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Kinks and bound states in the Gross-Neveu model
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We investigate static space-dependent cr(x) = (@@) saddle point configurations in the two-
dimensional Gross-Neveu model in the large N limit. We solve the saddle point condition for o.(x)
explicitly by employing supersymmetric quantum mechanics and using simple properties of the di-
agonal resolvent of one-dimensional Schrodinger operators rather than inverse scattering techniques.
The resulting solutions in the sector of unbroken supersymmetry are the Callan-Coleman-Gross-Zee
kink configurations. We thus provide a direct and clean construction of these kinks. In the sector
of broken supersymmetry we derive the DHN saddle point configurations. Our method of finding
such nontrivial static configurations may be applied also in other two-dimensional field theories.

PACS number(s): 11.10.Lm, 11.10.Kk, 11.10.St, 11.15.Pg

I. INTRODUCTION

The Gross-Neveu model [1] is a well-known two-
dimensional field theory of N massless Dirac fermions

(a = 1, . . . , N) with U(N) invariant self-interactions„
whose action is given by

We are interested in the large N limit of (1) in which
N —+ oo while Ãg is held fixed. Decomposing each Dirac
spinor into two Majorana spinors one observes that S is
invariant under O(2N) flavor symmetry containing the
U(N) mentioned above as a subgroup [2]. The field the-
ory defined by (1) is a renormalizable field theory exhibit-
ing asymptotic freedom, dynamical symmetry breaking,
and dimensional transmutation. Its spectrum was calcu-
lated sexniclassically (in the large N limit) in [2]. It con-
tains the fermions in (1) which become massive, as well
as a rich collection of bound states thereof [the so-called
"Dashen-Hasslacher-Neveu (DHN) states" [2)]. The spec-
trum of (1) contains also kink configurations [4,5]. We
refer to these as the Callan-Coleman-Gross-Zee (CCGZ)
kinks in the sequel. These kinks are expected to be part
of the spectrum of the Gross-Neveu model since dynami-
cal breaking of the discrete chiral symmetry in the Gross-
Neveu model suggests that there should be extremal field
configurations that interpolate between the two minima
of the effective potential associated with (1) in much the
same way that such con6gurations arise in classical field
theories whose potential term has two or more equivalent
minima.

The Gross-Neveu model has also a system of infinitely
many (nonlocal) conservation laws which forbid particle

'Electronic address: joshuautaphy. ph. utexas. edu

production in scattering processes in this model and en-
ables the exact calculation of S-matrix elements in the
various sectors of the model [6]. Results of such calcula-
tions are in agreement with the "large ¹'calculation of
the spectrum.

In this paper we discuss static space-dependent o (x) =
(gg) configurations that are solutions of the saddle point
equation governing the effective action corresponding to
(1) as N —+ oo. Such cr(z) configurations correspond to
nontrivial excitations of the vacuum [7,8] and are there-
fore important in determining the entire spectrum of the
field theory in question [2] and its finite temperature be-
havior as well [9]. Such configurations are important also
in discussing the behavior of the 1/N expansion of (1) at
large orders [10—12].

Our discussion makes use of supersymmetric quantum
mechanics and simple properties of the diagonal resolvent
of one-dimensional Schrodinger operators. Using these
two basic tools we are able to solve the saddle point con-
dition for static a(x) configurations explicitly. The super-
symmetry alluded to above relates the upper and lower
components of spinors, implying that the square of the
Dirac operator may be decomposed into two isospectral
Schrodinger operators. It is closely related to the soliton
degeneracy discussed in [13],where the sohton is consid-
ered as a degenerate doublet having fermion numbers +—.
Our explicit solution of the saddle point condition in the
sector of unbroken supersymmetry consists of the CCGZ
kink configurations and it therefore provides a clean and
direct construction of these kinks. In the sector of bro-
ken supersymmetry, our explicit solution reproduces the
so-called DHN saddle point configurations [2].

In a recent paper [14], we have applied a similar
method to the anharmonic O(N) oscillator and the two-
dimensional O(N) vector model in the limit N —+ oo. In
the latter case we have found that the effective action
sustains in the large temperature limit extremal bilinear
condensates of the O(N) vector field that are analogous
to the CCGZ kinks in the Gross-Neveu model.

The paper is organized as follows. In Sec. II we analyze
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the saddle point equation for static o (x) configurations
employing supersymmetric quantum mechanics. Using
simple manipulations, we show that the latter equation
may be expressed in terms of the Hamiltonian of only one
of the supersymmetric sectors. In Sec. IIIA we resolve
the saddle point equation into &equencies and demand
that the extremum condition be satisfied by each Fourier
component separately. This strong condition turns out to
leave us always in the sector of unbroken supersymmetry.
This corresponds physically to cr(x) configurations that
interpolate between the two vacua of the Gross-Neveu
model at the two ends of the world, which are the CCGZ
kinks that we find a explicit solutions of the saddle point
equation. In Sec. III 8 we solve the saddle point equation
without separating it into &equencies, under the assump-
tion that there is only one bound state. This leads to the
DHN o (z) configurations which belong to the sector of
broken supersymmetry. We conclude our discussion in
Sec. IV.

S.ir[a] = ——,
' dt dX 0

.Ni Tr—ln—[—(iP —ga)(i/ + go)].
2

The ground state of the Gross-Neveu model (1) is de-
scribed by the simplest extremum of S,s [1] in which
o = crp is a constant that is fixed by the (bare) gap equa-
tion

—gcrp+ i%g tr
d2k 1

(2~)2 g —gap

Therefore, the dynamically generated mass of small fI.uc-
tuations of the Dirac fields around this vacuum is

Gaussian integration over the Grassmannian variables
is straightforward, leading to Z = 1'17a exp(iS,s[a]}
where the bare effective action is [16]

II. THE SADDLE POINT EQUATION
FOR STATIC SOLUTIONS

f 7r
m = gap ——p, exp

(

1—E»R(~)) ' (6)

Following [1] we rewrite (1) as

d x igPQ —ger@/ —2a

z = Do'DQDQ exPl~' dt dx vgigvP

—gang —-a1 2

where cr(x) is an auxiliary field [15].
Thus, the partition function associated with (2) is

(2)

where p is an arbitrary renormaliz ation scale, and
the renormalized coupling gR(p) is related to the
cutoff-dependent bare coupling via A exp[ 7r/Ng —(A)] =
@exp[1 —m/Ng&z(p)], where A is an ultraviolet cutoff.
Since rn is the physical mass of the fermions it must be a
renormalization group invariant, and this fixes the scale
dependence of the renormalized coupling gR, namely, Eq.
(6). From now on we will drop the subscript R from the
renormalized coupling and simply denote it by %g .

As was explained in the Introduction, we are inter-
ested in more complicated extrema of 5 ff, namely, static
space-dependent solutions of the extremum condition on
S ff . This condition reads generally

ba(z, t)
'

2
= —o(x, t) —z tr([2g—o(x, t) +igp"B„](z,t~[ + g o —zgp"B„a] '~z, t)}= 0, (7)

where "tr" is a trace over Dirac indices.
Specializing to static o (x) configurations, and using the Majorana representation p = ias, p = cr2 for p matrices,

(7) becomes

0
R (z, u)2) )

2i ( 2go —0~ 0 ) d~
~( R+(x, ~')ax =tr» g 0 2g +8 y 2~ q 0

2K
[(2go. —0 )R+(x, ~ ) + (2gcr + 8 )R (z, (u )],

where

R+(z, ~') = (T, )

Note that h~ are positive-semidefinite isospectral (up
to zero-mode) Hamiltonians, since (10) may be brought
into the form [19,20]

are the diagonal resolvents of the one-dimensional
Schrodinger operators

where

h+ =QtQ, h =QQt,

h~ = —0 +g o. + gcr'(x)

evaluated at spectral parameter u .

(10)
dQ= — +ga,

dx
Q' = —+ga.

dx
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These operators may be composed into a supersymmetric

Hamiltonian H = 0+ h describing one bosonic and

one fermionic degrees of freedom I19], which we iden-
tify with the upper and lower components of the spinors.
Supersymmetry implies here that an interchange of the
bosonic and fermionic sectors of H leaves dynamics un-
changed, as can be seen from the fact that Eqs. (8)—(11)
are invariant under the simultaneous interchanges

o. m —o., h~ m h~,
(12)

The isospectrality of h+ and h alluded to above
means that, to each eigenvector @ of 6 with a posi-
tive eigenvalue E, there is a corresponding eigenvector

of h+ with the same eigenvalue and norm, and vice
versa. The precise form of this pairing relation is

1 t
E QV

Assigning the zero mode to h poses no loss of gener-
ality, since the other possible case is related to this one
via (12). In what follows we will denote the right-hand
side of (14) by @o also in cases of broken supersymme-
try where it is non-normalizable. This should not cause
any confusion, since the ground state will be denoted by
2)2o, which will be equal to 4'o when supersymmetry is
unbroken.

By definition, the diagonal resolvents in (9) are given
by eigenfunction expansions

~ ()=):I@ (x)I'

n=o

B+(x) = ):I4-(x)I'

n&0

where the sums extend over all eigenstates, including the
continua of scattering states where they are understood
as integrals.

Using (13), A+ may be expressed in terms of the g 's

as

1
jV

QP„, E„&0. (17)

It is clear that the pairing in (13) fails when E = 0.
Thus, in general one cannot relate the eigenvectors with
the zero eigenvalue (i.e. , the normalizable zero modes)
of one Hamiltonian in (10) to these of the other. Should
such a normalizable zero mode appear in the spectrum of
one of the positive-semidefinite operators in (10), it must
be the ground state of that Hamiltonian. In this case the
lowest eigenvalue of the supersymmetric Hamiltonian H
is zero, which is the case of unbroken supersymmetry. If
such a normalizable zero mode does not appear in the
spectrum, all eigenvalues of H, and, in particular, its
ground-state energy, are positive, and supersymmetry is
broken. Since the ground state of a Schrodinger operator
is nondegenerated, h~ can each have no more than one
such a normalizable zero mode. Moreover, it is clear from
(10) that in our one-dimensional case, only one operator
in (10) may have a normalizable zero mode, since it must
be annihilated either by Q or by Qt. In cases of unbroken
supersymmetry, we will take such a normalizable zero
mode to be an eigenstate of h, namley, the sea/ function

d ) 1= 212ga+ —
~

x 2 x). (18)dxj 6
Here 7 is the projector

+ = & —~l&o)(@ol (i9)
that projects out the ground state of h when supersym-
metry is unbroken (A = 1), and is just the unit operator
otherwise (A = 0). We can also use (5) to make a fre-
quency resolution of unity as

(20)

where W (x) = @o(x)g' (x) —@o(x)@ (x) is the Wron-
skian of 4o and @„. An elementary consequence of the
Schrodinger equation is that W'(x) = —E 211'o(x)g (x).
Using this relation, (16) and (17) imply the important
relation

(2go —o) )R+ + (2go-+ o) )B

Moreover, from (18), (20), and the elementary relation
(14)

which is the normalizable solution of the differential
equation

QtCo —0

where JV is a normalization coefficient.
Note that a necessary condition for the normalizability

of 4'o is that o (x) have the opposite behavior at +oo.
Thus, physically, cases of unbroken supersymmetry lead
to cr(x) configurations that interpolate between the two
vacua of (4) at the two ends of the world, while cases
of broken supersymmetry yield o (x) configurations that
leave and return to the same vacuum state.

1 1x . x =, (21)0' + m' ——~2 —i.e 2+m' —w2 —i,e
'

the frequency resolution of (8) becomes

1= 2g(r(x)
2/m

Substituting (19) into the last equation, all depen-
dence on A cancels out and the extremum condition (8)
is shaped into its final form
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dec) dB x, M 1—2ga x)
2 /777 —Cd

—R (x, cd ), (22)

which has to be satis6. ed regardless of whether or not
supersymmetry is broken.

III. STATIC SOLUTIONS TO THE
EXTREMUM CONDITION

A. Case of unbroken supersymmetry

The simplest way to look for solutions of the static sad-
dle point equation (22) is to demand that it be satisfied
by each frequency mode separately, namely, restricting
B by the difFerential condition

dR (x, cd') 1= 2go(x) —R (x, cd ) . (23)dx 2 m —cd

+go.'(x) = g'0-'(x) —m'.

From (26) we find straightforwardly the solutions

go (x) = +m tanh[m(x —xp)],

(26)

(27)

which are exactly the CCGZ kinks and antikinks. Here
the parameter xo is an integration constant that implies
translational invariance of (27) since it is the arbitrary
location of the kinks. Clearly, both cases in (27), and
therefore both cases in (25), lead to h~ operators that
doe not break supersymmetry, since (14) and (27) imply
that

m 'l'
exp —g

(25) at cd = m, which signals the threshold of the con-
tinuous part of the spectrum of 6 . Clearly, 6 can
have no continuous spectrum other than that starting at

= m2, thus leading to the conclusion that R in (25)
can have no other branch points in the ~ plane. There-
fore, the expression under the square root in (25) must
be a perfect square as a polynamial in w: namely,

Now, R (x, cd ), being the diagonal resolvent of h
at spectral parameter ~, is subjected to the so-called
"Gel'fand-Dikii" equation [17,18]

2R (x, cd 2—)R" (x, cd') + (R' (x, cd' ))

+4R (x, cd )[g 0 —go' —cd ]
= l. (24)

Therefore, both Eqs. (23) and (24) must hold and they
form a system of coupled nonlinear differential equations
in the unknowns 0(x) and R (x, cd ). Substituting R'
and R" from (23) into (24), we obtain a quadratic equa-
tion for B whose solutions are

R (x, cd )

—ga' + Q(go') + 4cd g2c7 —4cd (m2 —cd2)

4cd'gm2 —cd'

(25)

To see what the two signs of the square root correspond
to, we observe that the solution with the negative sign in
&ant of the square root has a simple pole as a function of

at u = 0 with a negative residue, while the other so-
lution is regular and positive at cu = 0. Therefore, from
(16) it is clear that the negative sign root corresponds to
the case of unbroken supersymmetry, where the simple
pole signals the existence of a normalizable zero mode
in the spectrum of h, while the positive root solution
corresponds, for similar reasons, to cases in which h
lacks such a zero made. We will see below that the latter
solution corresponds also to the case of unbroken super-
symmetry, where the zero mode is in the spectrum of
h+.

We concentrate now on the branch-cut singularity in

m ~/2
sech[m(x —xp)]

2
(28)

m2sech [m(x —xp)]R x, cd + 29
2Cd2/7772 Cd2 2/m2 Cd2

while for antikinks it js just the expression on the right-
hand side of (21).

These statements on B are consistent with the ex-
plicit form of the Hamiltonians h~. Using (10) and (27)
we find, in the kink case,

h+ ———6 +g o. +go.'= —8 +m

h, = —6 +go —go2 2 2

= —0 + m —2m sech [m(x —xp)], (30)

while in the antikink case k~ interchange their roles.

is the normalizable zero mode of 6 for the kink config-
uration, and of li+ when a (x) is the antikink. Because of
the zero binding energy, fermions trapped in this poten-
tial do not react back on the o (x) field [2].

Note that in deriving (27) above we have not set any
a priori restrictions on B, thus, it is a very interest-
ing question whether (27) are the only possible static
extremal cr(x) configurations in the sector of unbroken
supersymmetry or not.

As it stands, our frequency decomposition of the ex-
tremum condition (23) seems to lead always to extremal
cr(x) configurations that do not break supersymmetry.
We are thus unable to find in this manner the extremal
0 (x) configurations found in [2] in which 0 (x) has the
shape of kink-antikink pair that are very close to each
other. Such a configuration evidently breaks supersym-
metry [19]. They will be discussed in the next subsection.

When 0 (x) is a kink, (25) becomes
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Thus, in the latter case, h becomes the Schrodinger
operator of a freely moving particles in a constant poten-
tial m which is the reason why R is given by the sim-
ple expression in (21) in the antikink case. Indeed, that
expression is the x independent solution of the Gel'fand-
Dikii equation (24) corresponding to the constant poten-
tial g o. —go' = m that is positive at w = 0.

In the kink case, we have obtained the explicit form
(29) for R by substituting (27) into (25). As an in-
dependent check, we may deduce this expression for
the diagonal resolvent for the potential g o. —go'
m —2m2sech[m(x —xo)] in other ways. The simplest one
is to apply an ansatz of the form R = o sech {Px) + p
to the Gel fand-Dikii equation. Another way to derive
it is to use the general formula R(x) = G(x, y)l
Qi(x&)i)'I2(x&)/W(i)'Ii, Q2) l~ „,where the i)'I's are the so-
called Jest functions of the problem. In this case they
are hypergeometric functions multiplied by sech factors.
The Wronskian in this expression is a ratio of I functions
dependent on u and m [8].

We can deduce from (25) the CCGZ solution (27) to
the extremum condition (23) and (24) by yet another
method which does not rely upon the branch-cut struc-
ture of R but rather on its pole structure. Considering
the case where the zero mode is in the spectrum of h we
make a Laurent expansion of the appropriate expression
for R in (25) around the simple pole at ~ = 0. The
leading term in this expansion is

R - —— +O(cu )
1 go 2

2m

Comparing (31) to (14) and (16) we find

which are therefore the scattering states of h . The S
matrix associated with h is thus

ik —m
ik+m

kl= exp i
l

vr —2arctan —
ll m) (36)

dE l&~(x) I'
E ~2

Since h~ in (30) has only scattering states, Ii can have
no bound states other than its zero mode (28) which
must therefore be its ground state. This single normal-
izable state of h corresponds to the single pole of S(k)
in (36) at k = im. Note further that there are no re-
flected waves in any of the scattering eigenstates (35)
of the Schrodinger operators in (30). This is also the
case for the supersymmetry breaking c7(x) configurations
in [2] as well as in other exactly soluble models in two
space-time dimensions [2].

The fact that h~ evaluated at the extremal point must
be reflectionless can be deduced even without solving the
extremum condition (23) explicitly, provided one makes
a priori an assumption that h has only a single bound
state (namely, its ground state) regardless of whether
supersymmetry is broken or not.

To this end we consider (23), in which R may be
replaced by R~ = {xl'P[l/(ti —ur )]lx) as mentioned in
the discussion preceding (23). Since h is assumed to
have a single bound state, B~ contains only scattering
states of h, whose corresponding continuous eigenvalues
E = k2 + m start at E = m . We may therefore write
the spectral resolution of R~ as

@o(x) = A/ exp
l

—2g
go'

~(u)A I

=
) 2m

(32) where pA,. (x) = 2vrlkll@k(x)l'. In terms of pg the ex-
tremum condition (23) becomes

which yields
II

A' e @ = , P(x) = g2m'

Solving (33) we find

P(x) = ln cosh[m(x —xo)] + c, (34)

d p)(x) d 1

dx ~I,'{x) dx il,'(x)

whose general solution is

p~(x) = 1+ cl, @,'( ),x

(38)

(39)

@-(x) = 1
, QPA, (x)

mtanh)m(2: —To)] —Ik

)i/k2+ m2

where c and xo are integration constants and we have
imposed the normalization condition f ilIodx = 1 to
fix JV = Jm/2c. Clearly, then, {34) yields the CCGZ
kinks upon differentiation.

We are now in a position to verify briefly that the
CCGZ kink configuration leads to an h operator that
has indeed a single normalizable zero mode as the explicit
form (29) for R suggests. Our discussion follows [20].
In the kink sector (30) implies that the eigenstates of
h+ are simply these of freely moving particles $1,(x)e'", with a continuum of strictly positive eigenvalues
E+ ——k + m2 ) m . These states are isospectral to the
eigenstates of h

1 + c,e,'(x).*-"l*l, (40)

where o.I, is a real phase. Substituting these functions
into the eigenvalue equation for h and considering its
asymptotic behavior as x M Woo we see, using the
boundary condition go(+oo) = +m, that the phase be-
comes that of a free particle, which is obvious, but uni-
modularity of the phase factor implies further that there
be only a right-moving or only a left-moving wave in
i/j~(x). Therefore, h must be reflectionless.

where cI, is an integration constant. Since by de6.nition
pi, (x) cannot blow up at infinity, we must set c& = 0 in the
case of broken supersymmetry. Whether supersymmetry
is broken or not pk(x) obviously obtains the asymptotic
value of 1 as x ~ +oo. Therefore, the scattering states
gg(x) of ti are given by



4508 JOSHUA FEINBERG

The physical signiGcance of the CCGZ kinks is as fol-
lows. As was mentioned in the Introduction, the dynami-
cal properties of (1) are consequences of the fact that the
("large N") eff'ective potential V,rr(o') extracted from (4)
has two symmetric equivalent minima at (o), = +crp g
0. This causes a dynamical breakdown of the discrete
(Z2) chiral symmetry of (2) under the transformation
@ —i ps@, o i —o, where the ferrnions ffuctuating near
the (cr), = Warp ground state acquire dynamical mass
m = +gap [1]. In a similar manner to the appearance of
kinks in classical field theories with potentials exhibiting
spontaneous symmetry breaking, one should expect sim-

I

ilar configurations to appear in field theories whose efjec
tive potential implies dynamical symmetry breaking. The
CCGZ kinks (antikinks) are precisely such static space-
dependent o (x) configurations that interpolate between
the two minima of V,rr(o), and our calculations provide
explicit proof that they are indeed extremal points of
(4). The various states appearing in the background of
the CCGZ kink may be deduced by calculating the "par-
tition function" of the Dirac field fIuctuations in that
specific o (x) configuration for a finite time lapse T (i.e. ,
the trace over the time evolution operator e ' ). This
has been done explicitly in [2]. The result is

Z

n)! 2
exp dt dx(~k;„k ~o)

x exp iNT ) ~'I~« -«I —) ~*I«I —«~~«f~««]+I
2 2

(41)

In this equation n is the total number of fermions and
antifermions that are trapped in the single bound state
of the kink, ur;[o] = ~E; is the energy of the ith state
in the background of rr [21], and ioi, is the energy of the
bound state, which is zero for the CCGZ kinks. Using
this and also the fact that in this background h~ in (30)
are isospectral, we see that all terms in the second expo-
nent in (41) are canceled, leaving only the first exponent
which is the mass of the kink: namely [22],

1
cvIkink 2

mN
0 kink Ng

(42)

y+ iNg2
1

go.(x) = 0, (43)
~ 2~ gm' —(u' —ie

implying that the term in the square brackets on the
left-hand side must vanish. But vanishing of the latter is
precisely the Minkowski space gap equation of the Gross-
Neveu model (5) for the dynamical mass m and it must

Therefore, we see that all states contributing to (41)
are degenerate in energy (all having the kink mass as en-
ergy), which is a direct result of the fact that cub = 0.
Clearly there are 2 states in all that form a huge re-
ducible supermultiplet of O(2N). Its decomposition into
irreducible components is clear from the combinatorial
prefactors in (41) that simply tell us that the various
bound states in the kink fall into antisymmetric tensor
representations of O(2N) (where the integer n is the rank
of the tensor) [2].

We close this subsection by checking explicitly that
the CCGZ kink configurations obtained above indeed ex-
tremize the effective action in (4). Substituting the kink
configuration in (27) and the explicit expressions (29)
and (21) for R and R+ into the extremurn condition
(8) we find that the pole at cu = 0 disappears from the
right-hand side of (8) in accordance with (18) leaving
in the sum over frequencies only contributions from the
scattering states. Thus, Eq. (8) becomes

I

therefore hold, confirming that the kinks in (27) are in-
deed solutions of the extremum condition (8).

B. Case of broken supersymmetry

Enforcing the saddle point condition at each frequency
component in (23) led us directly to the sector of unbro-
ken supersymmetry without any further assumptions on
R (x, w ). Therefore, in order to find static extremal
o (x) configurations that lead to supersymmetry break-
ing, we must solve (22) as a whole. At a first sight this
seems to be unmanageable [23], since we apparently can-
not use the Gel'fand-Dikii equation (24) for R which
was so crucial for our treatment in the preceding section.
However, assuming (as in [2]) that the required o (x) con-
figuration yields an 6 operator with a single bound state
at positive energy Ep ——~& ( m, in addition to the ob-
vious continuum of unbound fermions of mass m, our
experience gained in the preceding section leads us to
the most general form of R (x, w2) consistent with (24)
and the preassumed form of the spectrum of h . This
generic form of B contains enough information in order
to solve (22).

In order to construct this generic form of B,we note
the following points.

(1) R has scale dimension —1 in mass units as can be
seen from its definition (9) or from the explicit expres-
sions (25) and (29).

(2) Clearly, grr(x) must reach asymptotically either one
of the vacua, namely, ~go. (Woo)

~

= m, go'(koo) = 0 (ac-
tually, since we will end up indeed in the sector of broken
supersymmetry, the two asymptotic values of go will turn
out to be equal). Thus, the 6 operator resulting from
such a o (x) configuration must have the asymptotic form0+ m as ~x—

~

—i oo. Correspondingly, its resolvent
must have the asymptotic form (21).

(3) The assumption that h has a single bound state
at positive energy 0 ( ~b & m implies that the analytic
structure of R (x, w2) in the complex u plane must in-
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elude in addition to the branch cuts along the real rays

(—oo, —m) and (m, oo) only two simple poles on the real
axis at w = +nb.

(4) Any ansatz for R must obey the Gel'fand-Dikii
equation (24).

Points number (1) and (3) lead immediately to the
general form

R (z, ~') = Ago' + B(go )
2 + C(~~2 —cu ) + Dm

4J —M m —4J

where

V(z) = g 0 —go' (48)

[
—8 + V(x)]gm2 —V(x) = (u~gm2 —V(x). (49)

The solution to this equation, compatible with boundary
conditions at in'. nity, is

is the potential of 6 . Imposing the Schrodinger equation
on (47) we have

(44) V(x) = m —2K, sech [r(x —xo)], (50)
where A, B, C, and D are dimensionless numbers yet
to be determined. Point nuinber (2) implies then that
C=

&
andB= —D.

In order to comply with point number (4), we substi-
tute (44) into the Gel fand-Dikii equation (24). Multiply-
ing the resultant expression through by (w&2 —wz)z(m2-
w ) we obtain an even quartic polynomial in w [24] which
must vanish. This yields three nonlinear differential
equations for gtT(x) stemming from nullification of the
coefBcients of w, u, and u in that polynomial. The
condition which results from setting the coeKcient of ~
to zero reads

(4A —1)(go)' + (1 —4D) [(ger) —m ] = 0, (45)

which can be used to eliminate A and D from (44). Doing
so (44) becomes

where K = m —(ub and xo is an integration constant.
The corresponding bound state and resolvent are there-
fore

&s(x) = sech[~(x —xo)],

K2sech [lt;(x —xo)] 1R x cu = +, (51)
2(cu&~ —~2) gm2 —~2 2+m2 —~2 '

w»ch so»e (24) and (49), as can be checked explicitly.
It is not surprising at all that (51) reproduces (29) as
Mb MO.

Finally, in order to find go (x) we substitute (50) into
(48). This is equivalent to solving

(—t9 + m —2v sech [v(x —zo)])@o(z) = 0, (52)
4(M~ —M ) v m —M2 2/m2 —(d2

This expression is evidently very similar to expressions
(25) and (29), the only diff'erence being that the double
pole at w = 0 in those equations is resolved here into the
two ssmple poles at w = +~b.

We must further subject (46) to the two remaining
differential equations mentioned above. It turns out that
the equation resulting from setting the coeKcient of w

to zero is simply the derivative (with respect to x) of the
equation associated with the coefficient of uo [25]. The
latter is the differential equation for go(x) we are look-
ing for, which must be solved subjected to the boundary
conditions mentioned in point number (2) above. Equiv-
alently, and this is what we do below, we can read off
the expression for the normalized bound-state wave func-
tion gg(x) in terms of go (z) from (46). The Schrodinger
equation for gi, (x) then provides the required condition
for go (x).

As can be seen from (16) in a similar manner to our
discussion following (31) in the preceding subsection, we
identify the residue of the simple pole of R(x, E—:cu ) in
(46) at E = (us as —g~(x). Thus,

where 40(x) is defined in terms of ga'(x) in (14). For
K2 P m the Schrodinger operator in (52) has no nor-
malizable zero mode and supersymmetry is broken. Nev-
ertheless, one can 6nd non-normalizable solutions of the
difFerential equation (52), which can be transformed into
a hypergeometric equation [8], and extract ga(x) in this
way. The resulting go(x) configurations are those found
in [2]. The specific ger(x) giveii in [2] corresponds to set-
ting Kxo ——

4 ln(m+ r/m —K) in (50): namely,

m+ K
go(T) = m y vItanh rcz ——tn

m+ K—tanh vx + —ln4

Note at this stage that we have yet to impose the saddle
point condition (22). This will quantize ub and constrain
it to the discrete set of values found by DNH [2] as we
now show.

Substituting (46) into the generic static saddle point
condition (22) we obtain

X/2
&g- —(g-)'+ -'l

4+m2 —cu&2 )
m' —V

4 +m —
Ldi, j

(47)

~

2go'+ —
~

(go + m —g o )
d )

CL(d 1x = 0, (54)
c „2~ ((u' —(u') Qm' —~'
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where we now integrate over u along a contour C in the
complex u plane, and the subindex n counts the number
of fermions trapped in the single bound state of h, pro-
duced by go. The contour C is precisely the one used to
define the Feynman propagator of a free Dirac particle of
mass m, and in addition, it urns right helot both simple
poles of B at ~ = +~s [26].

The resulting static saddle point condition (54) is
solved by requiring either that the term in the square
brackets vanishes, or that the integral over &equencies
vanishes. The difFerential equation resulting &om the
first possibility is

~b = m slIl

One can now repeat the same analysis as in the pre-
ceding subsection, of the partition function associated
with fluctuations of fermions interacting with these static
o(x) configurations. One finds again O(2N) supermul-
tiplets, where the nth supermultiplet has mass M
(2N /vr) sin(7m/2N) (n ( N), and contains all O(2N)
completely antisymmetric tensors of rank n~ & n, where
no has the same parity of n [2].

go." = 2go(g'o' —m'), (55)
IV. CONCLU SION

which reproduces the kink configuration (27) discussed
in the preceding section with ~b ——0. We thus focus on
the other possibility, nainely, that the integral in (54)
vanishes.

The integral in (54) is UV finite. We can therefore
deform it by folding its u & ~b wing right on top of the
remaining part of the real w axis to the left of wb. This
can be further deformed into two circles wrapped around
the simple poles at Sub and a "hairpin " configuration
wrapped around the left-hand cut of B, picking up its
discontinuity across the cut [26]. In other words, this in-
tegral picks up contributions &om the completely filled
Dirac sea (including the pole at w = —urs), where each en-

ergy state (of the Dirac operator i P —go rather than Ii )
is occupied by N fermion fl.avors, and the single bound
state at ~ = +~b, which is occupied by n ( N fermions.

Because we have pulled out a factor of N in deriv-
ing (22) we have to weigh the contribution of the simple
pole of R at u = ~b by n/N in (54) while the other
contributions are weighed simply by 1. Performing the
integration, we find that the contribution &om the cut
is —i(1 —20/7r)/m sin 28(1 —28/vr), while the poles at
u = +ms yield, respectively, gi/m2 sin u0, where, follow-
ing [2], we have defined

wb ——m sin0

m ~b =mcos

In this paper we have solved the extremum condi-
tion on the effective action of the two-dimensional Gross-
Neveu model for static cr(x) configurations in the large N
limit. Our method of calculation was direct, making use
of elementary properties of one-dimensional Schrodinger
operators. The natural scale that appears in the Gross-
Neveu model is that of its dynamically generated mass
m. Because the latter is the natural scale of the CCGZ
kink configurations as well, our derivation of these kink
configurations was relatively simple and straightforward.
It therefore may be considered as clean and constructive
proof that the CCGZ kinks are indeed static extrema of
the efFective action. We have also rederived the DHN ex-
tremal o(x) configurations in a very simple manner. To
this end, however, we had to introduce their scale into the
saddle point condition by hand, since it does not appear
explicitly in the efFective action.

Our method may be applied also to a host of other
two-dimensional field theories, and in particular, to field
theories that do not involve refl. ectionless static configu-
rations, where inverse scattering methods are useless.

Note added. After submitting this paper for publi-
cation I realized that Avan and de Vega [27] have al-
ready used the diagonal resolvent of a one-dimensional
Schrodinger operator to discuss solitons in "large N"
vector models. However, their discussion was limited
to single-particle quantum mechanics [(0+1)-dimensional
quantum field theory].

Gathering all contributions to the integral (properly
weighed), (54) yields

„2~ (~,' —cu') Qm' —~'
'L

m2 sin 20

20 n

(57)

namely,

2N' (58)

which is precisely the result of [2]. The simple poles in
R occur therefore at
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