; solid
lines denote massive, spin-s particles, dashed lines denote
gravitons.

(throughout, we consider Majorana spinors and real ten-
sors, for simplicity)

s=1 du = Oye, szg: ¢ = Oue
(1.2)
s=2: éuuzaﬂeu—l—a,,e“.

The gauge parameter € is a scalar for s = 1, a spinor for
§ = %, and a vector for s = 2. If the projection of the

o o
current J on the vectors ¢, denoted by J-¢, has the form
mX, with X any operator possessing a smooth m — 0
limit, then, by dimensions, no O(s?/m2M%)) terms will
arise in the scattering amplitude of Fig. 1. Here the
o

key observation is that, up to O(h2) terms, J - ¢ equals
o

¢ - 6S[p,e5]/04, due to Eq. (1.1): we find the projec-

o

tion J - ¢ by varying the action S[¢,e%] under a gauge
transformation,* and linearizing in the gravitational field
hu.. For generic spin this variation contains terms of the
form mX, hereafter called “soft,” as well as hard terms.
The hard terms do not vanish in the m — 0 limit.5 For
s = % and 2, though, the hard terms are proportional to
the (linearized) Ricci tensor R,, [5,6]; they are absent
altogether for s = 1. These s = %,2 hard contributions
thus vanish when we impose the free-graviton equations
of motion (that is the linearized Einstein equations in the
vacuum) that the external gravitons in Fig. 1 obey.
Having recalled how the lower spins escape the tree-
unitarity problem, we will turn, in the rest of this paper,
to the general case. In Sec. II, we review the first system,
s = % in which the full extent of the high-energy-limit
problem is manifested, and isolate the specific forward
scattering amplitude to be analyzed. We will then con-
sider the general integer spin case in Sec. III, and find
the required nonminimal additions that remove the hard
contributions to that amplitude. The construction is ex-

tended to all half-integer spin systems in Sec. IV, while

*To be exact, under a restricted gauge transformation of the
massless free Lagrangian, S;o [¢] = limm—0S[g)].

5The nonvanishing of J - ¢ in the massless limit implies, by
(1.1), that the equations of motion of a massless high-spin
particle are generically inconsistent [1].
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Sec. V contains some concluding remarks and interesting
open problems.

II. REVIEW OF SPIN g

Before going on to the general case, it is instructive to
summarize, following [4], the situation for spin 5, where
one is first faced with hard terms involving the full curva-
ture. The system is described, as in [8,9], by a symmetric
tensor-spinor ¥,,, and an auxiliary spinor x. The corre-
sponding action was written, as in [9,7],

S = /d4.’1,'\/§|:— ';—"/_)ab D'wab - 'l/_’ab'yli D’Yc'wca
+21/;ab7ch1/}ca + %djaa Doy — "Zaan'Yc"/’bc

m [ - 3 - 7 -
+‘2_ (¢ab¢ab - Z"/’ab'Yb'Yc'lﬁca - Z¢aa"/’bb

_}39)_('(/’1111 - gXX)] . (2-1)

9

The conventions on the metric and v matrices follow [7]
and the covariant derivative of the field v, is

Dud’vp = u'l/)up + %Uabwzb(e)"pup - Fzy'l/’z\p - Fz,p"/)u)\ .
(2.2)
fI‘he free spin—g Lagrangian possesses a restricted gauge
invariance at m = 0 [9,10]. The gauge parameter is a
~-traceless vector spinor, and the gauge transformation
reads
0Pp, = Ou€, + Bue, , e =0. (2.3)
The free equations of motion of %, and x give, as ex-
pected
a"puu =mPu, Yu = a”"/)uu =0, x=0. (2'4)
In order to see whether O(s2/mZM$,) terms are present
in the scattering diagrams of Fig. 1 one must perform
a variation of the action (2.1) under the transformation

(2.3), linearize in the gravitational field, and put ¥,., X,
and h,, on shell. A short calculation gives [4]

§S = _/d4z2\/§€u7p¢A0RuApU + soft terms + O(h?) .
(2.5)

The hard term in this equation is proportional to the
Riemann tensor; thus, it does not vanish on shell, so the
scattering amplitude of Fig. 1 does contain O(s%/m2M%,)
terms.

Thus, a minimally coupled light (m < Mp;) spin—%
field interacts strongly with gravity even at relatively low
energies (/s = v/mMp; < Mpi), and the presence of in-

verse powers of the mass also bars us from taking the
massless limit. This scenario is rather bizarre: it would
seem more natural that gravitational interactions remain
weak up to Planckian energies /s =~ Mp, irrespective of
any particle’s mass. In [4] it was shown that in order to
implement this requirement one must add, to the min-
imal Lagrangian (2.1), a nonminimal term proportional
to the Riemann curvature whose gauge variation cancels
the hard term given in (2.5). In other words, in order
to obtain gravitational tree-level amplitudes that may
possess a smooth m — 0 limit one must add a nonmin-
imal term such that the high-spin current in (1.1), i.e.,
Juw = 06S[¥] /6% (x)|L, is conserved up to terms propor-
tional to m.
The required nonminimal term turned out to be® [4]

1 - 7 vo
_Em ! /d4m\/§¢uuRiMP "/’pa’;
(2.6)
R:tu.pua — RHPVT 4 %,YSGVUQERZE .

Actually the improvement (2.6) does not by itself ac-
complish the desired goal of removing all singular terms
from the scattering amplitude. The fermionic current J,,,,
has two parts: the pure spin %, transverse and y-traceless
one, and its longitudinal complement, the (lower spin)
part in the direction of the gauge variation (2.3). The
nonminimal addition has ensured that the contribution of
the latter is well behaved in the massless limit. However
(2.6) also contributes a (singular) part to the transverse
current, and the latter will contribute already against
the nonsingular parts of the propagator II. We believe
that in order to cancel this mass singularity one would be
forced, at least, to add other massive fields, of spin larger
than % Probably the process never stops until an entire
Regge trajectory has been added. A similar conjecture
has been made in [11], in the case of purely gravitational
interactions of elementary particles, and has been used
in [12] as one of the early motivations to consider string
theory as the natural setting of a perturbative theory of
quantum gravity. In terms of a field equation analysis,
the addition (2.6) only ensures that the longitudinal pro-
jection of the matter equations obeys Bianchi identities
devoid of explicit curvature terms; but it does not remove
such (singular) terms in the transverse complement.

The implementation of tree-level unitarity on all scat-
tering amplitudes is a most interesting program, espe-
cially because the (conjectured) need for new (infinitely
many) degrees of freedom seems to lead naturally to
string theory. On the other hand this program seems
difficult to achieve concretely at present, and thus we
prefer to adopt another strategy, namely, to find scat-
tering amplitudes that do not depend on the transverse

SAt R,, = 0 the quantities R¥#**? reduce, on fermionic
states of definite chirality, to the self-dual (or anti-self-dual)
components of the Weyl tensor C##¥7.
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current, and implement tree-level unitarity only on those
amplitudes. In other words, we prefer to divide the im-
plementation of tree-level unitarity into two parts. One
will give rise to constraints on the interactions of indi-
vidual high-spin particles alone; the other will not only
further constrain these interactions but also require the
introduction of new degrees of freedom.

Fortunately, an amplitude independent of the trans-
verse part of the current J is known. It can be written
for particles of arbitrary spin, and reads

F-(B,55) = 55f(B,55,4) = £(B53,-)]

(2.7)
It is the difference between the positive- and negative-
helicity forward elastic scattering amplitude of a graviton
of energy FE off a spin-s particle at rest; —s < s3 < s is
the helicity of the spin-s particle. The equivalent ampli-
tude, in the case of photon scattering off a spin-s target,
was used in [13] to constrain the form of electromag-
netic interactions of high-spin particles, by using appro-
priate dispersion relations. The natural question is then
whether the cancellation of hard terms in (2.7) is specific
to spin % or whether it holds in general. We shall show
how the results of [4] can be extended to massive particles
of any spin, provided suitable gravitational quadrupoles
are added to the Lagrangian: in this respect, spin 3 is
not special.

1
L:§¢3(82_m2)¢s

_1)\2
+§¢ﬂ.‘53.¢s+fﬁ__1l) ¢8—28.a.¢8_1

2s 2

where 9 - ¢ = O*@p,,...n,. This Lagrangian involves
the minimal number of auxiliary (nonpropagating) fields
needed in order to describe the propagation of a pure
spin-s field. Since we shall consider only perturbative S-
matrix elements, any other consistent Lagrangian should
give rise to equivalent results. The equations of motion
obtained from (3.1) are

#P<* =0, (0°-—m?)¢*=0, 9-¢°=0. (3.2)

The Lagrangian (3.1) may now be coupled to gravity us-
ing the minimal substitution

O, — Dy, 7" — g" . (3.3)

The resulting minimal [with respect to the derivative or-

_¢s—2 (82 _
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The fact that the forward elastic scattering amplitude
f-(E, s3) is tree-level unitary means that there exists a
way of defining the gravitationally coupled action such
that the current J, defined in Eq. (1.1) is softly broken;
namely, as explained before, that its divergence is propor-
tional to m. If one could take the m — 0 limit of (1.1),
one would then obtain an exactly conserved tensor cur-
rent, which would imply the existence of a large “softly
broken” higher-spin symmetry. To justify this conjec-
ture one may appeal to the case of the standard-model
W bosons in an external em field: in that case the role of
the currents J is played by the off-diagonal components
of the SU(2) gauge group.” The m — 0 limit may be le-
gitimate in a completely consistent theory of interacting
higher spins, as string theory is conjectured to be. The
massless limit there may correspond to the tensionless-
string limit o — oo [15,16] or to a new topological phase
of gravity [17].

III. INTEGER SPINS

To compute the amplitude (2.7) for arbitrary spin we
need an explicit form of the free massive, spin-s field
Lagrangian; we use that of [8], which is written in terms
of symmetric, traceless tensors ¢P of rank p = s,5—2,s5—
3,...,0:

S
s—1

—_ 2 +—
mZ) ¢s—2 + 2((323 —2)l)¢s—2 . 90 - ¢s—2 + -],

(3.1)

dering in (3.1)] action® S,,[@, g,..] gives rise to a current
J as in (1.1). As we explained in the Introduction (and
illustrated for the case of spin g) the longitudinal part
of J is associated with a restricted gauge invariance of

"The link between tree-level unitarity and gauge symmetry
indeed holds for any system of interacting particles of spin
<1 [11,14].

8Minimal coupling to any gauge theory, including gravity, is
of course only defined uniquely for systems of first derivative
order (fermions or first-order form of bosons); for bosons of
nonzero spin, different order of derivatives will differ by curva-
ture terms. This ambiguity is unimportant; the real question
is whether any given ordering, corrected if necessary by non-
minimal, “Pauli,” terms proportional to the curvature or its
derivatives, can lead to the desired amplitude behavior.
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the massless free Lagrangian. More precisely, one varies
S|, guo| with respect to the gauge transformation [3]

o s—1 A
545”1,..#, = a(uleuzmu.) - ?g(#luza €us - pa) o
o 2s—1
8 ez = g O Crptaar (3.4)
6¢f‘l._.“p =0 ifp<s—2,

where the parentheses mean total (normalized) sym-
metrization and the gauge parameter €, ..., , is a sym-
metric, traceless, rank-(s — 1) tensor, obeying the equa-
tion

O €prpg e =0 . (3.5)
The variation of the action under the transformation

(3.4) gives, after the free equations of motion for the fields
@P and h are used,

88m = /d4x\/—_g2(s — 1)e b2 He-1ROPIY g0 s

+soft terms + O(h?). (3.6)

The hard terms, proportional to the Riemann tensor and
to (s—1), vanish for spin s = 1 but do not vanish on shell.
Equation (3.6) is simply the projection of the current
J over the gauge directions: it is proportional to the
longitudinal part of J. Since the propagator II of the
massive field ¢ is singular as 1/m? along those gauge
directions, to obtain a well-behaved scattering amplitude
f—(FE, s3) one must add to the minimal Lagrangian a new
term Sy, such that 85, + 65, is soft. This term is

s(s—1
Shm = (_2._) /d4w /—g_d’;—y”sm“'Raﬂ76¢f35#3...ﬂs .
(3.7)

J
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The variation of the new nonminimal action S = S, +
Snm gives

55 = —/d4:c\/—_g(s —1)(5 — 2)eqy e e

x (3>\Raﬁ'~/5) ¢EJM3”'IM—1 A

+soft terms + O(h?). (3.8)
Again, one finds that there are hard terms nonvanish-
ing on shell, but now they are zero for spin s < 3. It
is interesting to notice that this result, in agreement
with [18], can be obtained directly from some “mini-
mal” action by exploiting the ambiguity of the minimal
coupling, i.e., without introducing the term (3.7). In
fact, if we minimally couple the free Lagrangian (3.1)
to gravity after integrating the second term by parts,
and exchanging the order of the derivatives, namely, if
we use the term (s/2)dph°#2 #+ 9,22, instead of
(8/2)0ap® @21 g®P . ..,.., the variation (3.8) is ob-
tained directly. By using the identity

DaDp¢}, ..., = (DpDa + [Da, Dgl) ¢y, ...,
= DgDad’,..... + 5Rup, ¢:

afpr Prpz-ps

bt (3.9)
one can verify that the minimal action defined in this way
is different from the previous nonminimal one Sy, + Snm
only through terms proportional to the Ricci tensor, that
is through terms vanishing on graviton shell. This con-
firms what was sketched in the Introduction: the min-
imal coupling gives rise to hard terms in the scatter-
ing diagrams of Fig. 1 only for spins s > 3. Moreover,
this new minimal action is equivalent to the first-order
formalism [6]; in fact, its variation under the transfor-
mation (3.4), with standard derivatives replaced by co-
variant ones and by using the identity (our convention
is R 3 ~ +0.I'j, and the signature is mostly minus)
DaRag.Yg = DJR,Yﬁ — D.YR;;(;, gives

85 = [ d'ay=g{~(s = (s = Dy [(DAR) B3, + 2RO D B ]

(s = e (<2 (DARTS) + (DOR) = 2RODY] 8, + 2 5D,

which confirms and extends the result found in [6].

(3.10)

Now, to eliminate the unwanted curvature derivative terms in (3.8), one needs to add truly nonminimal terms
to the action (either the minimal one obtained with the order of derivatives specified above or the nonminimal one
previously introduced, that is S = S,, + Spm). After a straightforward but tedious calculation they turn out to be
the sum AS = AS; + AS; + AS3 of three contributions:

s(s—1)(s—2) . s s ns pa s
AS; = T /d"z ’_—g [8’\¢ a_y)‘u.; ™ (3pRaﬁ'v6) ¢Bsp“4m”. —¢ a_y/\m K R ﬁwéakaﬂ(ﬁﬂapur”m] ,

25(s — 1)2(s — 2) e (o9 s
AS,; = m2(2s — 1) d*z/—g [¢a 2pzep (apR ﬁvﬁ) a.,¢pm...,‘_455] . (3.11)
s(s—1)%(s—2)(s—3 o . .
AS3 = ( 'rrzzgls — ig ) /d4:1:,/—g [d;:wz#s Ms—2 (aAapR ﬁ"r&) ¢ﬁ6ua~-~u._2Ap] )

In this way we find the variation of the complete action S = S + AS to be
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s—2)

6ST = /d4m\/——(——L _7#3"'#.—1 (32 —m

In this variation there is only one hard term (vanishing
for spin s < 3) and it is proportional to 82 — m%. When
inserted in the expression for the scattering amplitude
JIIJ, it gives rise to a local “seagull” term that can be
canceled by adding local counterterms O(h2), and there-
fore it can be neglected. This is the new feature that
appears at spin 3: the longitudinal part of the current J
need not be soft, but it may contain hard parts as long as
they are proportional to the equations of motion of the
field ¢; these only give rise to “seagull” diagrams that
can be consistently ignored. Another way of stating this
property is that terms proportional to the equations of
motion of ¢ can be eliminated by a local field redefini-
tion of ¢, which does not change the form of the free
Lagrangian. Finally, notice that the AS of (3.11) vanish
on the free ¢ shell, where 9 - ¢* = 0 = ¢*~2. This means
that they do not contribute to such physical quantities
as the higher gravitational multipoles.

IV. HALF-INTEGER SPINS

To study the fermionic systems, we follow the formu-
lation of [8] (slightly different from that of Sec. II) and
write the free flat-space Lagrangian for massive particles
of half-integer spin s = n + % as

L=9"(p—m)y" + 5 l[zzn—la-w"—zz?”-w—l

)wn—l +

The fields 9? are the minimal set needed to represent the
physical degrees of freedom of a pure spin-s free massive

n+1

+W”(ﬂ+——— (4.1)

J

4n(n? _1)—0!#3

_ 4
JSm—/da:\/_ 1

2 _
:/d4m\/§4n(n 1)lga

2n+1 m

2) [(8”R°‘B75) ¢E5ua-~u.~1p] + soft terms + O(hz) .

n A I
“r YA Rapas ™

3 fin R:BAsaA,‘/)nﬁéu
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(3.12)

[

particle. They are symmetric y-traceless tensor-spinors
ofrank p = n,n—1,n—2,...,0; for rank lower than n—1,
they appear in L with multiplicity 2 (namely 9*? and ¢ =
1,2). Here the metric is the Pauli metric g** = §** and
the convention on the vy matrices (see [7]) is

t
Y=k, P =yt

(4.2)

Y At =261,

Note that since ¥? is symmetric and y-traceless, it is au-
tomatically also traceless: ¥hi,..... = 0. The free equa-
tions of motion derived from (4. 1) are

(P —mpy" =0, 8-9" =0, y~'=0=y?,

p<n-—1, i=1,2. (4.3)

The free massless Lagrangian possesses a restricted gauge
transformation [3] given by

n 2n(n + 1)
&l)ﬂl - ——5n+_18(#1 €uzps-pn)
n
_m'y(m D€ pirpis - in) >
S s = Peuspin s (4.4)
SYPP =0, i=1,2, andVp<n-—1,

where € is a rank-(n — 1) symmetric tensor spinor that is
v-traceless and divergenceless. While half-integer spins
have unique minimal coupling to gravity, they share the
tree unitarity problems of spin % discussed in Sec. II. In
fact, the variation of the minimal action S,, under the
transformation (4.4), linearized in the gravitational field
and with the fields ¥ and h put on free shell, gives

w-pn + soft terms + O(h?)

s--un + soft terms + O(h?). (4.5)

By performing the same procedure as used in the previous section, we can remove the hard term in Eq. (4.5); here

we add the nonminimal term

n(n—1 TRt -
Spn = _% / d*z /g R L ™ -

This result confirms [4]; in analogy with the bosonic case, for spin s >

(4.6)

% (i.e.,n > 3), the variation of the new

nonminimal action gives rise to additional hard terms. They read

2n(n? — 1)(n—2

85 = - m(2n + 1)

)/d‘lm\/gga'Y“S"'ﬂn—l (a»\

R:B’YJ) "j’nﬁaus"-un_lk- (4.7)

These terms can be canceled, as in the bosonic case, by introducing extra terms, which again vanish on shell (4.3):
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AS — 2n(n? - 1)(n —

2n(n? — 1)(n

6S = /d4:1:\/§

The remarks made about integer spin at the end of the
previous section apply here as well: the terms propor-
tional to the equations of motion of ¢ are irrelevant since
they give rise to local “seagull” diagrams, and the addi-
tional terms in the Lagrangian, given in (4.8), do not
contribute to the gravitational multipoles of the spin-s
particle since they vanish on shell and can be eliminated
by a local redefinition of 1, which changes neither the
kinetic term nor the S matrix.

V. CONCLUSIONS

We have established the following “low-energy” theo-
rem: for all massive, higher-spin fields that one can ade-
quately soften the behavior of their forward elastic scat-
tering amplitudes f_ (E, s3) to maintain tree-level unitar-
ity up to the Planck scale. This was carried out explicitly
and uniformly through the addition of nonminimal terms
proportional to the Riemann (or Weyl) tensor and its
derivatives. Equivalently, this means that the projection
in the gauge direction (of the massless limit) of the im-
proved matter field equations obeyed Bianchi identities
not involving explicit curvature terms. We noted, how-
ever, that the complementary, gauge-orthogonal, contri-
butions to the vertices (as well as the propagators) now
contain inverse powers of mass and hence the correspond-
ing amplitudes will still violate unitarity at lower scales;
but conjecture that improvements here (if they can be
achieved at all) will require taking into account couplings
of infinite towers of massive particles. We emphasize that
the transverse and longitudinal currents give rise to dif-
ferent pathologies. In particular, since f_(FE,s3) does

2 -
m3(2n + 1) ) /d4m\/—g-{¢n~1aw3...#"_l [3"(m+ é’)R;ﬁ—ys] ¢nﬁ6u3"’ﬂn—1)\} .

The variation of the total action S,, + Snm + AS now gives
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(4.8)

~2) qyparepn n
@n 1 m? EXVH3 " Hn—1 (32 —mz) [(3’\12:‘,76)1,0 ﬁ‘sus...”"_l,\] + soft terms+0(h2). (4.9)

not depend on spins higher than s, it is only sensitive
to the longitudinal current. Thus, a necessary condition
for tree-level unitarity is that this current be improved
so as to become softly broken. On the other hand the
transverse-current pathologies could be removed, at least
in principle, by adding new higher-spin massive states, an
addition that cannot help the longitudinal current. The
latter must be, and was, improved entirely within the
single-field framework.

Two open questions are particularly interesting. First,
how do our new terms compare with the way closed string
theory organizes its higher-spin excitations, in the do-
main in which such an expansion is valid? Its beta func-
tion, expanded to include these massive modes, should
show both the longitudinal compensation terms given
here as well as the more complicated transverse correc-
tions we conjectured. The second question involves the
gravitational quadrupole interactions implied by our non-
minimal terms. Is there a universal value, similar to g = 2
in the corresponding electromagnetic higher-spin analy-
sis, of the total static gravitational quadrupole moments?
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