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It is argued that universality is severely limited for models with multiple fixed points. As a
demonstration the renormalization group equations are presented for the potential and the wave
function renormalization constants in the O(N) scalar field theory. Our equations are superior
compared with the usual approach which retains only the contributions that are nonvanishing in
the ultraviolet regime. We find an indication for the existence of relevant operators at the infrared
fixed point, contrary to common expectations. This result makes the suKciency of using only
renormalizable coupling constants in parametrizing the long distance phenomena questionable.
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I. INTRODUCTION

The modification of fundamental laws of physics with
the change of observational length scale is the subject
of the renormalization group (RG) [1]. Through the RG
flow equation one may probe the dependence of the effec-
tive coupling constants on the characteristic length. The
otherwise complicated flow pattern becomes rather sim-
ple in the vicinity of the fixed points where the linearized
RG flow along with scaling provide a recipe for classify-
ing the coupling constants via their dependence on the
characteristic scale. The irrelevant coupling constants
are those which decrease as the scale is moved toward
the infrared (IR) direction. The physical content of the
theory is insensitive to the actual choice of these coupling
constants in the IR end of the region where the lineariza-
tion of the RG equation is applicable. Within this regime
where the usual concept of universality is recovered, the
physics is parametrized by the others only, namely, the
relevant and marginal coupling constants.

In the realistic models we find several scaling regimes
when the renormalized trajectory passes by different
fixed points. There are fixed points for the theory of
everything, the grand-unified theory (GUT), standard
model, QCD and QED, to mention some of them. Al-
though the true renormalized trajectory approaches all
of them for certain values of the cutoff, it reaches the
first one only. In fact, in the scaling regime of, say the
fixed point of QCD, some of the interactions of the stan-
dard model generate nonrenormalizable vertices in terms
of the quark and gluon fields [2]. These vertices deflect
the renormalized trajectory Rom the fixed point as we
move up in energy. [Hence it is physically not too crucial
whether or not the ultraviolet (UV) fixed point really
exists. All we shall assume here is the scaling up to a
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certain energy scale. ] The traditional goal of local field
theory is to give an account of these vertices in terms
of elementary particle exchanges in a manner which is
renormalizable at higher energy. Yet renormalization,
i.e. , the removal of the UV cutoff is necessary only for
the theory of everything. In fact, when the scaling is
investigated at the other fixed points then the higher-
energy reactions always make these fixed points unstable
in the UV direction.

The scenario sketched above leads to a serious lim-
itation of the use of the concept of universality. It
is true that there are "islands" of autonomous scaling
regimes where physics can be parametrized by relevant or
marginal operators only, but these operators usually vary
with scaling regimes and the matching of relevant cou-
pling constants is rather nontrivial. Even though we can
establish the importance of certain coupling constants in
a given energy range, the physics at a different scale will
be governed by difFerent set of coupling constants [3].

There is one last fixed point as we move towards longer
distance scale, the infrared (IR) fixed point. Macroscopic
physics is characterized by the scaling at this IR fixed
point. Can this fixed point have relevant operators? The
answer is negative for theories with a mass gap. To see
this it is sufFicient to recall that the dependence of the
coupling constants on the cutoff is to take into account
the efFects of the modes which are eliminated as the cutoff
energy is lowered. At energy well below the mass gap
the fluctuations are suppressed and the evolution of the
coupling constants slows down. Thus the IR limit of the
theory is stable.

The situation is more interesting for theories without
mass gap. Realistic theories with spontaneous symme-
try breaking belong to this class. For such theories, IR
divergences can pile up and generate relevant coupling
constant in the IR regime. It is the main result of this pa-
per that this indeed happens in simple four-dimensional
scalar models. In this case the long-distance physics of
the model is not universal; i.e., it cannot be parametrized
completely by the relevant and marginal coupling con-
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stants of the UV Gxed point.
In arriving at this result one needs an improved version

of the RG equations. The usual method of renormaliz-
ing the theory is to follow the mixing and the evolution
of selectively few coupling constants. One traditionally
chooses those coupling constants which are relevant or
marginal in the vicinity of the UV Gxed point. As we
lower the cutofF to the natural mass scale m~ of the the-
ory, the scaling properties change fundamentally. In the
IR side of the natural mass scale where k & m~, one
deduces the scaling laws corresponding to the IR fixed
point. However, the UV and the IR scaling regimes are
separated by a crossover at m~, and there is no reason
whatsoever to expect the same set of relevant or marginal
coupling operators for both UV and IR fixed points. Fur-
thermore we do not have a simple power counting argu-
ment to find out the relevant operators of the IR Gxed.
point. Thus in order to establish the scaling operators
of the IR Gxed point, we have to trace down the evolu-
tion and the mixing of many more operators which might
well be irrelevant in the UV scaling regime. This can
be achieved with a RG flow equation which is capable
of handling the mixing between inGnitely many coupling
constants. Such an improved RG equation has been ob-
tained in [4] and was subsequently applied for the Uv
scaling regime in [5] in the leading-order approxiination
of the derivative expansion for the renormalized action.
We present in this paper the RG equation [4] applied in
the next order of the derivative expansion. This allows
us to verify our claim about the existence of the relevant
operators at the IR Gxed point in the Grst two orders of
the derivative expansion.

The organization of the paper is the following. In
Sec. II, we give a brief derivation of the RG equation [4] in
the leading order of the derivative expansion for Ug (C ) in
the one-component scalar model and show the emergence
of the IR singularities in certain P functions. Section III
contains the technical details for deriving Ui, (4) for the
O(K) AP theory with two distinct wave-function renor-
malization constants Zk ~ and ZA. q for the longitudinal
and the transverse components, respectively. In Sec. IV,
we derive a set of three coupled nonlinear RG flow equa-
tions for Ui, (4), Z~ ~ and Zi, q. Asymptotic scaling in
both UV and IR limits are discussed in Sec. V. Section VI
contains our conclusions. Two appendices are included
supplementing the detail of deriving the RG equations
for the paper.

II. ONE-COMPONENT SCALAR FIELD THEORY

Our starting point for deriving the RG equation for a
system characterized by the field P(x) is to introduce the
coarse-grained "block variable:"

via a smearing function pk(x), with k being the charac-
teristic linear dimension of the region over which the field
averaging is performed. In this paper, we shall choose
pi, (x) to be

pg(x) = e'"*,
p&k

or pi, (p) = O(k —p), i.e. , a sharp cutoff [6]. Although
pi(x) acts as an upper cutoff, we shall use A as the k-
independent UV cutofF for the theory.

Given a set of blocked variables P~(x), the blocked
action SA,. can be deduced Rom

~(& (x) —~(x))e '"' (24)

where the Geld average 4 of a given block is chosen to co-
incide with the slowly varying background. By perform-
ing the functional integration in loop expansion subject
to the b-function constraints one finds

1, 82S
Sg(4) = S(4) + —Tr'ln

1 ' c)S i 8 S
„W(p)),~4(p)~4( p) )—

l

= S(e) + —Tr'lnK —— FK F,
2 2 p

OS

&4(—p)

(2.5)

)A gd

(2~)~ ' (2.6)

where E and K are the first and the second functional
derivative of the bare Lagrangian, respectively, and Tr'
denotes the trace sum over internal space as well as the
restricted momentum space with k & p & A. How block-
ing transformation modifies the propagator A(x —y) =
K (x —y) can be seen explicitly be considering a free
scalar theory:

/

F(p)&(p)F( p) ~ F(p)&—(p)F( J)—
p

(2.7)

where

A(x —y) =
CPÃ

8(p —k)
p2 + p2

(2.8)

is the "blocked" propagator with an efFective IR cutoB
scale k. In the limit k -+ 0, one recovers the original
A(x —y).

Equation (2.6) is far too complicated so the derivative
expansion [7] is used at this point. The form

where

4~(x) = pi (x —y)4(y)
u

Ss(C) = ) f d xL„"]4 (x)]
n=0

(2.9)

=f d 2:=0, (2.2)
is assumed where L& [4'(x)] is a homogeneous polyno-
mial of order 2n in the space-time derivatives. We shall
truncate the expansion at n = 1, retaining only the



4476 SEN-BEN LIAO AND JANOS POLONYI

wave-function renormalization function Zi, (Ck) and the
blocked potential Ui, (4). Such truncation, being justifi-
able in the IR limit for high enough space-time dimension
d, yields simpler differential equations when substituted
into (2.6). In principle, however, equations that gener-
ate the scale dependence of Zi, (4) and the higher-order
derivative terms must also be calculated in the framework
of the derivative expansion in order to have a closed sys-
tem.

It is worth mentioning that (2.6) gives the one-loop
efFective potential for k = 0 [6]. The modes with non-
vanishing wave number are eliminated independently in
the one-loop approximation. However, the result can be
greatly improved by the successive elimination of the de-
grees of 6.eedom. In the improved scheme, the contribu-
tion of a particular mode which has been integrated out
is kept for the elimination of the next mode, thereby tak-
ing into account the interactions between the modes. By
decreasing the cutofF infinitesimally from k -+ k —4k.
we generate &om (2.6) the evolution of the potential
L&(4) = Ui, (Ck), which for p(x) = p and d = 4, becomes

k4 Zg(C)k2+ o)~2'(C)
16~2 Z, (0)k2 + O,2Uk(0)

(2.11)

in the limit Lk ~ 0. This equation describes the renor-
malization of the potential with arbitrary dependence on
the field Ck. The solution for Ur, o(C1) difFers &om the
usual one-loop efFective potential mentioned before inso-
far that the effects of the operators which are irrelevant
at the UV fixed point are retained during the elimination
of the degrees of freedom. This difference is negligible for
a weakly coupled theory as long as no new relevant op-
erators are generated outside the UV scaling regime.

Equation (2.11) can be derived by resumming the one-
loop contributions to evolution of the potential. In fact,
it can be written as

ks Zg(C)kz + o)~2'(C)U- (e)=U(e)'~ 16. l"
Z„(0)k +B:.U„(0)

(2.10)

or equivalently, a differential equation of the form

kBgUg(4) = — ln ~ + ln(1+ (Z~(0)k -1 m&] BOV&(k)))
k ZA, (Ck)k + m„

16vr2 Zi, 0 k2+mzk

k Zp(C')k + m„(9@VA,. (C) 1 ( (9@VI,(C')
1flm'2 Zg(0)k~+m~z Zq(0')k2+m~ 0 (Zq(O)k~+m~&) )

(2.12)

where 8@Vi, (Ck) = B@Ui,(Ck) —m& andm& —B@~UI,(0). The
last line contains the sum of the one-loop graphs with in-
creasing number of B@Vj,(Ck) insertions. The external legs
of these graphs which are attached to C' in 19@VA, (Ck) are
carrying zero momentum and the modes with momentum
k are propagating along the loop. This is just the set of
graphs one has to sum up in eliminating the modes with
momentum k.

There are certainly higher loop corrections to (2.12).
However, the terms of the order rn in loops contains m
integrations over a d-dimensional shell in the momentum
space. When only few modes are eliminated, Lk = 0,
the integration over each shell yields, on the dimensional
ground, a new small parameter:

(2.13)

which helps suppress the higher loop contributions to the
RG evolution equation in (2.11). This is the basis of
the "exactness" of for a RG equation which is formally
obtained in the one-loop approximation.

As the IR limit is approached with k ~ 0, ( becomes
ill-defined. To examine the behavior of ( in this regime,
we introduce an IR cutoff by considering the system in
a box of size L. With the number of degrees of &eedom
being N" = (LA/2m)~, the momentum integral measure
takes on the form

1 ~ c/ p
(2')d '

P

(2.14)

in term of the dimensionless momentum, p„.In the "ul-
timate RG transformation, " where only a single mode
is eliminated each time, the small parameter would be
1/N", the inverse of the number of degrees of &eedom
remained. Therefore, the IR limit can be reached in two
different manners: (i) The limit L m oo is taken first
before k ~ 0; and (ii) k + 2vr/L is first taken for fi-

nite systems followed by L ~ oo. We immediately notice
that ( can be kept small only for case (i) and becomes of
order 1 for case (ii). In another words, the limits k -+ 0
and L —+ oo do not necessarily commute. In fact, the
gap of the two-dimensional o model, whose existence is
established with reasonable accuracy using procedure (ii)
is absent if (i) is employed instead [8].

It seems that if the two limits k ~ 0 and L ~ oo are
not commuting, procedure (ii) would be more reasonable
to describe the dynamics of local interactions. In that
case the RG equation, (2.11), can only represent a par-
tial resummation of the perturbation expansion. Such a
loss of the effectivity is due to the presence of the length
scales, L and k, in a system without an IR mass gap.
Since in the subsequent treatments we implement the
one-loop RG equation for the IR regime, the conclusions
drawn from such computation are strictly relevant only
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P„(k)= Bc,kBi, Uy(4), (2.15)

which can be obtained by substituting (2.11) into (2.15).
These P functions describe the evolution of the coupling
strengths of small fluctuations around the constant back-
ground 4'(x) = 4. Let us now consider a model where

8@Uk—p(0) = 0 . (2.i6)

This is what one commonly calls a "massless" theory
since Ui, p(4) is just the effective potential. However,
this name is misleading when spontaneous symmetry
breaking occurs with (P(x)) g 0 since B@Uy p((P(x)))
is now nonvanishing. The leading IR contribution for
(2.15) comes from the highest power of k2 + B@2Ui,(0) in
the denominator:

P„(k)= (—i)", „,', [i+O(k')],
(k +8 „o)

(2.17)

which shows that for 0@Up(0) & 0 the coupling constants
for the odd powers of the field blow up in the IR limit.
Although we have not found the scaling operators there
ought to be relevant ones which drive the IR divergences.

Such conclusion could have been reached by consider-
ing the graphs which contribute to the evolution equa-
tion:

for case (i). It remains to be seen if they can be carried
over to the procedure (ii).

Adopting (i) as our approach, we find indication of
the emergence of relevant operators at the IR fixed point
for massless theories due to the following handwaving
argument: For the sake of simplicity we keep the wave-
function renormalization constant, Zg(4'), to be unity
in (2.11) and introduce the P functions for the coupling
constants for C as

As we enter the IR regime with k « B@Ui,(4), the
scaling laws quickly change. For a theory with mass
gap the contributions are O(k4/m ) and the evolution
slows dowli indicating the absence of relevant operators.
But for massless theories, limA, ~O mI, ——0, the domi-
nant contributions are received from graphs with the
maximal number of propagators between the vertices.
In the absence of other dimensional parameter, we Gnd
Bc,Vi, (0) k and the IR contribution to the evolution of
the nth order vertex is dominated by the one-loop graph
with n insertion of the vertex B@Uy(O) as shown in (2.17).

Unfortunately this result is not interesting. The the-
ory develops a nonvanishing vacuum expectation value
for the Geld either due to the masslessness or the presence
of the odd powers of the field in the potential. Thus, the
coupling constants computed at 4 = 0 are not character-
izing the strength of the interactions of small fluctuations
in the vacuum. The true vacuum with (4(x)) g 0 shields
the IR divergences. However, if the theory possesses
a continuous symmetry which is broken spontaneously
then Goldstone's theorem guarantees the presence of the
massless modes in the vacuum. The more careful repeti-
tion of this simple argument, for the N-component scalar
Geld theory is the subject of this work.

&(&) = -'Z-(& & )'+ V(&) (3.1)

with a = 1, . . . , N. The theory is chosen to be in the
symmetry broken phase and the direction a = 1 is cho-
sen to be in the expectation value of the field. The extra
subscript in Z is used differentiate between two wave-
function renormalization constants, one for the longitu-
dinal component and the other for the transverse ones:

III. DERIVATIVE EXPANSION
FOR THE O(1V) MODEL

We consider a generalized bare O(N) scalar field La-
grangian of the form

P„(k)=—k4 „0~2VI,(4)
16~2 ~ Z, (e)k2+m2

1 ( Bc,Vi, (4)
2 ~zr (e)k'+ m'„)~ (2.is)

In the UV scaling regime where k )) 0@Ui,(4), the dom-
inant contribution comes from the graphs with least num-
ber of propagators. The evolution of the vertex with n
legs is described by joining two legs of the (n+ 2) th order
vertex having momentum k. One reproduces the usual P
functions, e.g. ,

Zg, a=1,
Z„-=2, ,¹~ ~ ~ ~

Alternatively, one may write (3.1) as

Z(P) = -Z (0„$') + -'Z (B„g') + V(P)
2ZQBQ +V(p)—

via the relation

Zr =,(Z&P'),

d
Z, = . (Zi(P), i=2, . . . , N .

(3 2)

(3.4)

@AU, (e)
167r2 k2+ m2 ' (2.19) We shall split P(x) into the slowly varying background

y(x), and the fast-fluctuating modes ((x) such that

e4
P4(k) =

(k2+ m2)2 '

in the next-to-leading-order approximation in (2.18).

3[0@Ui, (4)]
16vr2

(2.20)

for the mass squared, and in the usual one-loop approx-
imation to the P4 model where there is no sixth-order
vertex at the cutoff,

(3.5)

Noting that &Pg(p) = pi, (p)P(p) = y(p), one then inte-
grates out the fast-fluctuating modes ((x) by using the
loop expansion to obtain the blocked action Sg(4) as a
function of the blocked field average 4 = (42) ~:
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S (C') = —l D[x]D[() b(A( ) —4'( )) p( —S(&+ &))

= —ln Dy ~(x(s) —~(u)) f&xl ~xr
l

—~(x) — P(u)+ ( u—) —— Ph )&'(ss),6—'( u) —+
p 2 p

where

= —ln Djyj S(y(p) —e(p)) exp( —S(y) ——Tr in%+ — I'K Ii y
)

1 / 1 ' -1
h 2 2
p p

I

= S(4) + —Tr'lnK(4) —— FK F
2 2

= S(4) + bS,'(4) + bS„'(4), (3.6)

Fa(4) i Z(a) (@)@cg2@c i Z (@)(g2@a + @ag2) + V(a) (@)
t9S

~& (*), CL (3 7)

~& (*)~&'(y),

( 1 Z(ab) (4)4, 'O'O' —Z (4 )b ~0' + V( ~) (4)
—-'Z (4)(0'4 + 4 0') —-'Z~ i(4)(0'4 +4 8'))b (x —y) (3 8)

Z(aga2" a„)(4,)
4

anyV(aga2" a„)(4,) . . . /Pan
4

Note that Tr' denotes the trace sum over the internal symmetry space as well as the restricted space-time.
As noted in the Introduction the blocked action can be expanded as

(3 9)

)e a'e +V(e)+O(a) (3.10)

For the computation of Zi, (4) and UA, (C') it is best to choose a nonconstant, slowly varying blocked field which is
written as

4"(&) =@o+& (~)

with 40 ——@Oh i. Siinple comparison of (3.10) and (3.6) gives

(3.11)

and

Ui, (@o) = V(40) + Tr'lnK "(40)20

Z g(CO) = Z (Cp) .

(3.12)

(3.13)

From now on, quantities with no written arguments are understood to be evaluated at @p.
In order to obtain higher-order correction for the wave-function renormalization constant, we incorporate the eKect

of P up to quadratic order by writing

where

K ' = (K,'+ bK, '+ bK, '+ bK, ')b'(x —y) + O(P', 0'),
F = Fo + hFi + hF2 + O($, 8 ), (3.14)
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(Z bah + Z(a)@ ba, lbb, l)g2 + ~(ab)
a

grab 1 4, (2Z(a) ga, 1gb, 1 g{a)gb, 1 Z(b) ga, 1qg2
0 2 pk a a

Z(c) ycbabC)2 1 (g(a) C)2yb + Z(b) g2ya)

1(Z(a}yb + g(b)ya + C (bb lg(ac) + ba 1Z(bc))yc)g2 + ~(abc}yc

bKab 1 [g( ) yc(g2yb + ybg2) + g(b c)yc(g 2ya + yag2) + g(ab)ycg2yc + Z(cd)ycydbabg2] + 1 ~(abed)ycyd

and

E = —-Z@ba'0 +V{)
bFa 1 [Z(a)C, bb, 1g2yb + Z (g2ya + yag2) + Z(b)y, ba, lybg2] + g(ab)yb

bFa 1 [g(a)ybg2yb + Z(ab)@ bc, lybg2yc + Z(b)yb(g2ya + yag2) + Z(bc)C, ba, lybycg2] + 1~(abc)ybyc

(3.i5)

(3.16)

Note that summation over repeated indices (a, 6, c, d = 1, . . . ,¹ i, j, k, = 2, . . . , N) is implied, and the numerical
subscripts correspond to the order of (h. The effective action can now be written as

where

S (C') = S(@o+(t')+bS (@o+~)+bS (~'o+~) (3.17)

S(4p + P) = a yag2ya + ~ + ~(a)ya + pa~(ab)yb +
2 2

(3.18)

bS,' = —2'T '»(Kp+ bK. + bK1+ bK2)
= —Tr' ln(Kp + bKp) —-'Tr'(Kp bK1Kp 'hKl)

+-,') (—i)"T '[(K bK, )"K bK, ]+ —,') (—1)"T '[(K bKp)"K bK2]+.",
n=O

(3.19)

1

—hS„=— (Fp + hF1 + bF2) (Kp + bKp + bK1 + hK2) '(Fp + hF1 + bF2) +
2

1
FpKp (1+Kp bKp) Fp+ FpKp (1+Kp bKp) bF1 + bE1Kp (1+Kp 1bKp) Fp-

p

FpKp bK1(1—+ Kp bKp) Fp+ FpKp (1+Kp bKp) 'bF2+ bE2Kp (1+Kp bKp) 'Fp
—FPKp hK1(1+ Kp bKP) bF1 —bE1Kp hK1(l + Kl bKP) FP + FPKp [(Kp hK1) (1+Kp bKP)

(3.2O)

To illustrate the above formalism, we consider the
O(K) scalar AP theory defined by

the matrix Kp in the momentum space representation
has the eigenvalues

where

With

2

&((h) =
2

(t' (*)+ —,[~ (*)]

y2 yaga

(3.21)

(3.22)

which yields

= Zgp + 'tip) G = 1~

~ ~+t ——Ztp + tLt) G = 2, . . . )N)

A
tLg = |M + —4'p

2

ut =P + C)'p )6

(3.24)

(3.2s)

~(ab) 2 + 4,2 bab + C 2ba, lbb, l
6 'i 3

(3.23)
I

Tr'inKp = 0 (in'& + (N —1) lnA, ) . (3.26)
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Note that (3.4) ilnplies

Ze

z()
e

z(xx)
e

Z(')
e

z('~)
e

Ze+ Ze Co )

3Z(ax)

z(') + z(")ee e

Z('~) +e

(3.27)

Zg Zg

z( ) z( )

Z(') = 2Z(')
(3.28)

In evaluating (3.19) and (3.20), we act on the x-
dependent P in the trace by the derivative operators
contained in F and K. The trace is performed in the
plane-wave basis by commuting the momentum operator

p„=i0~ to the right end of the expressions. The commu-
tation relations utilized for this procedure are tabulated
in Appendix A. Note that whenever an operator p~ acts
on P it yields iB„Qwhich contributes in the IR because
its Fourier decomposition is vanishing above the scale k.
When the operator p„reaches the right end of the expres-
sion it gets replaced by the trace integration variable, p~.
Although this momentum value is in the ultraviolet, the
contribution represents a simple number which multiplies
the P dependence in the infrared. Therefore, a matrix el-
ement of the form Tr'P(P)p„g(P) can be separated into

Tr'X((t)ic)„[g(P)]and Tr'W(P)g(P)p„using the commu-
tation techniques. Iterating this algorithm, the contri-
butions to Z which are of the form Tr'X(P))92g(g) can
be isolated. Moreover, since the blocked action is real
we can actually commute the derivative operators to the
left end instead within the trace, as was done in [7] and
adopted here in this paper.

One arrives after lengthy algebra at

2([Z(c)haS+ 1@ (g(ac)g~ 1+ g(bc)pal)]pc+ lg(a)yS+ lg(~)ya}

[Z(c)gab + 1O (Z( )agcb, l + Z(bc)ga, l)]g2yc [Z(a)g2yb + g(b)g2ya]

1 g(a~) @ C)2/1 2i[g(c) gab + 1 @ (Z(ac)pb, l + g(bc) ga, l)] C) pc

+v(')y —i& [z')]a (t'+z(')a (t ]+ " (3.29)

'p (Z(ac yb-+ Z c ya + Z c" paSy )yc + —(ga ycyc + 2

1[Z(ac)ycC)2yS + g(Sc)ycC)2ya + Z(a')ycg2yc] +. . . (3.30)

gyra 1p2[Z ya + g( )@ ghana, l] + gab yb + C)2ylga, l Z g2ya
3

—-(Z b' +Z( b')40$ —ip [Zc)p +Z 4b'o)P]+. (3.31)

and

gFa —»[Z(~)pa+ g(sc)c ycga 1]y~ 1[Z(~)pa+ Z(a)y'+. Z(as)@ y']c)2ys+ 1V(abc)ysyc+. . . (3.32)

As for the calculation of bSA, , since no 2: integration occurs in (3.20), it is only the Fourier transform of P. If P(p)
is constrained such that p ( k, then the contribution of bSA, to the blocked action vanishes since the p integration is
performed over the range k ) p.

In order to identify the contribution to the wave-function renormalization constants and the blocked potential we
now rewrite the blocked action SA, (4) as

(3.33)

&om which one obtains the P-independent blocked potential:

U„=V+ 1Tr'ln(Kp+ bKp) = V+ 2 [I Aqn+ (N —1) in', ] . (3.34)

For the wave-function renormalization constants, we first collect terms proportional to (t) c)2/1 for commuting Zk g in
the longitudinal direction. Use of (3.27) and (3.28) yields (see Appendix B)
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I1 I&),e = Ze+ — (a)) + a, ) + a)) + a)) —2b). ).)2 p
I

= Ze+ —,
' &e[Zeue&e&'Oo —Ze &@o(1—ue&e+ 2ue&e) —(Ze ) p (1+ue+e)l

p

2

+(N —1)u»b, » 4» Z» —4») —(Z, ) p u» + —4oZ» (1 —2u»&»)3 ~ 2 (1) 2 2 ~ (1)

(3.35)

f1
Z~ »~;zl = Z» + — (a;~ + a;. + a;z + a; —2b;z )2 p

—Z + Z~'1ZU1 2 u2~4+ ~21 ( 2N+3 2+2
e e e e» 2 t t

—(Z ) b"p A (2+u A ) + -'Z~* 1C A A (—3Z~'lp (2+ u 4 + u 4 )

+A@[ueAe(l —2ueAe) + u»e)»(1 —2u»A»)])
-(~)

+—@b"&e&» 3
4'(Zeue&e + Z»u»&» ) —

2
(4 —ue&e —u»&» + 2ue&e + 2u» &»2

—
2 Z, 2 2 2 2

-"—~ ~ [(Z'1)'S'~(4+ u'Z '+ u'~') + Z~'"1Z'""e'(u'~'+ u'~')]
4

0&,Z" + Z~""'Z, + -Z,'"'Cp'a, a, (Z"'Z""'Cp'W, —4Z,'"")

i-z")e.a,a, 'jz")z"'e,z,„'—Sz") y 3z"()(4+z""a,
I

.

One may replace the Z factors above by the corresponding Z's since the difFerence involves contributions having more
than two orders of derivative in the Z s. Finally, to obtain Z), e(4), we simply replace C)0 in Z), e(OO) by C, with
implied "normal ordering" such that all p dependences be moved to the front of the 4-dependent expressions. As
noted in [7], there is no ambiguity in this procedure provided that we carefully compare the terms in the expansions
of (3.10) and (3.17).

In a similar manner, we can write down the 4-dependent wave-function renormalization constant in the transverse
ij direction as

z('i) ~ z~(')o ~~ (iz(~)z("i)@p*~ z(i'))
)

(3.36)

Consider the limiting case in which the derivative terms
of the Z's can be neglected, the above expressions can be
reduced to

and

+k, t =Zt ) (3.39)

4 N —1- 4
&I,,e = Ze+ Ze~e&e +

2 p 9

A242 (3Zek + ue)ue= Ze+
Ze(Zek2 + ue)s

N —1 (3Z»k2 + u»)u»

Z, (Z»k2 + u, )s
(3.38)

u, ~ ( u, &

Uq = V + — ln
~

1 + — + (N —1) ln 1 +-
p) l

(3.37)

in agreement with that obtained in [7] for the one-
component case.

IV. RENORMALIZATION-GROUP
FLOW EQUATIONS

Equation (3.34) gives the contribution of the modes
between k & p & A to the blocked action in the one-loop
independent mode approximation since the systematic
feedbacks from the high modes to the low ones are ne-
glected. In order to improve upon such approximation,
we first consider the case when the cutofF is changed in-
finitesimally from k —+ k —Ak, leading to
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k4 t Ae2/2
ln 1+

167l ( Zek2 + p, 2 )
we2/6 &

+(N —1) 1n 1+
Zik2 + p2)

(4 1)

one obtains a new RG equation:

f'z„,(e)k2 + v~"~(e) &

16~2 ( Z„(p)k2 + U~") (p) )

which is a linear partial differential equation. The equa-
tion is not yet suitable for the systematical repetition of
the elimination of the modes since the right-hand side
of (4.1) is derived by using the specific potential, (3.21).
Since elimination of modes changes the specific structure
of the Lagrangian, it is better to start the whole com-
putation with a general potential. Upon replacing the
e-dependent terms on the right-hand side of (4.1) by

U(») (e)
~ U&(e) U(22) (c,)

~ 1.(e)
) (4.2)

1 2

z, ,(e)k2+ v„'"~(c)&
I, z„,{o)k2+v„"(o)~

(4 3)

which accumulates the efI'ects of the eliminated modes
in a systematic way as we lower the cutofI'. Contrary to
(4.1), Eq. (4.3) is noir a nonlinear partial differential How

equation. In the same manner, we can write down the
corresponding RG flow equations for the Z's:

A:I &I,,e
=— ~2 (Z V{ll)~2 (V(111))2 Z(1)V(111)[1 V(11)~ + 2(V(ll))2~2

—(Z~ e)'k'[1+ (U~ )'&i, e]) + (~ —1)V~ &~ e(Z~ i v~ (1 —2U~ &~ e)

(V(221)
)

2 (Z(1) )2V(22) k2) ) Z(ii) e~2 (Z(1)k2 V(221)
)

2

(ZI, ,e) &I,e+1,1[4+ (Uy ) e-'l~, e+ (U~ ) e-1k,e]+ Z1,e +1,e

+ Z~,ee+I,e+1,ek [Zv, eZ~, e ee-'k1, ek Za, e ] + 3ZI,e 01 e-'ii, e
A: -(i) 2 (j) (ji) -(i~) -(»)

(4.4)

Z(i) Z(j)k2 (V(11))2~4 + ~2 3 + + (U(22))2~2

-(Z„'"))2a"k2~2, [2+ (V~"~)2~2„,]
+ 1Z(i2)e~ ~ ( 3Z(1)k2[2 + (U(11))2~2 + (U(22))2~2

]

+V„[U„A„(l—2U„A„)+ U„b, (1 —2V„b,„,)])

+U(22&) $ij / / U(22&) (~ U(&&) /2 + / U. (22) /2I e A, I e +

' [4 —V, &.,e
—V„' '&.,1+2(v„")'&' +2(V„'"')'~' ]

k~
((Z(1))2y'i[4+ (U(»))2~2 + (V(22))2~2

]

+Z('1)Z(~i)e2[(v(11))2~2 + (U(22))2~2 ]~

+&" 0.&.,eZ„",' + Z„'","'&&,, + "Z„'")ek'&&,e~, ,(Z„",'Z„","'ek'~„,—4Z„'",')

OI = [1 ——4'(k')'&~, e&~,e(Z„'*e'e)'] (4.6)
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and

A„e= ZI, e(4)k + U„(4),
Aq, ——Zg «(C)k + Uq~ l(C) . (4.7)

So far the only approximation we made was to make truncation in the derivative expansion up to O(82). The
complicated flow equations can further be simplified if one also truncates in the amplitude of the fluctuations which
is another expansion parameter of the Landau-Ginsburg method. By taking a constant background 40 along the
longitudinal direction and replacing Co by the general inhomogeneous 4, we have

and

U(xx)
k

U (22)

U-(111)

U(22&)
k

= 2(U„'+2UA'."4 ),
= 2Uk',

= 4(3UI'+ 2U/"4 )4,
(4.8)

z(l)
k

(i)

&(xi)

z(")

2Zk4 )

0,
4(Z~C" + Z~)

2Z' b'
k (4.9)

where 4 points in the 1 direction and the prime denotes di6'erentiation with respect to 4 . The three coupled
nonlinear differential RG How equations now become (see Appendix B)

kO«, UI, (4) =— Z~,e(@)k'+ 2(U~(C') + 2U~ (C')@')
N l

Z~,«(@)k'+ 2U~(C')
16~ Z«, e(0)k2+ 2U„'(0) Zk «(0)k + 2U„'(0)

(4.10)

I4
k&&Z«. ,e = —

2 (aA„e+ a«, e + aA. ,e + aj, ,e 2br, e)

4

2[4&l, ,
eC' {—(Z~,e) k [1+4&«,e(U + 2UI"@ ) 1

+8ZI, eAq e (UI, + 2UI'C' ) (3U„"+ 2UI',"O )
—2Z~ e(3U~ + 2UC'@') [1 —2(UI'. + 2U~ C")&«,e + 8(U~ + 2U~ @')'&~e])
+4(N —1)A„«C' (4U/ Ay «{bg «[2ZA, «(U„") —(Zq «) k U„']+ ZI', «U/'(1 —4UI AA, «) j
—Z~,e(ZI', k'+ 2U~')) + 12(ZI",e@'+ Z~,e)+«.e + 2(N —1)ZI',e+~,«1 ~ (4.11)

A k+k, t— I4
I

(aA. ,«+ a& «+ ag «+ a& «
—2bI, «)

4

[241,e&J,«C' ( ZA:,ek [Za + 2(U„') 6„«A„«(ZI',e+ 2Z„',)]
+16Z& «UI', (U„")A„«—(Z„',) k [1+2(U„') A„«]+ 4ZI' eAI, «U„'Uq'(1 —4UI'4& «)

4Z««UI" [1 ——U/, Aq «+ 4(UI', ) DI «] + 4UI, {4Z~,e UI", (U!, + 2UI'4 )Aa, e

—Z~, «[1 —(U~ + 2U~ C")&I,e + 4(U~ + 2U~ C")'&~,eB

+4ZI, eU«, &I.,e(U„'+2U„"C )[1 —4(UI', + 2U„"C )Ax e]

Zl'„ek'[Z~,«+ —( 2Ze + 2Z)~(U«+~2U C"~)'&I'.,e])

+4(Z„",4'+ Z„',)A„e+2(N+ 1)Z„',b,„,] . (4.12)

In the limiting case where N = 1 and the derivative couplings are neglected, we have

4
kBI,ZI, e = —

2 ZI. eC b,„e(U„'+ 2U„"4 ) (3U„"+ 2UI',"4 ) (4.13)
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V. ASYMPTOTIC SCAI INGS where

A. Ultraviolet regime g„=Oc Uk(o) . (5 3)

As can be seen from (4.8), the O(N) scalar model pos-
sesses a natural mass scale:

In order to find the true critical exponents we have to
make the coupling constants dimensionless by the help
of k. To this end we introduce

ol2
mR —— 2Uk —0(er) = 4o. Uk',

OC 21

(5.1)
with

P„(k)= kOkg„, (5.4)

P„(k)= keg„, (5.2)

where er = (4), the vacuum expectation value. This mass
scale is what separates the UV from the IR regimes. For
sufFiciently deeply in the UV or the IR regime, and in
the linearizable vicinity of the 6xed point(s), one finds
asymptotic scaling. The calculation presented above re-
produces the expected perturbative results in the UV
scaling regime. To make contact with the usual RG
equation where only the relevant and the marginal op-
erators associated with the UV f1xed point are followed,
we turn to the RG coeKcient functions for the longitudi-
nal modes:

g„= k" 0@ Uk(o. ) . (5.5)

The naive power counting for determining the sign of the
critical exponents is especially transparent in this case.
In fact, (5.2) now becomes

P„(k)= k" (krak + n —4)g„, (5.6)

where A:t9A. g is treated as small in perturbation expan-
sion. Thus, g is classified as being relevant or irrelevant
for n ( 4 or n & 4, respectively.

In the case of spontaneous symmetry breaking for
which o g 0, the evolution equations of the quadratic
and quartic coupling constants take on the forms

and

P, = p = krak [4o'Uk'(o)]
4

2 (Dk e (3Uk' + 12er Uk" + 4er Uk' ) —3oAk e ('3Uk' + 2cr Uk")

+(N —1)[A, ,(U„"+2 'U„'")—4 'A'„,(U„")']),

p = kBk[4(3Uk'+ 12o U"'+ 4o. U"")]
4

, (5&k,eUk —2&ke[9(Uk) +192o UkUk +224o (Uk ) 1

+96K„e(oU„"+ 4oUk") (3Uk.' + 2oU"') + 643.,„eo(3Uk'+. 2e.r U„"')

+( — )( k, e k" — &k, [( k)'+ '
k k'+ '( k')']

+32Ak, o (U„")(Uk'+ 2~ Uk") —644k, o. (U„")) +. ),

(5.7)

(5 8)

where the ellipsis denotes O(Uk ) terms, and the inverse propagators now become

1
A:,e

~—1
k, t

=z~ek +m~R,

= ZA, gk (5 9)

In addition, there are also How equations for terms which are odd in o due to spontaneous breaking of symmetry. For
example, we have

ps ——kBk[4o(3U„"+2o. Uk")]
0-k4

2 (154k eUk" —18Ak e(3Uk' + 2o Uk") (Uk' + 4oUk") + 16Ak .eo. (3Uk' + 2oUk").
+(N —1)4k, [3Uk" —64 Uk„"(U„"+ 2o'U„"')+ 162 '„,o'(U„")']+ .

The RG coeKcient functions for the wave-function renormalization constants are given as

Zk, e = Z„ek@Zk,e(
—1

(4&k,eer (—(Zk, e) k [1 —16(Uk') Ak, e(o ) ]

—2Zk e(3Uk' + 2Uk" o') [1 4Uk'+k, eo' + 32(Uk')'+k, e(o')']

+16Zk,eUk Ak eo(3Uk'+ 2Uk"o.. ) ) —4(N —1)Zk,e(Zk, ,k + 2Uk')Ak, o.

+»(Zk eo'+ Zk e)&k,e+ 2(N —1)Zk e&k,e)

(5.10)

(5.11)
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Pk, t = +k q Ak+k, t
—1

[2t'-tk, et"-kk, to ( —Z„',k (2Zk, t + Zk, t)

+8Uk'14Zk, t(Uk')'&k, t~' —Zk, t[1 —Uk'&k, t~'+ 8(Uk')'&k, t(&')']&

+8Zk, e(Uk) &k,ca[1.—8Uk'Ak, e& —(Zk, e+ 2Zk )k t-tk, etr ])
+4(Z

k,
t~' + Zk, t) &k,t + 2(N + 1)Z k, t& k, ]t. (5.12)

Using Uk' = AR/12 by neglecting O(Uk"), i.e. , dropping the irrelevant coupling constants in the UV scaling regime,
and setting mR ——ARo /3, the above expressions become

(
P2 2 +k,t + +k, t ~Rtr +k, t + +k, t (5»)

o.ARk , (
ps ——

2 3Ak q(3 —2ARobk, t) + ('N —l)Ak t 1 — cr (5.14)

pe =
e t+eeje 4"ee«ee+2&R~ teeel+

2
+eeje e2~eeee +ee+tiR~ +eelI

R 2 2 2 4 2 ( ) 2 2 2 4 2 (5.15)

( -,—4(N —1)Zk q Z„',k + — A„to.

+12(Zeeee + Zee)Ae e+ 2eN 1)Peewee)

Pk, Z
—+k g ~k+k, E

—1

2 2 2 2 2 2 2 ~ 2 21+ —+, ( ) ~+

——Zk, g ~ 1 ——&k,e~'+ &k e(&')'
2 ' i 3 ' 9

(5.16)

Pk, t —+k q
It k+k, t

—1

2Ak teak ttr Zk tk (2Zk t + Zk t)

+— Zk, e&k e—~' —Zk t 1 — &k,e~'+ —&k e(~'—)'
36 ' i2 ~8

+18Zk, t+k, etr 1 — teak, eo——(Z„'t + 2Z„',)k Ak, e&

+4(Zk, t'r + Zk, t) &k,t + 2(N + 1)Zk, t&k, t (5.17)

The leading-order part of the above coeKcient func-
tions for k /mR ~ oo and Zk t, Zk t ——1 + O(AR),

A~R

16vr 2

A3R
eke= 48 2

A3~

48

iN+8)
27)'

(~2) '
—+0,

(k2)

(3k2) (5.18)



4486 SEN-BEN LIAO AND JANOS POLONYI

3%2k 1 N —1 1
P4 = kc)i, Ay = —eAi, +

Zke 9 Zk t

3U„'"(0)k'
16m'2

5 N —1+
Zk, E Zk, t

(5.19)

which for Zk g
——Zk t ——1 reproduces the leading-order

results obtained by standard perturbation method.

The last two lines are in agreement with the well-known
fact that there is no need for wave-function renormal-
ization at the one-loop order. In fact, their coeKcient
functions are vanishing in the ultraviolet. When sym-
metry breaking appears, Zk g and Zk t evolve differently
from each other as we leave the UV regime.

If one wishes to compare the above results with the
usual e expansion in critical AP theory in 4—e dimension,
it is sufhcient to consider a symmetrical theory in which
one sets Uk(0) = 0 and defines a dimensionless coupling
constant Ai, = 12k 'U/'(0) = 12k 'AA.. . From (5.8), one
is led to

(—1)"k" &&~,~(~)k'+ U~ '(~) l

167r2 ( ~„(~)k2+U(22)(~) )
+(n —4)g„

1 n U(i22) ~
[1 O(k')],16~2

~
ki ~

where the asymptotic behavior

Zk g
——O(k ")

(5.23)

(5.24)

v & 0 was assumed.
In order to show that v ( 1, which would imply the

persistence of IR singularity in (5.23), we verify the con-
sistency of (4.11) and (4.12) by assuming (5.20), (5.24),
and

functions persist for the RG equation (4.10)—(4.12). In
the presence of a nontrivial wave-function renormaliza-
tion constant the P function reads as

Zgg = O(k ") . (5.25)

B. Infrared regime

The scaling is more involved in the IR regime where the
expansion k (( m& should be applied [6]. The strong
nonlinearities of the RG equation prevented us from con-
structing the corresponding scaling operators. Instead
we only argue that relevant operators must exist in the
IR scaling regime.

Let us first begin with the naive argument outlined in
the Introduction where Z is set to be unity. In fact,
due to Goldstone's theorem which asserts U&~ o)(o)
U„' o(o) = 0, we take

Ai, ~
——O(k" ) . (5.26)

Substituting the above scalings in (4.11) and (4.12) for
matching the leading singularities gives

—p = min(6 —2p, 4 —p, —4+ 3v+ p, 2 —p,

+v, —2+ 2v+ p, . . .), (5.27)

A similar power-law dependence on A: also applies to the
Zk's and the Zk"s since differentiation with respect to
4 does not affect the power counting in A:. While Ak g

remains finite as k —+ 0 due to the presence of mass gap,
the transverse propagator is scaled as

U„"')( ) =O(k ) (5.20)

with p = 2. In this limit with U~ (cr) = ck, the
leading-order contribution to the P function becomes

n kn ( U(i22)
[1+o(k')]16n2 ( k2 + Uf22) (~) )

+(n —4)g„
(U(122)

( )~~~ [1+O(k')],
16vr2 ( (1 + c)k )

where

oe&~a+, " 3

Since Uk (o) is finite for noncritical system inside the
symmetry broken phase the P functions develop power-

like IR divergences when U& (0') ) 0.(&22)

This simple argument relies on the leading order of
the derivative expansion. Having gone through the com-
putation of the wave-function renormalization constants
we can verify that our conclusion remains valid in the
next order of the derivative expansion, too. In partic-
ular, we show that the IR power singularities of the P

—v = min(4 —p, 4 —v, —2p, + 3v+ 2p, —2+ 2v

+p, —p, + 2v+ p, 2) —2 —p+ 3v+ 2p, v+ p, 2

+p, 2 —/l + v, 4 —2p + v + ]. (5.28)

Relying on the method of independent-mode approxima-
tion in [6], we have p = 2 which implies p = 2 and
v = 0. Thus, we conclude that presence of IR singu-
larity in the P function (5.23) remains unchanged after
taking into consideration the wave-function renormaliza-
tion constants. Note that the longitudinal wave-function
renormalization constant Zg is found to be quadratically
divergent in the IR limit. This is in contradiction with
the usual assumption [9]

0&Z(1, (5.29)

made in Minkowski space-time. Thus the invariance of
Z under the Wick rotation, the one-loop RG equation,
i.e. , ( —0 and (5.29) are inconsistent. It is not clear
how to describe the vacuum but a deviation from the
weakly coupled perturbative scenario is expected due to
the Goldstone modes.

We emphasize again that the difFerence between our P
functions (5.7), (5.8), and the usual ones in (5.18) stem
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&om the terms O(o2/k2) which are neglected at the UV
fixed point. These are just the pieces which make the
UV and the IR scaling laws different.

In the course of investigating the IR scaling behav-
ior, our computations are free of IR divergences. This is
because for a finite value of the adjustable cutoff, k, the
elimination of the degrees of freedom in (3.6) contains the
integration for modes with finite momentum k ( p ( A
and the usual singularities of the massless theories do
not show up. They appear only when k ~ 0, the limit
where singularity appears in the P functions. The deter-
mination of IR scaling operators is rather involved since
it requires a complete resummation of the singularities
which emerge in that limit.

VI. SUMMARY

Most of the applications of the RG are related to the
investigation of the impact of local field operators which
are introduced into the theory in the UV regime. The
concept of universality which is being supported by the
linearized RG equations can be used as long as the phe-
nomena we are interested lie within the linearizability of
the UV fixed point. Such phenomena can therefore be
described by a simple Hamiltonian containing few rele-
vant operators. This certainly is the case for the critical,
i.e. , massless P4 model near four dimensions where both
the UV and the IR fixed points are Gaussian. The clas-
sification of the scaling operators is valid for all length
scales in this model.

The situation is radically different for massive theo-
ries. There we have two energy scales, the UV cutoff and
the mass gap. There is no reason to expect the same
scaling laws at both sides of the mass gap. In fact, the
renormalized trajectory runs towards large values of the
mass squared as we approach the IR regime. As the vac-
uum expectation value of the field reaches O(1/e), where
e = 4 —d then the three-point vertex. becomes of order 1
in the symmetry broken phase and the expansion around
the Gaussian fixed point is not applicable.

This is the generic situation for high-energy physics
where the renormalized trajectory passes by the vicini-
ties of different UV fixed points and we find different
scaling laws as different energy ranges. The usual con-
cept of universality is not applicable here since the rele-
vant coupling constants of an UV fixed point parametrize
only the physics of a given energy range. The trajectory
is driven away Rom the region of the linearizability by
the relevant or the irrelevant coupling constants as we
move towards lower or higher energies, respectively. For
the sake of definiteness we considered the O(N) model
in this paper which has a single finite scale and exhibits
only two fixed points, an UV and an IR.

It is usually claimed that there is only one (completely
trivial) relevant coupling constant at the IR fixed point,
the mass. But this claim ignores the IR divergences of
the massless theories which may generate relevant opera-
tors as the observational scale approaches the IR regime.
Another class of models where the IR scaling might be
rather nontrivial is where a symmetry is broken sponta-

neously. This case is interesting because it emphasizes
the importance of

the ratio of the observational length scale, v = 2~k
and the IR cutoff, L. For L close to the characteristic
mass scale of the theory there is no symmetry breaking
and the evolution equation for the effective coupling con-
stants reflects the symmetrical dynamics. For large but
finite L the symmetry is still preserved but the spon-
taneous symmetry-breaking scheme becomes a good ap-
proximation for the dynamics. Spontaneous breakdown
of symmetry can take place only asymptotically in the
limit L ~ oo. Since K can never exceed L for a finite
system, we have ( ( 1. Therefore, pattern of symme-
try breaking can be uncovered in the evolution equation
only for ( 0. In fact, for ( 1, one detects the
symmetry-restoring long-range slow fIuctuations, and the
observables at this energy scale truly reflect the symmet-
rical dynamics. Thus the characteristic size of the system

L should be much larger than the observational length
scale K in order to recover the usual picture of symmetry
breaking.

There is another rather technical reason for staying
in the region of small (. The higher loop contributions
to the RG equations are suppressed by the inverse of
the number of the modes in the blocked system which is
0(("). Thus the studies of systems undergoing sponta-
neous symmetry breaking using the one-loop RG equa-
tion requires the removal of the IR cutoff by sending
L ~ oo before K -+ oo, thereby making ( = 0.

The locality is lost at the IR fixed point which may lead
to the breakdown of the derivative expansion and global
scaling operators. All we known is that classical physics
is recovered at the IR fixed point of massless theories.
In this case the soft particle emission allows the spread
of the energy from the microscopical to macroscopical
length scales. On the other hand, when the theory pos-
sesses a mass gap, the energy cannot be distributed to
arbitrary long distances and the IR physics is still con-
trolled by coherent quantum effects, e.g. , superconduc-
tivity.

We found IR singularities in the one-loop P function for
the odd vertices of the O(%) model when the first two
orders in the derivative expansion of the renormalized
Lagrangian were retained. This supports the notion of
strong-coupling IR physics of the Goldstone modes. The
amplification of the effective coupling strengths can be
understood by recalling that the "restoring force" for the
fluctuations, i.e. , the eigenvalue of the small fluctuation
operator is vanishing in the IR limit of a massless theory.
Consequently large fluctuations are always present in the
IR regime and invalidate the expansion methods.

The limitation of the concept of universality due to
the existence of several fixed points can be nicely demon-
strated in the O(N) model. Consider the coupling con-
stant of an odd vertex in the spontaneously broken phase.
Being irrelevant in the vicinity of the UV fixed point, it
decreases as we move in the IR direction. Its value should
be small when we reach the crossover region between the
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UV and IR scaling, at the mass gap. Universality, i.e.,
the insensitivity on the irrelevant initial conditions of the
renormalized trajectory seems to be holding down to this
energy scale. But as we continue our journey in the IR
direction our coupling constant starts to grow. Although
we could ignore it on the UV side of the mass gap, it plays
an important role on the IR end. Furthermore, its actual
value may depend strongly on the ultraviolet initial value
of the renormalized trajectory. The suppression which
produced the universal behavior down to the mass gap
turns out to be an amplification in the IR scaling regime
and the UV value of this coupling constant infIuences
the long-distance features of the model. This possibility
raises questions on the sufIiciently of renormalized field
theories in describing low energy phenomena.

We believe that only few nonrenormalizable operators
become important in this manner. To demonstrate this
point consider the standard model. Despite all complica-
tions in the IR regime the experiments performed in the
vicinity of the crossover, 100 GeV, can be parametrized
by the help of the renormalizable coupling constants.
Where then is the room for the possible violation of uni-
versality'? The conjectured strong-coupling physics in the
IR plays an important part in forming the vacuum but
remains virtually invisible at higher energy. The only
important parameters they provide are the values of the
condensates. These condensates appear under the dis-
guise of renormalizable coupling constants, say lepton
masses in the usual scheme. But the relation between
the mass and the condensate bridges the energy scale of
the mass and zero and thus its tree-level form is highly
questionable. On the one hand, the order parameters
of the spontaneously broken symmetries are formed in
the asymptotical IR regime. On the other hand, they
parametrize the effective vertices at the crossover.

It is reasonable to expect that the only impact of the
IR modes on the physics of the higher-energy processes
is the generation of the symmetry-breaking condensates.
Thus universality actually holds when the physics is
parametrized by the help of the renormalizable coupling
constants and the condensates. It is useless if we make an
attempt to derive the values of the condensates starting
with the UV parameters, from one fixed point only.

This scenario leaves universality unharmed for ferro-
magnets. In fact, the condensate of the nonlinear 0
model is a unit vector and there is no possibility of chang-
ing its length. In contrast of this situation, the physics
of the superconductors may show nonuniversal features.
In particular, the supercurrent density might depend on
nonrenormalizable coupling constants of QED which are
provided by theories of higher-energy scale, such as the
standard model. In turn, the Higgs condensate of the
standard model is a nonuniversal function of the bare
parameters of a GUT, etc.

One would object the speculations about relevant op-
erators for the IR fixed point of a superconductor since
there is no gap in the physical spectrum. But the mass-
less excitations are present in the gauge-dependent sec-
tor where the Higgs mechanism relegates them and con-
tinues to infIuence the dynamics of the gauge-invariant
modes. Their presence can be seen from the long-range
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APPENDIX A

We collect here the commutation relations which were
used in deducing the wave-function renormalization con-
stants. All the relations derived in this Appendix are
based upon the simple rule

[P,p„]= io„@. (Al)

Note that the appearance of the negative sign which dif-
fers from the conventional definition is due to the fact
that the space-time traces are evaluated in the plane-
wave basis with all p dependences being moved to the
left of x-dependent field operators. Repeated use of the
above gives

[P, p ] = 8$ —-2zp„B„Q, (A2)

[0 ppp'] = (p~~'4'+ 2p —~ ~~4)
i(p'~~0+ 2pp—p 44) + . (A3)

[P, (p')'] = —3p'O'P —4ip'p„0„0+. (A4)

[[4,p'], p'] = 4p~p-~~~-4 +— (A5)

[4', A] = ZA'[p', P]+ Z'A'[p', [p', P]]+ . .

= ZuA 0 Q+ 2iZA p„B„P+. (A6)

[0"0', p'] = [0 0",&] = o, (A7)

[P,p 4] = —Z 'u[P, A]

u6 8 P ——2iuh p„0„$+.. .
, (A8)

[P, Ap„]= ZA (uAp„B P+ 2p B„t9„$)
+iA(2ZAp„p„0„$—0„$)+ (A9)

confining forces acting between two magnetic charges. In
fact, in the absence of massless modes all interactions are
screened. The situation is similar to the QCD vacuum
where the long-range confining modes coexist with finite
range the Yukawa forces due to the massive glueball ex-
changes.

In closing we repeat again that our results rely on the
derivative expansion. It would be of key importance to
support or disclaim its validity for the four-dimensional
models in the IR regime.
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g, (p')'~] = Z '-[y, p']+ Z '-u

= —p A(1+uA+ u 4 )0 Q

—2ip'6(l + uA) P„B„Q+ (Alo)

[P, psst, p„]= uA —(ub, p„8P+ 2p B„B„Q)
—i&(2u&p J -~-4 + J'~ 4) + " (A»)

[P, p A ] = ub, (2 —3u&)0 P
+2ib, '(1 —2uh) P„B„)+ (A15)

[Q, A ] = —ZA (1 —3uA)8 P+ 4izA P„O„Q+.. .

(A13)

[4,p'&e&e] = &e&e((Z~P'ueA, ' + Zep'ue&e

ueue&—eEe)8 P + 2'l(l —uence

u—,A, )P„B„Q}+, (A14)

[P, Deb, e] = Bete((zeueA, + Zeueb, e

ze z—,sea,p') 8'g
+2i (Ze Ae + Ze b, ,)P„B„Q}+ (A12)

After generating the derivative terms with the above
commutation relations, one may untangle the x- and p-
dependent terms with the following useful relations:

(p fl —2ipi„B„fl—0 f3 + fs)A = 6(p fl —8 f3+ f3+ ZA[p (1+uA)B fl + uAB fs]
+2ip„h,( uB„fl+—ZB„fs]}+

(p fl 2tp~Bpf1 ~ f2 + f3)+(p gl 21p~c)~91 c) 93 + gs)

= &(p'(p'fl + fs)91 + (p'fl + fs)93 —(p'fl + fs) &'93 —(p'91 + 93)~'f2

+[p (2 —u 3, )91+Zp 4(1+uA)93]B fl + [(1+uA —u A )91+Zub, 93]8 fs
+2ip„A(p gl + gs)( —uB„fl + Zc)„f ) + . .},

which for g = f reduces to

(p'fl —»P~~, fl —~'fs + fs) &(P'fl —»P c) fl —~'fs + fs)

= &(p'(p'fl + fs)f1+ (p'f1 + fs)fs —2(p'f1+ fs)~'fs
+p (2 —u 4 )f18 fl + ZA uf30 fs+ (2+ uE —2u 6 )fsc) fl
+2ip„b,(p fl + fs)(—uB„fl+ ZB„fs)+ . }.

Similarly, we have

(P fl 21pp~yf1 ~ f2 + ,f3)(P gl 21pv~llga ~ 92 + g3)

= (p')'flgl + I'(f193+ f391) + f393 21pp(p 91 + 93)~~f1
+(p'f. + fs)(&'91 —c)'92) (P gl + 93)~'f3+

and

(A16)

(A17)

(A18)

(A19)

(fl 8 f2 21ppBpfs)[go + (p ) gl + p g2 0 g3 —2lp P~B~94 —22P~B~95]

= flgo + (p ) flgl + p figs —~ fsgo —p (3c) fl + p & f2 + 2P'~'fs)
(~'fl+ J'&'—f3+ p'~'fs)93 —f1~'93+ p'(3f1 + p'fs)&'94+ (2f1+p'fs)~'95+ . . (A20)

APPENDIX B

In computing the effective blocked action SI„oneen-
counters the N x N matrix M of the form Z(N)

1 2~ = —2P @o&~. (B3)

where

and

(1M = 1+No hÃo
b I )

a = (aeZe . . aeZe ), ae = sp 4'o&e ~

T (2) (N) 1 2

One can easily verify that its inverse M takes on the
form

& 0 -eaT
gb I+ebaT )

where
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9 = (1 —a 6) = [1 —araz(Z& ) ]

Employing the relations

(B5) and

) (—1)"Tr'[(K bK )"K bK ]
n=olan+1

Tr'1n(1+ Kp hK) = ) ' ' Tr'((Kp bK)"}

(B6)

= Tr'[(1+K 8K ) K bK ],
we readily obtain

bS„'= -'Tr' 1n(Kp + bKp + bK, + hK2)
= -'Tr' 1n(Kp + SKp) —

4 Tr'(Kp '8K1Kp 'SK1)

) (—1)"T '[(K hK, )"K hK, ]+ —) (
—1)"T '[(K hKp)"K, '8K,]+'.=0 n=O

= 2Tr'1n(KP + 8KP) —4Tr'(Kp '8K1Kp SK1) + 2 Tr'[(1+ Kp bKP) Kp '8K1]
+-,'Tr'[(1+ K, '8K, ) 'K, '8K, ] + . .

In terms of matrix elements,

Tr'[(1+ Kp 'SKp) 'Kp 'hK
]
= e~, (hK.)"+ e~,a, a, Z,")Z,")(hK. )"]

+a, (8K )*' —0(arm, + azar)Z, (')(hK )"

Tr'(Kp 8K1Kp 8K1) =
I

~, (hK, )"Z,(hK, )"+ ~, (hK, )"~, (hK, )"

+[Ay(bK, )'*A, (bK1)*' + +A, (SK1)'Ag(hK1) "]j . (B1O)

The complicated commutator algebra can be simplified by noting that the matrix elements take on the forms

(hK1) = p nl —2zpyOpA1 l9 (x2 + A3

(hK2)' = p'Ab —P2~'4 + P3,
(B11)

= z' )y'+ z")y*
(hK )11 i 3Z(1)pl + Z(')yi0!2

n3 ——A@p(bl,

1 (Z(i)yl + Z(1)yi + Z(u)@ p')
($K1)li ~ (

— Z(i)yl + Z(1) qii + 1 Z(~i )@

, ~13 = —3@pl',

(B12)

Z(~) $ij yc + 1 (Z(~) p + Z(& ) yi )
(hK )ii ~ ( I Z(~)hij yc + Z(~)g + Z(i )yi + 1Z(u)C, yl

hij ylo

(B13)

p Z(1~)yl + 1Z(~d)yd

($K2) 11 ~

1
p Z(1~)yl + 1 Z(11)yc

, P. = -". ((t 4 +24'4'),
(B14)
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P 1(Z(&~)yi + Z i~
y )

(bK2)~~ i p l(Z(~~)pi+ g('~)yi ~ Z(~i)yc)

p = —4'4'
'

pi 1(z(~~)pg + z(i~)yi + z(«)pic yd)
($K )ii ~

$ pl 1(z(i&)p + z(i&)yi + z('2)yc)

, Ps = , (~"—0'0"+ 20"0').

Substituting (B14)—(B16) into (B9) for 8K2 yields

(B15)

(B16)

where

Tr'[(1+ Ko 'hKo) 'K, 'hK2] = &b 4'~'4'+ b', 0'~'0'), (B17)

box ———2(3Ze eb, e + Ze" b, q) — Ze' C—obeAqp [Ze' Ze' OoAep —8Ze' ],

b;, = --b'~ eaeZ,"+ Z,""Z, + -Z(")C,p'~, Z, (Z,")Z,"")C.p'~, —4Z,'"')11 k

z'*"+ -z(*'c p'z (-'z(")z(""e p'a —z"')t 2 e op e 2 e t Op (B18)

For the bK1-dependent terms, after much tedious algebra with the help of the relations found in Appendix A, we
have

&e(bK~)"&e(bKi) = Ae((p ) nj +2p nuns+ ns+2p nq(0 nq —8 n2) —2nqB n2
—p ueAenge) ng + ZueAenso ns+ (2+ ue&e —2ue+e)n&e) nl + '

= aii0'~'0'+ a*,4'~'0" + .

ax& ———Ae((ze ) p (1+uence) + Ze AC'o(1 —uence+ 2ueAe) —Zeue&e& C'oj,

(~) (2) 2 2 4
a;~ = —Ze Ze p ~e+e ~

A , (bKj )'~A, (bKq)~* = a~, Q 8 P + a,'~P'8 gP +

1 3 ~ 2 (1) 2 2 ~ (1)
2

a~~ = (K —1)ups, Ee 4oz, —(Z, —) p ue + —@oz, (1 —2u, A, )
)

-z(")e ~'i z(') '+ e

(B19)

(B2O)

(B21)

I Z(i)Z(i ) 2/2 3 + 2/2 1 (Z(A'))2$ij 2/2(2 + 2/2)2 ( 2%+3
(B22)

(belK) +t(bK1) a114 e) Itb + a'j(b ~ (B23)

a':

+erat

Ze 40 3Zt p 1 + %it Lt + ~C Otct +t I 2Ãt +t

(B24)

(1)
—,(Zi ) p (2+ue&, ) ——C'o —~'oZeue&, — (2 —ue&e+2ue&e)() 2 2 2

1Z('I ) Z(I &) @2 2 2&2
4 e e Op
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Ae(bKg)' Ae(bKg) ' = a~~P 8 P ~ a,*,P'0 P',
aii = —4(&e ) S' &e&e(2+us&e) i

(B25)

(B26)

Gzj +E+f 6 Z$ C 0 3Z~ p 1 + u& L& + A@0'llgAg 1 —2ugAg

(~)
—h* 4(Z, ) p (2+ uence) ——4'o ~'oZeue&e — (2 —ue&e+ 2ue+I )

;, & -(~)22 2 2

Z('A:)Z(&j)@2 2
4 s e op e e

In arriving at the above expressions, O(4) invariance has been used:

8 8 p p = — 6 p (B27)

The coefficients obtained above become much simpler when O(N) symmetry is invoked which allows us to make
the following substitutions when seeking for the RG Row equations:

ue m Uk
——2(Uk + 2Uk'4 ),

(22)u, ~U„=2U,,

(B28)

XC -+ U„""= 4(3U„"~ 2Uk'"C')e,

3
and

Z(') Z„' = 0,

Z~"l ~ Z'"' = 4(Z"C' ~ Z')
Z" m Z" = 2Z'b"

k

where the prime notation denotes differentiation with respect to O' . Thus we have

4,e = 6(Zk, ec' + Z—k, e)+k, e —(N —1)Zk,e&k, e ~

t, , = -2(Z„",C' y Z„',)a„,—(N ~1)Z„',Z„,,

(B29)

(B3O)

aj,g ———4LI, &C Zk ~ A: 1+4LI, ~ UI, + 2UI,'4 + 2 3UI, + 2UI, 4

x Zke[1 —2(Uk+ 2Uk@ )Ek e+ 8(Uk+ 2Uk4 ) +k e]

—4es, gE*„~(Ut+ 2UgC')(3'+ 2U„"'4*) ), (B31)

'k, e = 4(N —1)&k, @'( —Zk, e(Zk, I '+ 2Uk') + 4Uk&k, (&k. [2Zk. (Uk') ' —(Zk )'I."Uk] + Zk Uk'(1 —4Uk&k, )))
(B32)

ak e ——2&k,elk, eC' (16Zk,eUk(Uk') Ek, e Zk, ek [Zk e + 2(Ut, ) Ak e(Zk e + 2Zk e)]
—(Z„',) I""[1~ 2(Uk) Ak ]+ 4Zk elk &UkUk'(1 —4UkAk, )

4Zk, eUk [1 —Uk&k, e
—+ 4(Uk) &k,e]k
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aI*, , ——2&k yak tC (4UI", (4Zk OUI", (UI', +. 2''4' )Ak t
—&~ i[& —(U~ + 2U~@")&k,t + 4(Uk+ k 4')'&'ktlk

+4ZI, U„"E„(U„'+ 2U„"Ci ) [1 —4(UI + 2U„"Ci )b,„]
&—k,tk'[&k, t+ (&k,e+ &k,t)(Uk+ ~2@')'&k,t]) (B34)

I
k, t = +k, t +k& +k
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