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Quantum aspects of supersymmetric Maxwell Chem-Simons solitons
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We study the various quantum aspects of the N = 2 supersymmetric Maxwell Chem-Simons
vortex systems. The fermion zero modes around the vortices will give rise to the degenerate states
of vortices. We analyze the angular momentum of these zero modes and apply the result to get the
supermultiplet structures of the vortex. The leading quantum correction to the mass of the vortex
coming from the mode Huctuations is also calculated using various methods depending on the value
of the coeKcient of the Chem-Simons term K being zero, infinite, and finite, separately. The mass
correction is shown to vanish for all cases. Fermion numbers of vortices are also discussed.

PACS number(s): 11.10.Kk, 11.15.—q, 11.27.+d, 11.30.Pb

I. INTRODUCTION

Abelian gauge theory in 2+1 dimensions with the
Chem-Simons (CS) term [1,2] has attracted much inter-
est. Matter fields coupled with this term are believed to
describe anyons with fractional spin and fractional statis-
tics. Such important planar phenomena as high T su-
perconductivity and fractional quantum Hall efI'ect have
added. more interest to the field theory models with a
CS term. The characters of allowed solitons are also af-
fected by the presence of the CS term. As is well known,
the usual (2+1)-dimensional Abelian Higgs model sup-
ports only electrically neutral vortices as topologically
stable soliton solutions [3]. On the other hand, the CS
term makes the vortices [4] electrically charged, which
are (extended) anyons [5]. We have quite a rich vortex
structure depending on whether the matter fields are rel-
ativistic [6] or nonrelativistic [7] and whether we have
more than one CS field [8]. In this work we are mainly
interested in the case with relativistic matter fields cou-
pled to the gauge field with both Maxwell and CS terms
in general. As a special limit of this general model we

get the Abelian Higgs model and the "minimal" Chern-
Simons Higgs model (i.e. , without the Maxwell term in
the action).

With some special choice of the scalar potential in
(2+1)-dimensional gauge models Ref. [9], one can ob-
tain interesting limiting theories in which the minimum
energy static soliton solutions satisfy first-order diKeren-
tial equations, called the Bogomol'nyi [10] or self-duality
equations. This special potential becomes a specific
scalar quartic potential for the Abelian Higgs model,
while in the case of the "minimal" Chem-Simons Higgs
model it becomes a specific sixth-order potential form
[6,11]. The appearance of self-dual structures for certain
special Higgs potentials can be ascribed to the extended
supersymmetry [12—14]. Requiring an N = 2 super-
symmetry guarantees this special form of the potential.
There also exists an N = 1 supersymmetric model which

produces exactly the same bosonic part of the Lagrangian
as that of the N = 2 model. The fermion number is, how-
ever, not preserved in this case. We will mainly consider
the model with more symmetry, i.e., the model with the
% = 2 supersymmetry.

A remarkable feature with these self-dual systems is
the existence of static multivortex solutions which rep-
resent static configurations of vortices with unit flux
without any interaction energy between them. This in-
terpretation is supported by counting independent zero
modes [11,15] to the boson Huctuation equations in the
background field of a particular soliton solution. These
bosonic zero modes are related to the collective modes of
the solitons and play an important role in understanding
the dynamics of the slowly moving vortices [16].

Fermions around the vortices also have zero modes.
For the models under study it is found that all fermion
zero modes around. the general multivortex background
are closely related to the corresponding bosonic zero
modes. The N = 2 supersymmetry is crucial [14]. They
are very important in the quantum study of the mod-
els, representing the degeneracy of the soliton states (in
contradistinction to bosonic zero modes which become
collective coordinates) [17]. In supersymmetric models
in particular, they account for the soliton supermultiplet
structure [18].

The organization of this paper is as follows. In Sec. II
we review the properties of the N = 2 supersymmetric
Maxwell Chem-Simons system. The particle contents,
the properties of the vortices, the symmetries and the
corresponding algebra of the Lagrangian are reviewed. In
Sec. III we will quantize the fluctuating modes around
the self-dual vortices. By analyzing the angular momen-
tum fermion zero modes we describe the multiplet struc-
tures of the vortices. Spin contents of the degenerate
supermultiplet of the vortex states are also calculated.
Then, in Sec. IV we calculate the mass correction to the
vortices. We will do this for the value of v to be zero,
infinite and finite, separately. Section V contains the
summary of our work and discussions. Some technical
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details related with the spin assignment, supermultiplets,
and phase shift analysis are described in the Appendixes.

II. SUPERSYMMETRIC MAXWELL
CHERN-SIMONS THEORY

sponding to the translation supplemented with an ap-
propriate gauge transformation. The generators for the
Lorentz symmetry can be also found. For example, the
canonical angular momentum operator J is given by

J = d x[e,~x*P; —2(@g+ yy)]

The Lagrangian for the Maxwell-Chem-Simons system
with N = 2 supersymmetry is given by [14]

with the contribution from the bosonic fields,

(2.S)

l. = l.gy+ l.F, (2.1)
d xeU. x'[8 NB'N+ D /*DIP

(2.2)

4F~-—F" + &"""F—~-&~ —ID~&l' —2(~~N)'

--.'(el&i'+ ~N —«')' —e'N'I&l'

+D' P*D'P + F'"F' ],

and that from fermions

(2.9)

and J = —i d xe; x'[@p D vP+yp O.y]

(2.3) d'x(04'+ xx). (2.10)

Here, D~ = 0„—ieA„ is the covariant derivative, N
a real scalar, P a complex charged scalar, and t/r (y) is
a complex charged (neutral) 2-component spinor. Our
metric tensor g"" has the signature (—,+, +). We will
choose the p matrices as p" = (0's, icr2, io i).

When the coupling strength K for the Chem-Simons
term becomes zero, the above Lagrangian reduces to the
N = 2 supersymmetric Abelian Higgs model [12]. The
scalar potential in this limit allows only the symmetry
broken vacuum. In another extreme limit of very large
tc (with the ratio e2/r fixed), the neutral scalar field N
(spinor field y) can be represented in terms of the com-
plex scalar field P (spinor field @) as

The theory in Eq. (2.1) possesses the supersymmetry

b~Ap = i (rishi„y yp~i))

b„P = egg, bqN = i(pic —gy),

b„@= i/2(i~~~D—„y —~F),
b„g = p"g(B„N —f„)+igG, (2.11)

where

F = eNQ, f~ = e„„qF"",——G = el/1 + KN —evP 2 P~

(2.12)

N = ——e(lgl —v ), y = ——~2e(t*g,
K K

(2.4)

and the Lagrangian becomes the supersymmetric exten-
sion of the minimal self-dual Chem-Simons Higgs model
given in Ref. [13]:

Here the spinor parameter g should be taken as being
complex Grassmannian. The corresponding supercharges
are

Q = i/2 d x (D„P)*p"p g —~2iF*p Q

e4
&cs = 4e" "F,-&~ —ID~41' ——„,141'(I+I' —v')' —i(~,N+ f, )V"V'x —G~'X . (2.13)

2

+ 4'w"D 0 ——(314'I' — ')A (2 5)
The algebra of these with the supercharges are given by

(Q, Q~j = 2p"~P„—28~ev O, (2.14)

P"= d xO" (2.6)

with the energy-momentum tensor given by

8„„=F„iF " + D„$*D Q + D„(6*D„Q+ O„NB N
i gp(„D„)@ —imp(„c) ) y—+ 'i1„„8. (2.7)

This energy-momentum tensor is gauge invariant corre-

The above theory posesses various kinds of symme-
tries and their corresponding currents. The energy-
momentum vectors related with the translational sym-
metry is given by

with 4 = f d2xB.
The particle spectrum will form representations of the

above symmetry algebra. General structure of super-
multiplet and the spin assignment will be described in
Appendix B. In the case of K, = 0 where there is only
symmetry broken vacuum, all the particles are massive
with the same mass i/2levl. We have two (massive) vec-
tor modes with spin 1 and —1, two real scalar modes of
spin 0, and four spinor modes with two of spin 1/2 and
the other two of spin —1/2. For the fermions, the sign of
the mass term will depend on the spin. Two sets of the
% = 2 supermultiplets are formed. One set is with one
of spin 1, two of spin 1/2, and one of spin 0. The other
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is with one of spin —1, two of spin —1/2, and one of spin
0.

E ) ev 141 = 2vrv n, (2.17)

For the Chem-Simons theory, the potential allows both
symmetry unbroken and symmetry broken vacua. In the
symmetry broken vacuum, we have 4 degrees of freedom
with the equal masses 2e v /1+1 forming one set of N = 2

supermultiplet. The spin contents for K ) 0 are one of
spin —1, two of spin —1/2, and one of spin 0. With
v. ( 0, all the spins in the supermultiplet will change
signs. In the unbroken vacuum sector, all the four modes
are massive again with masses equal to e v / r1. These
are split into two supermultiplets. One supermultiplet
consists with each of spin 0 and spin 1/2, and the other
with each of spin 1/2 and 1. If the sign of K becomes
negative, the signs of all the spins are also changed.

In the general case with a Gnite value of v, there are
also two degenerate ground states, i.e. , a symmetric one
where P = 0, N = ev /K and an asymmetric one where

= v, N = 0. The particle contents in the symme-
try unbroken phase are the complex scalar P and the
Dirac fermion Q with the mass e v /1r1 and the neutral
scalar N, the gauge Geld A„, and the Dirac fermion y
with another mass equal to 1r1. They form four N = 2

supermultiplets with 2 degrees of freedom. One super-
multiplet consists of spins 1 and 1/2 and the other three
consist, of spins 1/2 and 0. In the broken phase we still
have two mass scales —[r + 4e v + gvz(r + 8e v )].
The fields corresponding to these mass eigenstates are
obtained as some combination of the original Gelds. We
have two N = 2 supermultiplets. The spin contents in
the supermultiplet with the mass m+ ——2[K + 4e v +
QK2(rz + 8e2v2)] are one with spin 1, two of spin 1/2,
and one of spin 0. The spins in the other supermulti-
plet with m = —[r + 4e v —gr (v + 8ezv2)] will
be that of the m+ with all the signs changed. The brief
analysis of the above supermultiplet structures is done in
Appendix B.

Now, let us brie8y review the structure of self-dual vor-
tices in the Maxwell-Chem-Simons theory. The bosonic
Lagrangian Z~ in Eq. (2.5) is enough for the classical
solution. In this theory, there are two degenerate ground
states as mentioned above. It is known that topological
solitons exist in the asymmetric phase with the asymp-
totic behavior

and is saturated if the configurations satisfy the "self-
duality" equations

(Di + iD2)$ —= D~Q = 0,
F» + (elgl'+ KN —e~') = 0,
A gN=0, (2.18)

A0 &K&F„
(2.19)

and the self-duality equations reduce to those of Ref. [6]:
viz. )

F ~ + „,141'(141' — ') =o. (2.20)

We can take the spherical ansatz for those classical
vortices with vorticity n on top of each other:

P = f(r)e'", eA' = e;, —'(a(r) —n).'2 r2

The functions are related as

n(r) = r —ln f(r),dr
(2.22)

and can be solved using the Bogomolyi equation. Now
consider the angular momentum in the presence of the
classical vortices given by the spherical ansatz. With the
Gauss law now containing the fermion charge density inJ, the angular momentum &om the bosonic fields in
(2.9) can be written as

together with the Gauss law (2.16). The upper (lower)
sign corresponds to a positive (negative) value of the
magnetic Aux C. Whenever we need. the explicit choice
of the self-dual background Geld configuration, we will
choose the upper sign corresponding to the vortex.

In the case of v = 0 we may consistently set A
0 and Eq. (2.18) will become the self-duality equations
for Landau-Ginzburg vortices [10]. On the other hand,
in the case of K —+ oo, we have, instead,

N(r) -+ 0, 1$(r)1 m v as r m oo (2.15) J~ = d xe,,x' 0 NB'N+D Q'O'Q+O'Q*D P

BE' +KEg2+eJ =0 (2.16)

and a quantized 8ux 4 = + n(n= positive —integer).
Nontopological solitons also exist in the symmetric phase.
We will consider only the topological vortex for simplic-
ity. These vortices satisfy the field equations. Especially,
they satisfy the Gauss law constraint

+F "F~i, + A~( Bi,E" + rF»—+ ega @) . (2.23)

The leading contribution to the angular momentum in
(2.23) for the vortices will be from the background clas-
sical vortex configuration J,i and &om the fermion zero
modes LJ0. J~ J,~ + AJ0. For vortices with the
spherical ansatz, these are given by [9]

with J = i,(Q*D P —D P*P). I—ntegrating over the
whole space then tells us that a configuration with
the magnetic flux C' carries the electric charge Q@
J'd2xJ = ——"4. In this theory it has also been shown

[9] that the energy of the configuration is bounded from
below by the relation

AJD ——— d xa r

(2.24)

(2.25)
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The fermionic field contribution to the angular momen-
tum in Eq. (2.10) under the vortex background becomes

III. QUANTIZATION

J~ — d x —zOg+a r ——o3 —n

+x'(—i' —-,'~s) x]. (2.26)
C = C,j+ bC. (3 1)

Now, we want to quantize the theory in the soliton sec-
tor. The general procedure of the quantization of fields
around the soliton has been well developed [19]. We de-
compose the fields around the classical vortex configura-
tion as

The total contribution &om the fermion modes will then
become

The field b4' is the fluctuating modes around the classi-
cal vortex configuration @,i. Plugging Eq. (3.1) into the
Lagrangian we have the Lagrangian in the form of

JF + b.Jp —— d z(Q, x ) iBg ———
0 a.s )

(2.27)

This will be used in the next section.

z = c,i+ z(, ) + e;„,.
Here, l.,~ is the same as the bosonic Lagrangian in Eq.
(2.2) except that all the fields are the classical vortex
configuration. This is the tree level contribution to the
Lagrangian coming from the classical vortex configura-
tion. Z(2) ——l.& + 8+ is the quadratic piece in terms(2) (2) ~

of the fluctuation fields. For a general value of K, , the
quadratic part of the bosonic fluctuations is given by

hF bI' —"+ ee ""bF„—„bAg —~D„bg~ —e bA

i ebA„(bP*—D„Q + P'D„bg) —i (B„bN) —— (b*b(j& + PbP* + hN—
2

I
e )

I&I'+ —N —&' lb@I' —e'(bN)'I&I' —e'N'lb' I' —e'NbN(4*b4 + lb'*), (3.2)

and that of the fermionic fluctuations by

&~' = 4w"D, 0+ 'xv"B x+ xx —~& (Wx4 —xA*) + N04' (3.3)

All the bosonic fields above are the classical background. Terms in 8;„q are the higher order interaction terms.
The equations of motion for the fluctuating fields around the self-dual vortices can be obtained by varying the

quadratic piece of the Lagrangian in the above. First, the equations of motion for the bosonic fluctuations are

(B„B"—2e ~P~ )hA" —B B„bA" —Ke" B„bA& —&e(Q*D"bQ+ bQ*D Q) = 0,

(—Bi2 + D D+ —2ieA Bp)bp —ie(D P)bA+ —KegbN + 2eA P(bA —bN) —iePB„bA" —e P(P*bP+ PbP*) = 0,

(3.4)
(B Bi' —2e2~$~2 —K )bN —e(K+ 2eN)(/*be+ PbQ') = 0.

Time independent solutions of these equations are the
zero modes. The bosonic zero mode fluctuations may
also be obtained by considering the variation of the self-
duality equations (2.18) around the given classical vortex
configuration as given in Ref. [15). Among the zero modes
we eliminate those related with the gauge transformation
by imposing the gauge-fixing condition. The index the-
orem or its variants can be used to count the number
of bosonic zero modes satisfying the equations of motion
and the gauge-fixing condition. The bosonic zero modes
for the v = 0 [20], those for the r = oo case [11]and those

for a general value of K were studied [15]. The results are
that in the background of a topological vortex configura-
tion with vorticity n, there exist 2n bosonic zero modes
for any value of K,. They correspond to the collective co-
ordinates associated with the vortices. The quantization
of the bosonic zero modes will give rise to the excitation
of the collective coordinates, e.g. , the momentum. This
is consistent with the interpretation of these zero modes
as being related to translation of individual vortices.

The general time dependent modes can be quantized as
usual to describe the bosonic particle excitations around
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(X) X
(3.5)

where the Hamiltonian H~ is given by

z&'~ —D+.(—~om+ Xo)
IIp = —~2iey*p'

D+
2ieN

0 —XK

—~2ey* 0

—~2ey
0

( o
D

~2ey*

~2iepog
—ipop. V' —por. )

~2ey
8+
zK )

(3.6)

The background fields in the above are for vortex config-
uration corresponding to the upper sign in Eq. (2.18).

Solutions of the Dirac equation of fermions around the
vortex in the above equation can be decomposed as

the vortices.
We now turn to the fermion fields. The Dirac equation

for fermion fields around the vortex is

~2 2 2
t' —ze; 8 —-'o., —n O

0 zE 0———0'2 )u 2 2
(3.8)

It is straightforward to show that the angular momentum
operator J commutes with the Hamiltonian Hp We de. -

compose the modes into angular momentum eigenstates.
The general mode with the angular momentum quantum
number j is given by

zero modes and the fermion zero modes. There are 2n
fermion zero modes around the vortex configuration with
the winding number n as in the case of bosonic zero
modes. This is deeply related with the N = 2 super-
symmetry of the theory [14].

The quantization of the zero modes of the fermions will
be relevant to the multiplet contents of the vortices. To
do this, we need to know the angular momentum of the
zero modes. The quantum mechanical angular momen-
tum operator g can be read &om the field theoretical
expression in Eq. (2.27) as

4 =) a@0+) bC+ +) d'4 (3.7)

Here @0 are the zero modes and g b4+ (P

dt's'

)
are the positive (negative) energy solutions. The
fermionic zero modes are analyzed in Ref. [14] using the
index theorem and also the relation between the bosonic

XT
&x~)

—2CaP te

The Dirac equation for this mode becomes

(3 9)

~
h, (r) ~
h2(r)
hs(r)

( h4(r) )

0
a+j+j./2

~Zev f
0

a+j—1/2

2ieN
~2ev f

0
—ZK

+ j+1/2
T T

~ h, (r)
~2ev f h2(r)

hs(r)

~
(h())

(3.10)

We first consider the fermion zero modes in the K ~ 0
limit. In that case we have two sets of equations: h2 - r" (Air' ~ + A2r ' ~ ). (3.14)

8„+ +'„+'~' ~2ev f ( hi(r) )
~2evf cj„—i ~ ) g h4(r) )

The second set of equations (3.12) does not allow any
normalizable solution. The first set of equations (3.11)
can be combined as

(3.13)

The asymptotic behavior of h2(r) in (3.13) will be pro-
portional to e ~ "".Near the origin, h2 behaves as

(~ir2n + +2)e2in8 (3.15)

has bad behavior at r = 0. For each of the above 2n
solutions of gg (h2), the function @g(hs(r)) is determined
through Eq. (3.11). Hence we have 2n independent zero
modes. This result agrees with that in Ref. [14] based on
the index theorem.

For the general value of K, we can get two coupled
second-order difFerential equations of h2 and h4 from
(3.10):

We expect a single solution matching the boundary con-
dition at infinity with two free parameters at the ori-
gin. To get the regular solution at the origin with two
free parameters, j is restricted to half integral values in
—n+ 2

& j & n —2. The value j = n+ 2 is discarded
since the corresponding zt~,
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(, a,0 + ——
r

and

0 —1/2)'

) Ev 2«f)
+i+h4 ——0 (3.16)

0 + ——
r

(~ —1/2)' —2e v f h4
2 2 2 2

—i(v + 2eN)2e v f = 0. (3.17)
2ev f)

The remaining functions h3 and h~ can be determined by
h2 and h4 through the third line and first line in the Dirac
equation in (3.10). The general solutions of Eqs. (3.16)
and (3.17) are expected to have four free parameters, to
be adjusted to the boundary conditions at the origin and
infinity. Near r 0, the regularity of the solution gives
us only three &ee parameters for —n+ 2

& j & n —2.
The leading orders in the power series expansions in that
range of the angular momentum are given by

h2 ~ r (Air~ 2 + A2r l ~l) h4 ~ Qr~~ 2~ (3.18)

—m17 + C —m2r

1 mj —2e ~,„m2 —2e. v—h4 ~ Cge C2e
ZK K K

(3.10)

where m~ and m2 are eigenvalues of the mass matrix

If the angular momentum is out of the above range, then
we have at most two &ee parameters. In the asymptotic
region, among the four parameters, two will conrrespond
to the unphysical divergent solutions and only two free
parameters will show up in the convergent solutions as

n —2. Note that we do not expect any solution if j is
not in the above range, since we have less parameters in
the power series solutions near the origin. Specifically,
for n = 1, we have two modes with j = + 2.

Based on this analysis, we quantize the theory. For
simplicity, we consider the case of single vortex with the
winding number n = 1. Multivortex case can be similary
done when they are widely separated. The quantization
6 and d in Eq. (3.7) (with their conjugates) for nonzero
modes are the same as that in the vacuum sector and
these modes describe the fermions around the soliton.
We have two fermion zero modes with the angular mo-
mentum 62. The quantization for these modes will be

(a, , at) = b;, (i, j = 1, 2). (3.21)

The subscript 1 represents for j = —
2 mode and 2 for j =

According to the Jackiw-Rebbi interpretation [171,
the soliton states will be degenerate due to the fermion
zero modes and the quantum multiplet structure and the
spin contents of the vortices will form a representation
of the algebra relations in Eq. (3.21). We will then have
four degenerate soliton states from the fermion zero mode
algebra in (3.21):

I+ —
& =ail ——

& I

—+) =a'I ——
&

I++& = aia'I ——&. (3.22)

The algebra in Eq. (3.21) is not the same as the N = 2
supersymmetric (SUSY) algebra with the central charge
described in Appendix B. The discrepancy comes from
the fact that only the mode corresponding to j = —

2
can be obtained by supertranslation of the vortex con-
figuration. To see this, note that we can always get one
fermion zero modes by the supersymmetry tranformation
in Eq. (2.11) to the classical bosonic vortex background.
We then get one fermion zero modes 4z proportional
to

2e'v' K'
(3.20)

@g = 2v 2F, gg = v 2iD P, yg = 2iG,

yg ———20 N. (3.23)

Matching the solutions to have the regularity in (3.18) at
the origin and the integrability in (3.19) will then leave us
only one free parameter that comes from the homogeneity
of the differential equations. In other words, we have 2n
solutions, one for each j in the range of —n + 2 & j &

I

It is straightforward to check that the spin of this zero
mode is j = —

2 using the angular momentum operator
in (3.8). Hence this is the zero mode corresponding to
ai in (3.21). We now write the supercharge in (2.13) in
a two-component form

Q= d2:!f v 2(Do/* —iF*)@~—i(OoN + fo —iG)&g + ~2(D P)*vPg —i(0+N + f+)yg l
( v 2(Dpg'+iF*)gg —i(OpN + fp+ iG)y~ —~2(D+Q)*/~ +i(0 N + f )y~ )

(3.24)

Note that the down component of the supercharge with
the background self-dual bosonic fields vanishes. The
nonvanishing upper component Q~ of the supercharge
becomes

d x! ~~'F*y„—Gg„+ (D y)*@,—'f, g, ~.
2

(3.25)

The algebra of the supercharge will then be that of N = 2
with the central charge in Appendix B.The nonvanishing
supercharge is in the form of Q~ ——f d2x@'il l4'. From
the orthogonality of the modes, this is proportional to
aq and so the operator a2 corresponding to the other
zero mode anticommutes with the supercharge. In other
words, among the two independent supertranslations to
the self-dual background configurations, one Rom Qg acts
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trivially and only the other one from Q~ will give us the
fermionic zero mode corresponding to j = —&. The other
zero mode is not obtained from supersymmetry. The
algebra between ai and a& is the same as the N = 2
SUSY algebra with the central term in Appendix B and
will be realized as a doublet state. On the other hand,
the doublet representation of the algebra from a2 and
a2 will transform as a singlet under the N = 2 SUSY.t

Hence the above four degenerate solition states will form
two sets of N = 2 supermultiplets rather than one. One
supermultiplet will be by

~

——) and
~
+ —) with angular

momenta J,~ and J,~
—2, respectively. The other one is

by
~

—+) and
~
+ +) with angular momenta J,~+ —and

J,~, respectively. Here J,~ is the leading contribution to
the angular momentum &om the classical bosonic field
configuration of self-dual vortices.

We now calculate the fermion number of the soliton
by taking the expectation value of the fermion number
operator for the degenerate soliton states:

d'*[a(*)t, e(*)]~++)=+-', + —,'+ ~(H+) .

&(H)=-, ) —)
u)0 w(0

(3.27)

(3.26)

The constant pieces diKering on the vortex structures are
from the fermion zero modes and q(H~), the so-called g
invariant, given by

is from the nonzero modes.
For the Landau-Ginzburg model, i.e. , v = 0 case, there

fop 0exists a constant matrix
~ p

~

that anticommutesl' -~r
with the Hamiltonian. This matrix matches the positive
energy solution with the negative energy solution with
the norm and the density of states preserved, making the
value g to be 0. This can be also shown easily by direct
evaluation of g using the method in Ref. [21], for exam-
ple. Then from Eq. (3.26), the four degenerate states
of the vortex (3.22) carry fermion numbers —1, 0, 0, 1,
respectively.

The Hamiltonian (3.6) for the general value of v no
longer has such a structure. Niemi and Semeno8' de-
veloped a method to calculate g for such a general case
[21] which is based on the works of Atiyah, Patodi, and
Singer [22]. Following them, let us introduce one pa-
rameter family of Hamiltonian H(w) which interpolates
the Hamiltonian Hp = H~(r = 0) (when 7 = —oo) and
the Hamiltonian H~ (when v = oo). The Dirac operator
D = ipP(0 —H ) is defined on the extended manifold
rt4 of B x D where B = (r) and D is a disk of ra-
dius R in the usual x-y plane. The result is [21], in the
B m oo limit,

—zg(H~) = Index(D ) —2rI(Hp) + zg(Re(P)) . (3.28)

Here, Index(D ) is the index of D in the extended man-
ifold M and P is the operator defined by projecting the
operator D onto the boundary of the disk D for each
value of 7-. For our case, it becomes

p . ,f 0'] cos 0 + cr2 slI1 0 0ReP= —

ipse

+i~ 0 cry cos 0 + cr2 sin 0 (3.29)

which is almost a &ee equation. One can easily see that
q(ReP) = 0 and q(Hp) = 0. Hence we get rI(H~)
—2Index(D ). The index of D is hard to evaluate. Since
the index is an integer, g is an even integer in general.
But we expect its value to be zero, since g is shown to be
zero in the above when e = 0. In other words, there is
no contribution to the fermion number &om the nonzero
modes. Then the fermion number of the vortex is the
same as that in the K = 0 case.

ticle creation and annihilation around vortices. The mass
correction comes from the sum of those mode contribu-
tions [23,24]. We will get this correction by comparing
the bosonic and fermionic modes. First, let us calculate
the quantum correction to the mass of the vortex. The
leading quantum correction to the vortex mass comes
from the quantum Huctuation modes given by

KM = ) Leigh
—) id'

IV. QUANTUM CORRECTION TO THE MASS
OF THE VORTEX

dA

dn~(A) l
dA )

(4.1)

The quantization of the nonzero modes in Eq. (3.7)
will correspond to the particle creation and annihilation
around vortices. The leading mass correction comes from
the quantum Quctuation of these modes. We will get
this correction by comparing the bosonic and fermionic
modes.

The quantization of the nonzero modes in Eq. (3.7) will
correspond to the mass correction of the vortex and par-

The frequency co~ (u~) are eigenvalues and n~(n~) are
the number of states upto eigenvalue A of the bosonic
(fermionic) Auctuating modes.

%'e first evaluate the mass correction for the usual
Maxwell theory (e = 0). The equations for the fermionic
modes around the self-dual vortex with the positive &e-
quency su~ becomes



QUANTUM ASPECTS OF SUPERSYMMETRIC MAXWELL CHERN-. . . 4465

t'U& & 0 D~1 &Ui
(4.2)

The con'tribution &om the fermionic modes to the soliton
mass is given by

where ).~z = ).~@+ ).~v (4.5)

and the Dirac-like operator D~ is defined as

( D+ —~2eg l
( —~2ey* 0 )

(4.3)

Note that if (U, V) is the mode corresponding to sr~ then
(U, —V) is the mode corresponding to —u~. Let us rep-
resent &&+ ( && ) as the density of states of the operator
of DpD& (D&DJ;) Th.en the density of the states for
the ferrnion modes in Eq. (4.2) is half of those of the
second-order equation in Eq. (4.4),

, &U& tD D' 0 ~ (U&
(4.4)

Here the bosonic fields P and A, in the covariant deriva-
tives are the classical background fields of the self-dual
vortex. Apply the Dirac-like operator D~ to the equa-
tions of fermions in Eq. (4.2) to get

dn~ (A) 1 (dn+ (A) dn (A)
dA 2 dA dA )

(4 6)

since only half of the solution of the above equation cor-
respond to the positive frequency solution in Eq. (4.2).

We now turn to the bosonic fluctuations. The equa-
tions of motion in Eq. (3.4) for r. = 0 become

(0„0"—2e ~P~ )hA+ —8+ (B„bA"+ ie(P'bg —PbP*)) + 2ie(D P)*bg = 0,

(—B~ + D D+ —2e ~P~ )hg —ieg(B~bA" +ie(P*bP —Pbg*)) —ieD PbA+ ——0,

(9' —2e ~P~ )hA + —(V', bA'+ie(P*bP —PbQ*)) = 0,
dt

(8„0"—2e ~P~ )b% = 0. (4.7)

V';bA'+ie(P*bP —Pbg*) = 0. (4.S)

The gauge field is written in terms of bA+ ——bAq+ibA2
for convenience. The classical background fields P and A;
appearing in the above equations are the configuration
for the self-dual vortices satisfying the self-dual equations
(self-dual) with r = 0. Among the fluctuations satisfy-
ing the above equation (4.12), we have to subtract those
fluctuation modes corresponding to the gauge transfor-
mation. For this purpose, we choose the physical gauge
condition as follows:

(B„B"—2e ~P~')A = 0. (4.13)

We have to subtract the degree of &eedom satisfying this
equation. Since this equation is the same as that of the
real scalar field of bN in Eq. (4.12), the contribution
of the fluctuation corresponding to the gauge degree of
freedom A satisfying Eq. (4.13) and that of the neutral
scalar b'K in Eq. (4.12) cancels out in the contribution
to the correction of the mass. Hence the only bosonic
contribution is from the complex fields bA+ and bP and
the vortex mass correction from bosons becomes

The above equation (4.7) for hA with this gauge condi-
tion then requires that ) ~a = ) .~ay + ).~bc+. (4.14)

bA'=O, (4.S)
To get the density of the states we write the equations
for hA+ and bP in Eqs. (4.7) in matrix form as

since the operator V' —2e ~P~ is negative definite. Other
equations for the bosonic fluctuations can then be written
as

(0„8"—2e ~P~ )hA+ + 2ie(D P)'bP = 0, (4.10)

(—8& + D D+ —2e ~P~ )bP —ieD PbA+ ——0, (4.11)

(D„B~ —2e ~P~ )bN = 0. (4.12)

To find the equations for the fluctuation modes cor-
responding to the gauge transformations, we take an
infinitesimal gauge transformation bobA+ ——0+A and
b~bg = ieAQ to Eq. (4.12). We then get the equations
for the gauge transformation modes satisfying

~D D+ —2e2~y~' K~ey l ~ b4
~2eg* 8; —2e ~P~ ) ( ~2bA+ )

(4.15)

( bg= D~D+
I =*'hA +) (4.16)

where the Dirac operator D~ is defined in Eq. (4.3).
Prom this we see that the density of states for the bosons
are n+. With the result for fermions in Eq. (4.6), this
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gives ~B +~F +~GF+~gh(2) (2) (4.23)

dn~(A) dn (A)
dA 2 ( dA dA )

'

~ h = c(B„O"—2e lgl )c. (4.24)

The ghost Lagrangian &om the gauge fixing is given by

and hence the mass correction becomes

AM =) ~~ —)
1 „fdn+ (A)
2 i dA

dn (A)r ~
dA

(4.18)

(4.19)

We can perform the integration by calculating the density
of states &om the phase shift. This method is summa-
rized in Appendix C and we get zero for the value of the
above integration.

Evaluation of the integrand can also be done with the
help of the index formula [20]:

) ~B ) ~8/+ ) ~bA+ + ) ~bAo + ) ~81V

—) (4.25)

The equations for the fermionic modes are the same as
before. For the equations of the bosonic Huctuations,
those for bA+, bP, and bK are the same as before in (4.10)
and (4.11). The equations for bA which are dynamical
in this gauge and the ghost field c are exactly same as
that of field SN in (4.12). Hence the contribution from
the bosonic fields and ghosts is given by

= ).~ay+ ).~a~+. (4.26)

I(z) = Tr
(z+ D+DF z+ DzD&)

z (dn+(A) dn (A) )
z+A q dA dA

(4.20)

The index is easily calculated and the result is 2n. For
the index to be independent of z, the integrand in the
above should be

dn+(A)
dA

dn (A)
dA

(4.21)

By plugging this result into the Eq. (4.19) we see that
the mass correction to the vortex in N = 2 model at the
one-loop level vanishes:

LM =0.
This result agrees with Ref. [25].

As a check for the independence of the choice of the
gauge, let us describe this in the covariant gauge. We
choose the background gauge by adding the following
gauge-fixing term to the Lagrangian:

with

(4.27)

(2i—'
—2 —„(21@1'—v') )

(4.28)

The equations of bosonic Huctuations can be obtained in
a straighforward way from the Lagrangian (2.5):

We have used the fact that the contribution to the mass
from the ghost fields and that &om fields bN and bA.
cancel out since the equation for the ghost fields are the
same as those for fields blV and bA in Eq. (4.12). We
have shown that the only contribution comes &om bA+
and bP. Since equations for these fields are the same as
those in the Coulomb gauge, the remaining arguments
are the same as before and so we get the same result for
the mass correction for the vortex.

Now consider another extreme limit of the Lagrangian
with K ~ oo. The equation of motion of the fermion
modes is

CGF = —-' IB„bA" + ie(p'bp —Qb(t*)j (4.22) Ke"""B„bAq —2e lgl bA" —ie(Q*D"bg+ bP*D"P) = 0

The equations for the modes in this gauge are then ob-
tained from the quadratic pieces of the Lagrangian by
adding: and

(4.29)

Dpb'P+ ie(2bA Dp+ OpbA )(t = D; bP —ie(hA'D;P+ D;bA'P)
4 e4——,(914I' —»'l(tl'+ v')b4 — ,0'bc*(6IPI' —4—v'). (4.30)

We choose the gauge for the spatial gauge fields as

V';bA'+. 2i—(2IPI —v )(P*bP —PbP')

($*0 bP —0 bg'P—)—. (4.31)

The zeroth component of Eq. (4.29) and the gauge-
fixing condition (4.31) can be combined into the complex
equation (and its complex conjugate)

e3 2
c) hA++ 4i —(2lgl —v )P*hP —2i lgl Q-

= 2 —$*c)phd, (4.32)
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where

Q = »' + (0-*h4 + h4*4) (4.33)
BphA+ ——»—' I&l'bA+ —2 '&—'D+h&. (4.40)

We will show that the gauge-fixing condition and the
above equations of motion gives bA so that Q in the
above equations is zero, and bA is fixed as

hA = — (P'bP—+ bP'P). (4.35)

To show this we first rewrite the equations for the scalar
field (4.30) using the gauge-fixing condition and Eq.
(4.32) as

Bphg = D D+bP —4—(2lgl —v ) bg

i eh A+ (D —P)

+ie (lP—l' —v')B hA+ —iePBpQ.

(4.36)

(4.37)

Comparing this equation with the equation obtained by
taking the time derivative of Eq. (4.32) we get

The spatial component of Eq. (4.29) can be written as

2

BpbA+ + 2i lPl hA—+ —2 P*D—+hP+ B+Q = 0. (4.34)

And they can replace the set of Eqs. (4.30), (4.32), and
(4.34). The imaginary part of Eq. (4.39) is nothing but
the gauge-fixing condition in Eq. (4.31). We can also eas-
ily see that the two equations (4.39) and (4.40) with bAp
given as in Eq. (4.35) imply the equation of motion of
the scalar fiuctuation in Eq. (4.30). Hence the physically
relevant bosonic Huctuation modes are described by the
above two equations.

To compare these equations with the fermionic modes
we write Eqs. (4.39) and (4.40):

~ bA+ ~ bA+"*l
) & 4 )

(4.41)

Note that this equation has precisely the same form as
that for the fermionic modes in Eq. (4.27). This means
that the density of the modes as well as the spectrum
of the bosons are equal to that of fermions. Hence the
quantum correction for the mass of the vortex vanishes
identically.

Finally, let us consider the general case with finite v.
The equations for the the bosonic Huctuation fields are
given in Eq. (3.4). We have to fix the gauge to eliminate
those Huctuations corresponding to the gauge transfor-
mation. We choose the background-type gauge condition

V'Q =—V' hA'+ (P*bP+ b—P*P)
l

= 0,
K

(4.38)
B,bA* + Kh&+ ie(/*be —PhP*) = BpbN, —(4.42)

2

P'Bphg = —B bA++ 4i (2lgl —v )P*h—g2e K

and

(4.39)

hence Q = 0. Equations (4.32) and (4.34) then become where bT satisfies the equation

Bpb& —e;~B;bA, —KbN —e(P*bP+ PbP') = 0. (4.43)

The equations of motion in Eq. (3.4) with the help of the
gauge-fixing condition in Eq. (4.43) can be written as

(Bp + D D+ —2e lPl )bP —2ieA Bpbg —ieD pbA+ —KebNQ+ 2eA P(hA —bN) +ierPbX = 0,

(B,' —2e'lyl')hA (r. + Bo)bN e(K+ 2eN)($ bP+ bP 4') = 0

(B„B"—2e lPl )bA+ + rB+hX+ir(B+bN + BpbA+) + 2ie(D P)*hg = 0,

(B„B&—~' —2e'lyl')hN —e(~+ 2eN)(y*by+ yes*) = 0.

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

+ie~P(bX+ibN) —ieD PbA+ ——0, (4.50)

We compare Eqs. (4.45) and (4.47) to get

(B; —2e lPl )(bA —bN) = 0.

Then

bA = b¹
This relation reduces (4.44) and (4.46) in the form

(—B + D D+ —2e lPl )bP —2ieNBpbg

(—B,' + 9' —2e'lPl')A+

+irBphA+ + rB+(b&+ ibN) + 2ie(D P)*hg = 0.

(4»)
We have a set of Eqs. (4.50), (4.51), and (4.47) which are
supplemented by the gauge condition (4.42) and (4.43)
or

(Bp +i~)(bW+ibN) +iB bA+ —2eg'hP = 0 . (4.52)

We now turn to the Dirac equation given in Eq. (3.5).
We can remove @g &om this equation by using the first
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line of that equation:

(4.53)

Then we have

(—Oo + D D+ —2e ~P~ )g~ —2ieNQ~ —y 2e(D P)yt

+~2ier, pyg = 0 (4.54)

and

(—~o + & —2e ~y~ )Xg + i&&OX/ —v 2e(D y)*q—$

+i~B+yg = 0, (4.55)

together with the last line of the Dirac equation:

Ooyg —v 2eg*gg+ 0 yg+ivyg = 0. (4.56)

Comparison of bosonic equations (4.50), (4.51), and
(4.52) with fermionic equations (4.54), (4.55), and (4.56)
gives us the relation

(4.57)

Note that this identification was pointed in Ref. [14] for
the zero mode case. Here we show that the identification
holds also for nonzero mode. The number of fermion
states nF is simply related with the sum of the phase
shifts of gt, @g, y~, and g~. In Appendix C we will show
that the sum of phase shift of g~ and yg is equal to the
sum of phase shift of @g an.d yt. Therefore

(4.58)

For the bosonic case, the physical degrees of freedoms are
bg, 8N, and 82+ where the gauge degree of freedom is
subtracted. However Eq. (4.49) says that BohN = iw6N
(assuming the time dependence as e '

) is nothing but

V', hA' —i Kh&+ i e(/*be —p8p') = ~bN, (4.59—)

n~ ——nay + ng~ (4.60)

and so we get

(4.61)

Therefore there is no mass correction:

AM =0. (4.62)

V. SUMMARY AND DISCUSSION

We have studied various quantum aspects of the N =
2 supersymmetric Maxwell Chem-Simons theory. First

which is a gauge degree of freedom. So we assert that,
as in the case of r = 0, we would subtract bN instead
of subtracting the gauge degree. Then bosonic degree of
freedom is given by hP and hA+. Then

we identified the mass spectrum, the spin contents, and
the supermultiplet structures of the particles both in the
broken and the unbroken sectors.

Then, we analyzed the vortex sector, the main subject
of this paper. Starting from the canonical angular mo-
mentum we evaluated the leading quantum correction to
the classical value of the angular momentum of the vor-
tex coming from the fermion zero modes. For the super-
multiplet structure of vortices, fermion zero modes play
an important role. The algebra by the operators of the
fermion zero modes around the winding number n = 1
vortex is larger than that of the N = 2 SUSY algebra
with the central charge. They provide two supermulti-
plets with the relative spin difFerence half, rather than
single supermultiplet. This is in contrast with the case
in the monopoles in the 3+1 dimensions or kinks in the
1+1 dimensions. The fermion number of the vortex is
also calc ulated.

Leading quantum correction to the mass of the vortices
is calculated separately depending upon whether v = 0,
r = oo, or Gnite v. The mass correction can be obtained
either through the index theorem or by comparing the
modes between bosons and fermions. In all cases we do
not see any mass correction.

Self-duality is deeply related to the underlying super-
symmetry. Here we have considered only N = 2 super-
symmetric model. For the model with N = 1 supersym-
metry that allows self-dual vortices is not treated. We
expect mass correction in this model since we do not see
any simple way of matching the bosonic and fermionic
contributions.

In the models with the self-duality, the mass of the vor-
tex will be simply related to the magnetic fIux of the ob-
jects at the tree level. An interesting question is whether
this so-called Bogomolnyi bound will still be saturated
at the quantum level. There are some models in two and
four dimensions known to satisfy the Bogomolnyi bound
at the quantum level [26,18]. To show the saturation at
the quantum level, Olive and Witten [26] used the argu-
ment that the size of the supermultiplets for particles and
solitons cannot change abruptly by perturbation. This
argument seems not to be directly applied in our case.
First, we do not have any self-duality for particles since
we do not have any conserved charge for the particles
in the broken sector. In the vortex sector, for the sin-
gle vortex with the winding number 1 to be specific, we
have four degenerate vortex states from two fermion zero
modes. These form two irreducible supermultiplets of
size two with the Bogomolnyi bound saturated. If the
bound is not saturated, we might have only one super-
multiplet of size four. Whether the bound is saturated
or not, the total size of the states remains the same.
On the other hand, in those models in other dimensions
mentioned above, the supermultiplets of the degenerate
solitons form single irreducible representation of the su-
peralgebra with the bound saturated. If the bound does
not become saturated by the perturbation, we need more
states, which is unlikely. This is the difference between
our models and those in other dimensions. This diKer-
ence is related to the fact that all the fermion zero modes
in our case do not come from the supersymmetric trans-
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formation of the vortex for winding number one unlike
those other models.

One way to check the saturation of the bound at the
quantum level is to calculate directly the quantum cor-
rections in Eq. (2.17). We have shown that the leading
quantum correction to the mass vanish. The magnetic
8ux on the right-hand side of Eq. (2.17) may not get any
quantum correction. We still need the quantum correc-
tion to the coupling constants in the presence of the vor-
tex background to check the validity of the quantum Bo-
gomolnyi bound. This is quite an interesting open prob-
lem. For some quantities for the particles in the vacuum
sector, there exist some perturbative calculations [29].

In the derivation of (A4) we solved the Gauss law for A
as

A = —V;~; + —e;~ V', A~ = —Q—V'2 ~x + —(P

(A5)

By varying the Hamiltonian we can write the equation of
motion as

( 7l&/K )
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APPENDIX A: SPINS

V —p2 2 Ic
2

p + 4 p2 ~ ( 7rx/K )I
(A6)

with

K
'7r~ + X = V'~

2

K K
p + —

I g + —7r~ = —7rx . (A7)4 2
o' x

Note that the usual notions of variable and conjugate
momentum for y and 7r~ has been reversed. The mass
matrix on the right-hand side of (A6) has two eigenvalues:

l: = — F„„F"+ e—" "F„„A),—— IJ, A„A" . (—Al)

This may be considered coming from the spontaneously
broken theory of the Maxwell-Chem-Simons Higgs in the
unitary gauge. The canonical variables of this system are
A; and 7r, = Eo; + 2 e;~A~. We separate the longitudinal
and transverse components using the identification

A = E'x2 V2p

~; = e,~V'~sr~ —V';sr~,

(A2)

(A3)

with the abbreviation V'; = V';/g —V'2.

With these new degrees of &eedom, p, y, sr~, and vrz,
the Harniltonian density for the system in (Al) is written
as

In this appendix we will describe how to determine the
spin of elementary excitations. The spin of the fermion
coupled with the CS field was considered in Ref. [27].
It was found that the fermions carry spin +1/2 and the
sign of spin is determined by the sign of the mass term
in the Lagrangian. The spin of vectors in the case of the
unbroken Maxwell CS gauge theory was considered in
Ref. [2] while that of broken CS theory considered in Ref.
[28]. In the following we will describe how to determine
the spin of gauge Geld of the Maxwell CS gauge theory
in the broken phase.

We start &om the Lagrangian

2 K
m~ = p'+ —+ lr.

l
p'+ —.

2 4
(A8)

Now, we consider the generators of the Poincare algebra.
The Hamiltonian is the integration of its density (A4).
The momentum is

1(P' = d x yV'; j + —vrx+ —(P V',

(A9)

The angular momentum is

2 . 1 . KJ = — d e; x' pV'. p+ —vr2 2 2 x 2

x V'~ 7r~ + —p (Alo)

This means that p and vr„behave as spin-0 fields. How-
ever the boost generators have an in&ared problem which
was expected from the decomposition, and removal of
this infrared divergence will fix the spin, as first noted in
Ref. [2]. After some manipulation we have the following
expression for the boost generator:

7I(p + —g + — 7rx ——p + —(9 ip)2I ~ 2) 2 x 2 2 v,
sr~ + —y ~~ p2 ) —V2

, (+——,4—&' ~ + —
V l

+ —V'(V'+X'). (A4)
2 p ( 2 ) 2 The equation of motion (A6) can be rewritten as

(All)
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2( V'
lq (~x+ -". ~)/~)

with

tT~ = (I, 0's, 0'i )

(A12)

We can diagonalize the matrix on the right-hand side by
the new fields ( and q:

(m' —&')/m+ ~
!pK/K )
(A13)

with two suitable normalization constants N~ and N
With the new degrees of freedom ( and g the generators
of the Poincare algebra have the form

d'x (' ~ g' ~ (V';()' y (V';g)'

We work in the Majorana represention and Q corre-
sponds to the real spinor in SL(2, R) in this appendix.
The index A, B denotes the indices for the extended alge-
bra. In the case of N = 1, we have only one supercharge
Q . In the massive case (this is sufficient in our analysis),
we can take the rest frame and the algebra becomes

Introducing a = (Q —iQ2), at = i (Qi y iQ2),
we get the algebra

(a, at) = 1 (a, a) = 0 (at, at) = 0 .

We can construct the Clifford vacuum !O(j)) with spin j
by setting a!O(j)) = 0. The angular momentum operator
will then be realized as J = grata in this representation.
We will then have two states, i.e. , !A(j)) with spin j and
at!Q(j)) with spin j+ 2. To verify this last fact we note

[~q ]=-,'Q-

ym2+(' q m' q' (A14)
and hence

[J,a] = —-'a, [J,at] = -'at. (B6)

d'x (V,(y rIV';i)

J = — d xx'e;~ (V', (+ jV',

(A15)

(A16)

We now turn to the case of N = 2 without the central
charge. The indices A and B will run from 1 to 2. In
this case we can rewrite the algebra in Eq. (Bl) as

B' = d x x'R y mg(e;, . ( —m jr~ 2q
2 i

(A17)

(Q, q*~) = 2o„P". (B7)

with the complex notation Q = ~i(qi —iQ2). By
de6 ning

with m~ —— m+ —— p + —" + &. Note that in all

formulas, ( and g have the same contribution except for
B; where the signs of infrared singular terms are opposite.
By direct application of the argument in Ref. [2], one
can show that after removing the infrared singularity the
angular momentum generator (A16) has additional terms
which are propotional to + and —,respectively.Im+ I Im
From those terms we can determine the spin of ( and i1

as +1 and —1.

we get the algebra

(ai, a, ) = (a2, a2) = 1,

(Q* —iQ *),
(B8)

AP PENDIX B: SUP ERMULTIP LETS (ai, a2) = (ai, a2) = (ai, a2) = (a2, ai) = 0, (B10)

(Q~, Q~~) = 2cr„~bg~P" (B1)

In this appendix we will describe the supermultiplet
structures. We will consider both the particle and vortex
supermultiplets. The structure will depend on whether or
not we have the central charge. In the case of the vortices
or the symmetry unbroken sector of the vacuum, we will
have the central charges while in the particle spectrum in
the symmetry broken sector we have no central charges.
For simplicity we start from the SUSY alsgebra without
the central charge

and

[J,ai] = —
—,'ai, [J, a2] = —,'a2.

Based on the algebra, we have four states:

(B11)

(1~1(j)) ail~(j)) a2I~(j)) aia21~1(j))) (B12)

with angular momentum (j,j + —,j ——,j).
Now consider the supermultiplets in the presence of

the central charges. The central charge changes the su-

p eralgebra
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(Q, Q'~) = 2a„~P" —(0.2) ~2C case. Rewrite the Dirac equation in (3.10) as

with C = ev4 in our case. In general M & C, and the
size of the supermultiplets are the same as the massive
case without the central charge unless the equality in
the above is saturated, where the size of the supermulti-
plets will be reduced. In the model we are considering,
there will be the central charges for both topological and
nontopological vortices and also for the particles in the
symmetry unbroken vacuum sector. In all these cases the
central charge will be equal to the mass. To see how the
supermultiplets are reduced in these cases we de6ne

at =1

(B14)

The superalgebra in Eq. (B13) will then become

, h4(.)) =

and

( hs(r) )

+ a+j+1/2

/ h, (r) &

hs(r)

( ~ a+j —1/2

fh, (.) l
( h4(r) )

f l r h1(r) )
g '- / ~h, (.) )

(Cl)

f —) ( h2(r) l
hs(r) )I

(C2)

(B15)

Other anticommutators vanish. The operators a1(a1)
should then be realized to be zero. Therefore we have
only one pair of creation and annihilation operators and
hence two states (not four) (!A(j)) and a2!O(j)) with
angular momentum j and j ——.

L,
( h1(r) il = "' l~ h'(r) l
( h4(r) ) ( h4(r) ) (C3)

We have set f' = ~2ev f and dropped the prime for sim-
plicity. From these erst-order differential equations we
get the second-order equations

APPENDIX C: PHASE SHIFT ANALY'SIS

In this appendix we will describe the phase shift anal-
ysis used for the mass correction. First consider r = 0 where

, f h, (.) & , / h, (.) l~~
&

h, (.) )
= , h. (.) )

(C4)

f g2 8„+a + (a+j+1/2) 0LtL = r
0 g2 & + 0—1/2) +f2)r r r2

(C5)

( g2 8„—a + (a+j —1/2) + f2LLt=
l

20,f
2a„f

S, + ('+1/2)' + f 2 )r r r2
(c6)

Note that LLt can be obtained by changing the sign of a
and j in L t L. The equations for hq and 64 are decoupled:

h4 ~ rl& 121 (C9)

/'
2 8, +a' (o, + j+1/2)2+ + 1 ~ 1r r

In the asymptotic region of r —+ oo, the shape of solutions
are

and

(C7)
and

h. (r) - ~1&~j+1/2((~r) + P1~~j+1/2((~r) (C10)

l

—8, ——+ +f !h4=~ h4.(j —1/2)'
rr r

The functions will behave near the origin as

(C8)
h4 (r) ~4 J(j —1/2~ (~r) + P4~~j —1/2

~

(~r) (Cl 1)

with w = v'cu2 —1. The coeflicients of o. and P will be
determined to match the behavior near the origin (C9).
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The inBuence of the background vortex will show up
as a phase shift of the functions by comparing with the
no-vortex background case (a = 0, f = 1). The phase
shifts are given by

(C13)tan b (4) P4
0!4

The other two functions h2 and h3 are determined by

tan b,
(1) Pl (C12)

(h, (r) l 1 (h, (r) )
h3(r) ) i~ { h4(r) )

In the limit r ~ oo, we have

(C14)

6 h3(r) I
1

l

~ '+h'
h3(r) ) j~ q

c) h4 + hl )
1 ( —2 sin(ur —

~j + 1/2~ 3
—

4
—b ) + cos(ur —lj 1/213

ice
g

cu —sin(c3r —[j —1/2[) —
4

—b ) + cos(cDr —
/ j + 1/2/ 2

——, —h, ))(~) (C15)

First, consider the case with j ) 0. The phase shift is
given by

( h, (.) l
( h3(r) )

1 ( —ur sin(R —h ) + cos(R —h. +. 2)
(4)( —csin(R' —b. ) + cos(R' —b. —z) )

(i)

R" =u r + (j+ 1/2) ———,
2 4'

R = ur + (~ —1/2) ———= R + —.If/ 7r 7r /I 7r

4 2

The phase shift will then be

(2) (,) sin(h, —6. )
(4) (~)

tan(h, . —b,. ) =
~ + cos(b. —h. )

(C21)

(C22)

(C16) and

with

7r
R =or —(j+ 1/2)—

2
R' =u r —(j —1/2)—

2

Then the phase shifts become

7r

4'
7r 7r—=B+—
4 2

(C17)

(3) (4) sill(h —b . )
(4) (i)

tan(h, —b, ) =
2+ cos(h, —b )

(C23)

Prom the above equations, not depending on the sign of
j)

and

(2) (,)
sin(b —h )

(4) (~)

tan(h, —b, ) = — '
(4)

'
(,)u+ cos(h, —b,. )

(C18) hence

tail(b, ') —h,.
'

) = —tail(h ', —b(', );

$(2) h(l) ($(3) $(4)
)2 2 2 3

(C24)

(C25)

() (4) sin(b, —h, )
(4) (~)

tail(h —h )= — ' {) '
(,)2 —cos(b. —h. )

(C19)

For the case with negative j, the phase shift will be

So, for Gxed ~,

) -(b(2) + h(3)) ) -(h(l) + b(4))

) -($(&) h(i)) + ) ($( ) h( )) () (C26)

—w sin(R'" —b' )
) + cos(R"' —b . + z ) )

Prom the relation between the phase shift and the density
of states [24] we get

(C20)
7l+ A (C27)

with
We turn to the case with 14 g 0. The equations for h3

and 63 are
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a, +a'
0~ + (a+ j —1/2)2 + (u —f —2(uN—

r2 f h, + 1 ( 1
8, + —(a+ j+ -')

(d —K ( 'P

2af 6, =0

(C28)

and

t9„+a'
7 +

2af-+

(j + 1/2)' + ((u —K) — 1 —— f hsr

~(ci„——(a+ j —-')
~ h2 ——0 . (C29)

Cd P 2

h4 —— t9„+ (j +—2) hs —fhz, (C31)
Z M —K P

unless cu = 0 and u = K,.
Following the steps for the case of v = 0 we get the

result

(C32)

0, ——(a+ j —-', ) h, —fh,
'LQJ P

(C30)

By solving these two coupled equations, we can get 62
and h3. h~ and 64 are Gxed by which is similar to Eq. (C27).

There may exist a solution to the Dirac equation in
(3.10) for the threshold value of ~ = K. But this gives us
a discrete modes which does not contribute to the mass
correction.
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