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Pressure of hot g2@4 theory at order g
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The order g contribution to the pressure of massless g P theory at nouzero temperature is

obtained explicitly. Lower order contributions are reconsidered and two issues leading to the optimal
choice of the rearranged Lagrangian for such calculations are clarified.
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I. INTR.ODUCTION
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where p is the mass scale of dimensional regularization
(d = 4 —2e) . We use the imaginary time formalism in
which the energies take discrete values, 2anT, n g Z.
For perturbative calculations beyond leading order, it is
necessary to take into account in a systematic manner
the non-negligible collective efFects [5]. For the theory
defined by Eq. (1) this means that one uses instead the
shifted Lagrangian [6]
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Rapid progress has been made recently in computa-
tions of the free energy density, at nonzero temperature
(T), of massless g P theory [1), quantum electrodynam-
ics (QED) [2] and quantum chromodynamics (QCD) [3],
to three-loop order (fourth order in coupling). For QED,
the fifth (e ) order contribution has also been obtained [4]
by dressing the photon lines of the three-loop diagrams.

Compared to QED, a fifth order calculation in QCD
will be more involved because gluonic self-interactions
imply that many more lines in any three-loop diagram
can be soft (i.e. , at zero Matsubara frequency in the
imaginary time formalism), and so must be dressed in
order to obtain the full g contribution. In this respect
a fifth order calculation in QCD will resemble the same
order calculation in g P theory. In this paper we will
compute the order g T contribution to the pressure of
massless g P theory and show that by an optimal choice
of rearranged Lagrangian it is possible to obtain analyt-
ical results with relative ease.

The theory we are concerned with is deGned by the
Euclidean Lagrangian
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for static calculations, with po the energy in Fourier space
of P(x). The Lagrangian in Eq. (3) is precisely what
is suggested by the Braaten-Pisarski [5] resummation
scheme which involves dressing "soft" lines with "hard-
thermal loops. " For the calculation of static quantities
in imaginary time, the only soft-line is the zero-mode
propagator and the only hard-thermal loop is the static
one-loop thermal mass.

We remark that a resummation as in Eq. (3), which
involves dressing only the zero-modes, was used very ef-
fectively by Arnold and co-workers [7,3] for their free en-

ergy calculations in gauge theories, but they used the
more general expression (2) (as in Ref. [1]) for their scalar
free-energy calculation. The advantage of using minimal
resummation (3) also for the scalar case can be seen by
the following example. The propagator from Eq. (3) is

with m = g T /24 the thermal mass generated at one-
loop. The term within parenthesis in Eq. (2) defines
a dressed propagator while the last term is a new two-
point vertex which prevents overcounting. With Eq. (2)
one can proceed to calculate any Green's function in the
theory, order by order, in a consistent way. However
for the calculation of Green's functions with static (zero
energy) external legs, Eq. (2) is not very economical since
it involves some extraneous resummation.

Recall (see, for example, [2,3]) that for a static Green's
function its physical definition is already given in imag-
inary time, without the need to analytically continue to
real time. Thus the power counting of infrared (IR) di-
vergences may be safely done using the Euclidean propa-
gators with discrete energies. Then, only the propagators
at zero Matsubara frequency do not have an IR cutoff of
order T, and it is only for these zero modes that the
thermal mass gT is a relevant infrared cutoff'. Thus
instead of Eq. (2) one can use

*Electronic address: parwaniiopb. ernet. in
t Electronic address: hsinghiopb. ernet. in

~(~) kp, o kp, o

A2 + m2

Then the one-loop integral

(4)

0556-2821/95/51(8)/4518(7)/$06. 00 51 4518 1995 The American Physical Society



51 PRESSURE OF HOT g2$4 THEORY AT ORDER g' 45 jj9

dKLK = dK
2

'+T dk
2 2

d —3
~ ~T" ' (3 —d) r 1~3 dil + —l™ll r

2 ( 2 y 47r l4vr) g 2

(5)

where we have used the notation

ko (even) A:0 (even)

C3
C)

C3
C3

C3

FIG. 1. Diagrams which contribute to fifth order. The
propagators are given by Eq. (4), the cross represents the
thermal counterterm of Eq. (3) while the blob in diagram (d)
is the ultraviolet counterterm.

with K~ = (ko, k). Notice that the integrals in Eq. (5)
were computable in closed form and the result is a term
of order g and another of order g. Since the bosonic one-
loop integral (5) and others related to it occur frequently
in Figs. 1(a)—l(g), one easily sees that all those diagrams
may be evaluated easily. By contrast the propagator of
Eq. (2) is 1/(K + m ) and its one-loop integral is only
available as a high temperature expansion [3], making the
evaluation of the diagrams of theory (2) more involved.

Another point that needs clarifying is the choice of m
in Eq. (3). In four dimensions, m2 = sz . However
since we are using dimensional regularization, one might
wonder if the value of m in d-dimensions should be used.

2T2 —2c
For example, in [1] the value m2 = s p ' was used
(it being the hard thermal loop in 4 —2e dimensions),
while in [3] the full one-loop value in d-dimensions was
used. % ill these diferent choices a8'ect the final result? If
one is interested in renormalized values as e —+ 0, the an-
swer is no. Here is the proof: Let the resummation in Eq.

g T(3) be done using some m (~) with m (0) =
24 . Now

keep the e dependence of m2(e) implicit, even when it hits
1/e terms. Since the full Lagrangian in Eq. (3) is mass-
less, no ultraviolet mass renormalization is needed in per-
turbative calculations using dimensional regularization.
Therefore any

' terms generated when calculating
a renormalized quantity (i.e., after including coupling-
constant renormalization) must mutually cancel. Finally
only terms of the form m2(e)e (n & 0) will appear and
then, as e ~ 0, only m (0) survives. End of proof.

In explicit calculations one finds that if the
dependence of m (s) is expanded out then extra Bnite

II. LOWER ORDERS

The diagrams which contribute to the pressure to or-
der g are shown in Fig. (1). The g terms from these
diagrams were extracted in Refs. [1,3]. Here we recon-
sider those g terms using the minimal Lagrangian, Eq.
(3), with m = s&4 . The reader comparing the results
here with those of [1,3] should note this difference; order
by order (rather than diagram by diagram) our results
here agree with those of [1,3]. Diagram 1(a) contributes
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In Eqs. (8) and (9), the first term represents the ideal
gas contribution while second term is the plasmon con-
tribution [in dimensional regularization, (DR), see [2]]
obtained by dressing the zero mode of the one-loop dia-
gram.

The contributions of diagrams 1(b) through 1(g) are

I

(e ) terms are generated from some diagrams because
of the e-dependence of the mass in the propagator, but
these will cancel, order by order in g, with similar terms
generated &om e-dependence of the thermal counterterm.
The fact that one can use m2 (0) rather than some m2 (e)
clearly simplifies calculations by reducing cancellations.
On the other hand one can exploit the proof in the last
paragraph to provide a cross-check on calculations. That

2T2
is, one can use m = s&4 (1 + eA), where A is an arbi
trary regular function of e(which may also depend on g
and T/tj, ), in Eq. (3) and verify that one's final renormal-
ized result is independent of A as ~ ~ 0. Such a check
had been performed [8] for the pole of the propagator
of g2$ theory to two-loop [6], and we have also done it
for the calculations in this paper. However in order to
emphasize the simplicity of using m (0), we will present
here the results for this case only.

In the next section we reconsider the calculations of the
pressure to order g using Eq. (3) and recover the results
of [1,3]. Then in Sec. III the gs terms are obtained and
the results are summarized in Sec. IV. We conclude with
some comments in Sec. V.
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Note that in 'pg only the one-loop ultraviolet (UV) coupling constant renormalization counterterm is used. (We are
also using minimal subtraction. ) The g4/e piece is required to cancel similar pieces from diagrams l(g) and 1(h). The
gs/e and gs/Q divergences in Eq. (1].) are due to the mixing of IR resummation effects with the UV renormalization
and will cancel against similar terms generated from diagrams 1(g) and 1(h).

The order g contribution from diagram 1(h) is obtained by setting m = 0 in the propagators since the integrals
are IR Gnlte. The result Ph4 has been evaluated analytically by Arnold and Zhal and we simply quote their value
(which agrees with earlier semianalytical evaluations in [1,2]):

p,2'~„4—,
~
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Thus the sum of diagrams up to order g is
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The terms to fourth order agree with [1,3].
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III. FIFTH ORDER

We now pick up the subleading pieces from diagram l(h). For this we first rewrite A(K), given in Eq. (4), as (cf.
Ref. [4))

1 m2 h„, p

P2 p2(p2 + m2)

p(P) + A*(P) .

Then
g4p6e

48
1= —(Ip + 4Ii + 6I2 + 4I3 + I4)

48

P +a= [dK dq dP]Z(K)a(q)a(P)~(K+ q+ P)

(16)
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where

Ip =g p dKd dPAp K Lp Lp P Lp K+ +P

Iy =g p dKd dPA* K Lp 4p P Lp K+ +P

I2 ——g p' dKd dPL' K 4* Lp P Lp K+ +P

I3 ——g p' dKd dPL* K 4* 4* P Lp K+ +P

I4 ——g p'
t,dKd dPL* K 6* 6* P 6* K+ +P

The iritegral Io contributes to 'Ph4 and was considered in the last section. We will now extract the order gs, g /e, and
g /e pieces from Ii through I4 Tho.ugh our final objective is to calculate the pressure only to fifth order, we have to
ensure that all subleading divergences such as g /e [see Eq. (11)] cancel (there are no divergences beyond g /e from
these diagrams).

Consider

Scaling k ~ mk gives

s, ~ (dk) ~I„p
k(k+ )

[" "]QP(~+P+Q) (17)
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Since the external coefficient is O(g ), we need only the order g piece from the (Q, P) integrals. Write the (Q, P)
integrals as (the following discussion parallels that of Is„„in [3])

(»)
q2p2(q+ p+ mk)2 Q2P2 (qo+po)2+ (q+ p+ mk)2

As the second term above is IR safe, one can expand the denominator

1
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—1
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so that the second integral in Eq. (19) is

2P2 +P 2 2P2 +P 4

The first term in Eq. (21) vanishes in DR [7,2,3] while the second term vanishes when the final k integrations are
performed in Eq. (18). Hence

4 (dp "q) + O( 7)k'(k' + 1) p2q2 (q + P+ mk) 2
(22)

The (p, q) integrals are logarithmically sensitive to m in the infrared. They also have a logarithmic UV singularity in
d —1 = 3 dimensions and so must be evaluated in d = 4 —2e dimensions. After a standard evaluation of the (q, p)
integrals one can perform the final k integrations easily by keeping only the terms to O(e ). We obtain

g5T4 p 6e ]
Ig ——— —+ (8 —3p+ 41n2+ 31nm') + O(e) + O(g ) .

v 24(32~2) (8vr)

Next consider I2.
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The first line in (24) is of order O(gs). Since we require
at most the O(g /e) piece, we can se.' d = 4 everywhere
there except in the P integral, which gives the pole

We have de6ned a function

&-(n) =

and so the first line of Eq. (24) is
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The integral in the second line of Eq. (24) is finite as
e —+ 0. Therefore we need. to evaluate

which will appear repeatedly. The use of Eq. (28) in (27)
is equivalent to evaluating the momentum integrals (27)
in coordinate space (29) (see [3]). In (29) one recognizes

4 as the coordinate space Coulomb propagator and
as the coordinate space screened Coulomb propagator.
Adding Eqs. (26) and (30) gives

d3kd3pd q
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We decouple the (k, p, q} integrals by writing
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Finally, I3 and I4 are both finite and their evaluation is
analogous to the steps leading from Eq. (27) to (30) and
utilizes Eq. (31). We find
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Inserting Eq. (28) into Eq. (27), the (zB, k, p, q} integrals
become trivial, giving g4m. T'

[3 ln 3 —6 ln 2] + 0 (eg ),
4vr s (33)

I4 ——g mT J4(n —+ 0)

g'mT'
[201n 2 —12 ln 3] + O(egs).4' s (34)

Combining Eqs. (13), (16), (23}, and (32)—(34) we get
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The full g contribution is then obtained by adding this to the value of diagrams 1(a)—1(g), some of which also contain
g pieces, given in Eqs. (9)—(12). The result is displayed in the following section.

IV. SUMMARY OF RESULTS

The sum of diagrams gives

1&'(-3) 1('(-1)
9 10 8 4~ ~6 47r 4n 16 47rTz 4 ((—3) 2 ((—1) 16 120

p2 ('(—1) p —5 g
(36)

As required, all divergences, including the spurious g /e terms, have canceled. The renormalization scale p, appears
explicitly in the ln (&~) terms and also implicitly in the coupling constant, g = g(p, ). One can eliminate the ln (g)
terms by re-expressing [1] the pressure in terms of the renormalization-group-invariant coupling g(T) given by

Then

g'(T) = g'(p) 1+ — ln — + O(gs) .3g p T
(4')' p,
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A simpler but perhaps less instructive way to obtain Eq. (38) is to choose p = T in Eq. (36).

(38)

V. CONCLUSION

Using the minimally rearranged Lagrangian (3) to-
2 = 'T'

gether with an e independent thermal mass m =
24

we have verified previous [1,3] fourth-order results for the
pressure of massless g P theory and then extended the
calculations to fifth order. Our final result is given by
Eqs. (36) and (38). At the fifth order a coupling con-
stant logarithm appears for the first time in the pressure
of g P4 theory. For QCD such coupling constant loga-
rithms appear already at fourth order, but they do not
occur in the pressure of QED (at zero chemical potential)
because there are no self-interactions of photons (the only
soft fields in imaginary time) and the conclusion follows
by power counting [4].

It is natural to contemplate next a fifth-order calcula-
tion in QCD. Based on our experience with q2$4 theory
and QED we expect such a calculation to be technically
simpler than the corresponding fourth order (three-loop)
calculation: Nontrivial three-loop diagrams which are IR
finite in the bare theory and computationally dificult
(e.g. , ID in g P4 theory), contribute at subleading order
(g ) when at least one of bare propagators is replaced by
a zero-inode dressed propagator [cf. Ii in Eq. (17)] so
that the sum-integral over the dressed momentum line

collapses to a three-dimensional UV finite integral, leav-
ing only two overlapping frequency sums at most. Since
frequency sums are the main complication in these cal-
culations, this reduction saves eKort. In practice fur-
ther simplification has been observed: for the fifth order
QED calculation, summing over gauge-invariant sets of
diagrams results in the cancellation [4] of the terms with
two overlapping frequency sums; for the scalar calcula-
tion in this paper the terms with two-overlapping fre-
quency sums were found to contribute at higher order
(g ) (see the evaluation of Ii). That is, both the QED
and scalar fifth-order calculations turned out to be easier
than expected. This bonus might prevail for QCD.

As noted by Linde [9] many years ago, the perturba-
tive evaluation of the pressure in QCD breaks down at
order g because of the absence of magnetic screening at
lowest order. Braaten [10] has recently proposed a so-
lution whereby one can obtain the coefBcient of the g
contribution as a functional integral in a dimensionally
reduced effective theory obtained by integrating out the
hard fields in the original QCD path integral. Braaten
has also described how his effective Lagrangian may be
used to obtain the lower order g term and it would be
interesting to compare the result of that approach with
one using a shifted Lagrangian in the manner of Eq. (3).
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