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Spacetime quantization of the Braaten-Pisarski-Frenkel-Taylor-Wong action:
Spacelike plasmon cut and new phase of the thermal vacuum
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The properties of quark propagation through a hot medium are summarized by the Braaten-
Pisarski-Frenkel-Taylor-Wong eff'ective action. The fermion thermal propagator shows a pseudo-
I orentz-invariant particle pole as well as a spacelike cut. In an earlier paper, we performed the
explicit quantization of the action in momentum space, and showed how a canonical Dirac 6eld of
mass T' arises. In this paper, we perform the quantization in coordinate space. In the process,
we relate the spacelike plasmon cut in the propagator to the homogeneous solutions of the local
equation of motion for auxiliary fields. Our quantization shows how the spacelike cut produces a
90' phase factor in the thermal vacuum at high T. This phase factor is responsible for the vanishing
of (gg) at high T.

PACS number(s): 11.10.Wx, 11.15.Ex, 11.30.Rd, 12.38.Aw

I. INTRODUCTION II. BPFTW ACTION

In an earlier paper [1], we studied the canoni-
cal quantization of the Braaten-Pisarski-Frenkel-Taylor-
Wong (BPFTW) [2] action for the propagation of a mass-
less fermion through the hot environ [3). The propagator
(T(@(x,t)g(y, t')))p, despite its apparent chiral symme-
try, shows a pseudo-Lorentz-invariant particle pole [4] at
po ——w—:gp2 + T'2. This pole is described by the
canonical Dirac field

C'(x. , t) = ) e'~""IUp, Ap, e

P)~

+V „,Bt„,e+' '

where Az „Bz,are the annihilation operators for a par-
ticle of mass T', and U„„V„,are the massive Dirac
spinors [5]. In addition, the thermal fermion propagator
shows a pair of parallel spacelike cuts, just above and be-
low the real axis and running from po ———

~p~ to po ——~p~.
This pair of spacelike cuts is attributed to the hot

plasma state. But how exactly is it related to the thermal
vacuum in the plasma state? In this paper we investigate
the origin of the spacelike cut in terms of the spacetime
quantization of the BPFTW action.

The BPFTW action [2) for the propagation of the
fermion through a hot environ takes the form

(2)

where
2gf~2 (3)
4

and Cf is the Casimir invariant equal to (N —1)/(2N)
for the SU(N) group. The angular brackets denote an
average over the orientation n.

Equation (2) is a nonlocal action in spacetime. If we
suppress the gluon fields and concentrate on the fermion
sector of the effective action, then the nonlocality is a
lightlike separation between the two fermion fields:

T12
W~,~"0 + «—"(t—t )8

~((@(*)(~ n- ~.)@(»))
—(&(*)(~ n+ ~o)@(» ))) (4)

where x~ and x~1 refer to the pair of conjugate points
lightlike separated &om (x., t):

~I, = (x —n(t —t'), t'), » = (x+ n(t —t'), t'). (5)

The nonlocal Euler-Lagrange equation of motion for the
action is

I2

p„B"g(x,t) = dt'e(t —t')((p. n —po)g(x —n(t —t'), t'))
8

/2

dt'e(t —t') ((p . n + pp)vtr(x + n(t —t'), t')).
8
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p„B"@(x,t)
T' T'
2 ( Y

. n+X+) —
2

('Y . n-X-),
T/—@(»,t),
T'—vP(x, t),

(7)

(8)

(9)

Following Weldon [6], we may replace the nonlocal ac-
tion by a local one involving auxiliary fields [7]:

~Weldon ~ ~Weldon
Y ++ 7OV

beyond the equation of motion

T/
'n „a~yw""(*)= —&. n y(*).

2
(16)

iliary fields y~ do not satisfy any other constraints. This
is unlike in the case of Weldon [6], where his auxiliary
field P ' " satisfies the constraint

where we have introduced the two conjugate lightlike
four-vectors

n+ „=—(n, 1),

In addition, Weldon does not distinguish between the
two light cones n+~ and n „.The relation between our
auxiliary field y+ and that of Weldon is

~w""(*)= -'~ -+x+(-) (17)

so that

n „—= (n, —1), Written in this form, the reason for the constraint on
Weldon's field becomes clear. It comes about because of
the nilpotent operator (p . n —po) acting on x+.

n+ = (p. n —pO), (q n+)' =0. (18)

n = (p. ii+po),

and the new local effective Lagrangian takes the form

Tl T'-
V~ ~"V+— e(& +—x+) Oh. ——x )—-

2 2
Tl T/——(x+w. n+0)+ —(x—v n-4)
2 2

+ (X+& n+n+ . clX+) —(X—'Y n —n — clX —) .
(14)

III. ANALYTIC PROPERTIES OF THE
THERMAL FERMION PROPAGATOR

The BPFTW action. leads to the thermal fermion prop-
agator [8]Note that apart &om the equations of motion, the aux-

The advantage of the coupled set of local equations of
motion (7)—(9) is that it gives us an insight into the role
of the homogeneous solutions to Eqs. (8) and (9), which
otherwise would not be transparent with the nonlocal
equation of motion (6). These homogeneous solutions
turn out to be related to the spacelike cuts of the thermal
fermion propagator.

where a, b are the functions

PO l
PO+Pa= ln

2P po p

I
P2' (20)

2pop

PO + Pln
PO P

(21)

chosen to be real along the entire real po axis, and p denotes the magnitude of p.
For t & 0, we have

(T(&( )@(0)))~= H(*)&(0))
~

~

~ ~

P '
- 2+ ~+ 2+O(d — t

(2vr) s " 2~

+0 +dpo Y pro t Yop ip t — po po( Y p Yopo) ip t ~—(T14)e '"o +OTp' —p'o' + T" 8 — p' (p' —p" + T")'

(22)

(23)

(24)

Here, we have performed the contour integration in the po plane and isolated the pole as well as the cut contributions
for t ) 0. In doing so, we have dropped other O(T'4) terms along the spacelike cut that do not affect our final O(T'2)
result.
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Note that the spinor structure of the massive particle pole term has the (unusual) feature of being manifestly chiral
invariant. The wave function renormalization constant Z& at the pole is given by

Tf2 ( 4p2Z„= 1 —
/

ln, —1
/
. (25)

IV. RELATION BETWEEN Q AND 4'

Based on the earlier work [1], the field @ is related to the canonical iII by the expansion

T'
4(*) = @(*)+— «' (t —t')((~ +~(* )) —(~ -~(* )))+.".

8
(26)

This expansion correctly describes the thermal fermion propagator accurately to order T'.
To go beyond the O(T') term in the expansion, we go back to Eqs. (8) and (9), and we note the homogeneous

solutions

y+(x, t) = ) (I'+(n, p)Up, A„, + G+(n, p)V „,Bt„,)e'~" '"'~',
P»

(27)

g' (x, t) = ) (I" (ri, p)U„,Ap, +G (n, p)V „.B „,)e'~'"+'"P',
Pia

where A„, and B„,are the particle annihilation operators of the massive canonical Dirac field of Eq. (1) and the
E~ and G~ are Dirac matrix functions of n, p, pp. They are to be determined so that they reproduce the location,
magnitude, and phase of the spacelike cuts in the thermal fermion propagator.

These homogeneous solutions in turn contribute to the expansion for Q through Eq. (7), so that Eq. (26) now
becomes

TI
@(*)= @(*)+— «' (t —t')[(~ +~(* )) —(~ ~-@(* ))]+@'(x t)

8
(29)

with

Tl
~'(*) ='— ~'y((~ '(*-y)~. +~+(y)) —(~ '(~ —y)~ ~-~'-(y))) (30)

where S is the inverse propagator satisfying the property

+ T'
~

8 (x —y) = —xh (z —y).
( & l -i 4

Bx

The Dirac matrix functions E~ and G~ have the representation

++(n P Po) = (0 novo)fl +(2 P Wn Pvo)f2,

G+(ri P po) = ('Y ii +70)gl + ('y P W ri'P ro)92

where the scalar functions f, g are even under the exchange n -+ —n. This representation ensures that the thermal
fermion propagator is spacetime translation invariant. This arises because according to Eq. (29), the thermal fermion
Green function may be written in terms of the canonical Beld @ and the new spacelike 4':

I

W(*)&(y)) = (+( t)4'(»y )) —— «' (y —t')(~( t)+(y — (y —t') t')(~ —~ ))

dt'~ t —t' ~.n —pp 4 x —n t —t', t' 0' y, yp

+(@(x t)@'(»yo)) + (@' (x &)@(y yo)) + (@ (» &)@'(»yo)).
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which are manifestly not invariant under time transla-
tions. The Dirac matrix representation in Eqs. (32) and
(33) ensures the absence of these terms. The last term
in the expansion reproduces correctly the spacelike cuts
of the thermal Green function, when

n+ po .g. p —n proj'+ +i
4 2 Qp' —(n. p)'

(35)

Y n '7o - Y P+n P'Yo

4 2 gp2 (n. p)2
(36)

'9 Y'n+'Yo - Y'P —n P'7o
G+ ——— +i

Qp2 —(n. p)2
(37)

Here, for simplicity, we have identified the two light cone
averages and written them as a single average over the
orientation n. The Grst three terms in the expansion in-
volve only the canonical Dirac Geld 4, and, as pointed
out in the earlier work [I], they together correctLy repro
duce the spinor as toell as the pole structure of the ther-
mal Green function. The chiral Rip part of the canonical
massive Green function {4@)is canceled by the other two
terms, thus agreeing with the apparent chiral symmetry
of the thermal Green function {@g).

The cross terms involving 4 with 4' would, however,
give rise to Fourier integrals of the type

e ei p-(x —y) —ipotkin pyo

where yL, ~ is an eigenfunction of the helicity operator
er - p with eigenvalue +1, respectively. A straightforward
evaluation of the p matrix algebra implied in Eq. (29)
shows that in order to reproduce Eq. (24)

I

a„,, = Ap, , + rl's B—„.+ O(T' /P ),
2p

(40)

I

bp, ——B„,—rl*s At „.+ O(T' /P ).
2p

(41)

At this stage, the rule that ap, and bp, should anticom-
mute, places the requirement

(42)

leaving us with still an overall phase factor g to be de-
termined.

In the absence of 4', the relation between ap 6p,
and Ap Bp would have been simply ap: Ap and
bp: Bp The additional terms of B „, and A
arose entirely from the spacelike 4' field in Eq. (29).

Thus the spacelike cut in the fermion propagator sig
nals the presence of Bogoliubov pairing in the thermal
vacuum.

Can we determine the precise nature of this Bogoli-
ubov pairing in the new thermal vacuum? The answer is
yes. For a study of the order parameter {vga)p will yield
information on the properties of the vacuum. Since we
now have the relation between @ and @ at time t = 0, we
may proceed to obtain the canonical expansion for g@.
Let us introduce the order operator [9j

'9 Y
' n 'Vo Y

' P + n ' P'Yo

V'p' —(n. p)' (3S) d zrL(x, o)rL(x, o) = —) Yjp, (43)

Here g, g' are overall phase factors that remain arbi-
trary. The requirement that the {4'@')reproduce the
cut structure exhibited in Eq. (24) only demands an in-
ternal 90' phase difference between fi and f2, and like-
wise between gi and g2. The choice for the overall phase
factors in E~ and G~ will become apparent only when we
turn to the relation between @ and the canonical Dirac
Geld 4 at time t = 0 and study their connection with the
thermal vacuum at high T.

where

Yi„= —) —(at, bt „.+ ap, b „,). (44)

The order parameter {gg)p is the expectation value of
the order operator with respect to the new thermal vac-
uum vac .

Recall that the original Fock space vacuum satisfies the
property

V. RELATION TO THERMAL VACUUM
o) = b„,.lo) = o, (45)

Equation (29) provides the expansion of g(x) in terms
of the canonical field 4'(x). In this section, we shall use it
to relate the g field at t = 0 to the canonical operators.
I et

while the new thermal vacuum is the one annihilated by
Ap „Bp,:

p

A„,lvac) = B„,lvac) = 0. (46)

gR
b' „, )

Upon substituting the relations Eqs. (40) and (41) into
the order operator Eq. (44), we find the canozucal ex-
pansion
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1

d xis(x0,)d( x 0) = ) '
(s(At B. +,Bs,As) —, (0+ 0') —(At .As, —Bs,B .)),

p~8

(47)

and we have the order parameter at t = 0:

1

d x(d)g)0 = ) (vac~ ( (sAtB t, +Bc,As, ) —(0+ 0') —(A~, As, —Bs,B,)) ~vac)

p)8

T1= (g+g*) ) (48)

Since (@@)pvanishes, we finally arrive at the result that

(49)

which in turn implies that to order O(T'/p), we have

ap, s = Ap, 8
—is—B

2p

bp, ——Bp, +is—A „,.T' t
2J

(50)

This relation spells out the precise nature of the Bogoli-
ubov transformation that takes us from the original Pock
space vacuum to the new thermal vacuum. The new vac-
uum is the generalized Nambu —Jona-Lasinio (NJL) vac-
uum [10]

Q~~ = ——) s(At, A„, + Bt„,B„,),
pi8

(56)

which clearly annihilates the thermal vacuum ~vac) and
explains the apparent chiral symmetry of the high tem-
perature efFective action. But this high temperature chi-
rality is not identical to the old chirality Qs given by

Qs ————) s(at, a„,+ bt „,b p, ).

I

dox comes when we recognize that the new chiral sym-
metry at high T is associated with a difFerent Noether
charge [6] than the original (zero temperature) chirality.
This new Q~s has the expansion [1]

~vac) = (cos9& —is sine&at, b „,)~0), (52)
VI. CONCLUSION

p)8

where

T'
tan 20p ———.

p

The interesting feature of this generalized NJL vacuum is
the presence of the phase factor i in the quark-antiquark
pair.

As has been pointed out elsewhere [1,11] this phase
factor is responsible for the vanishing of (@@),without
however breaking up the quark-antiquark pairs. As a re-
sult, the generalized NJL vacuum is not chiral invariant.
By this, we mean that under the old (zero temperature)
chir ality

isaap, Me ap» (54)

6 p, me" 6 p„

There is, of course, a conjugate solution with g = —g' =
—i. To the extent that they yield the same spacelike cut
contribution, it is physically equivalent to the solution we
pick.

the thermal vacuum goes over into a new unitarily in-
equivalent vacuum.

And yet there is an apparent chiral symmetry of the
BPFTW action in Eq. (2). The resolution of this para-

In this paper, we have performed the quantization of
the BPFTW action in coordinate space. By reformulat-
ing it in terms of auxiliary fields, the action may be made
local. The auxiliary fields y~ satisfy local equations of
motion that admit homogeneous solutions, which turn
out to be directly related to the spacelike cuts in the
thermal propagator.

The homogeneous solutions impact on the relation be-
tween @ and the canonical 4 field at t = 0. These rela-
tions spell out the connection between the vacuum of the
massless free field ap „6 „,and the thermal vacuum of
the efFective action. Our results show how the presence
of the spacelike cuts in the fermion propagator signals a
new phase in the underlying thermal vacuum.

This thermal vacuum continues to exhibit the rich and
complex structure of chiral symmetry violations as the
zero temperature case. That (@@)vanishes is no proof of
chiral restoration at high T. In a separate communication
[9], we introduce and discuss the SU(2')„SU(2')~
chirality algebra of order parameters that probe the state
the chiral symmetry breaking.

Many questions remain to be answered. What is the
underlying physics origin of the auxiliary field? How do
the quark-antiquark pairing at high temperatures gen-
erate the intriguing 90 phase in the BCS-like ground
state'? There is clearly an interplay between the new chi-
rality Q~~ at high T and the old Qs chirality. How does
it impact on the interactions of the pion at high T [12]?

This work has been supported in part by a grant &om
PSC-BHE of CUNY.
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