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We study the nonequiiibrium evolution of the expectation value of a scalar field in the broken and
unbroken symmetry cases. We find that the particles produced by parametric amplification give rise
to dissipative behavior for this mode. However, a I'4'i type of term cannot account for the dissipational
dynamics. We are able to show clearly that perturbation theory breaks down at late times, so that
dissipation in field theories can only be understood nonperturbatively. When Goldstone bosons are
present we find infrared divergences that require a nonperturbative resummation to describe the
long-time dynamics. We use the Hartree factorization and the large N approximation to the O(N)
linear o model to numerically as well as analytically understand the long-time behavior of the zero
mode as well as that of the produced particles. The O(N) model case is extremely interesting since,
in the spontaneously broken case, the radial mode dissipates all of its energy into production of long-
wavelength Goldstone modes. The minima of the effective action (determined by the final value of
the expectation value of the scalar field) depend on the initial conditions.

PACS number(s): 11.15.Tk, 05.40.+j, 11.10.Ef

I. INTRODUCTION

It is well appreciated that the dynamics of dissipation
in scalar Geld theories is of great importance in a variety
of settings. One of the most interesting of these is that of
the reheating of the Universe after an inHationary epoch
has passed [1,2]. Recall that at the end of new or chaotic
infiation [3], defined by when the slow-roll conditions for
the so-called infiaton field [4, 5], P(t), fail to obtain, the
inHaton begins to oscillate about its true ground state.

Since the infiaton is coupled to lighter fields (fermions
or other scalars), as the scalar field oscillates around the
true minimum it decays into these other particles, and
eventually these particles thermalize via collisions and
relax to an equilibrium state at high temperature. It is
usually stated that such coupling gives rise to a term of
the form I'P(t), where I' is the decay rate of the infiaton
into the lighter fields [6, 7]. This term, which is usually
put in by hand as a phenomenological result of the ex-
istence of open decay channels, acts as a friction term
in the equation of motion for the inBaton, and converts
the inQaton energy d.ensity into that of the lighter par-
ticles during its oscillations. These decay products are
then supposed to thermalize, completing the reheating
process [6, 7].

This picture bears closer scrutiny. Two questions that
must be addressed are: (i) how does a time reversible
theory generate dissipative dynamics, and (ii) can the
phenomenological term I'P(t) be derived from first prin-
ciples~

The answer to the first question is relatively well
known. To generate dissipative dynamics &om a time
reversible theory requires that some "coarse graining" of
the Geld d.egrees of freedom be done. Essentially, one
must trace out (in the functional integral) degrees of free-

dom other than the one that has been deemed important
to the dynamics. The tracing operation turns a closed
system (that of all the field modes) into an open one
(that of the field modes of interest) where the traced out
modes now become the "environment" which couples to
the remaining modes. Another important necessary in-

gredient is nonequilibrium initial conditions.
As envisaged in the original scenarios, the process of

reheating consists of two different stages. During the
Grst one, the potential and kinetic energy of the scalar
Geld. is dissipated by the process of particle production.
After that, or perhaps simultaneously with the Grst stage,
the produced particles interact and thermalize after some
time, reaching a Gnal equilibrium temperature.

Although of definite interest for the reheating mech-
anism in inHationary cosmology, the issue of dissipation
and thermalization is of much broader interest. In par-
ticular, similar issues must be addressed. in heavy ion
collisions and in general during phase transitions out of
equilibrium. Our study of dissipation here is not conGned
to cosmological scenarios but tries to address the broader
issues.

What we want to understand in this article is the dy-
namics of dissipation via particle production in an a pri-
ori fashion, i.e. , how to incorporate the effect of quantum
Buctuations into the dynamics of the time dependent or-
der parameter.

Our approach is as follows. Starting &om a renor-
malizable self-interacting scalar Geld theory we isolate
the expectation value (which by translational invariance
only depends on time) and generate its equation of mo-
tion taking quantum Auctuations into account. Since one
of our direct motivations is to study reheating after an
inQationary epoch, we treat the dynamics at zero tem-
perature, since the temperature is supposed to have red.—
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shifted all the way to zero during the inflationary stage.
What makes our approach different from others that

have been proposed (see below) is that we are not con-
sidering an "in-out" expectation value, such as would be
generated by the usual method of constructing the ef-
fective action. Rather, we use a method that generates
the equations for an "in-in" expectation value of the Beld
operator. This ensures that our equations of motion for
the field expectation value are both real and causal. This
has been done by others, most notably by Calzetta and
Hu [8] and Paz [9].

After obtaining the renormalized, causal, and real
equations of motion that determine the dynamics we pro-
vide an extensive numerical analysis of the equations.

The results from our analysis are quite interesting
and we summarize them here. The equations of motion
are rather complicated integro-differential equations con-
necting the Beld expectation value to the fluctuations of
the nonzero momentum modes. We begin by obtaining
the equations of motion in an amplitude expansion as
well as in the loop expansion up to one loop. After rec-
ognizing the "dissipative terms" in these approximations,
we find that these cannot be simply replaced by a term
of the form I'P(t).

In the case where there is nc symmetry breaking, we
generate the efFective Langevin equation for the system,
in the one-loop approximation, and we Bnd a multiplica-
tive, non-Markovian kernel for the dissipational term as
well as a "colored" noise term. Thus this is very difFerent
from the simple friction term described above. In fact,
it is easy to see that there is no limit in which the dis-
sipational dynamics we Bnd can be described by a term
proportional to the time derivative of the Beld.

In the case in which a discrete symmetry is broken, so
that there are no Goldstone modes, the one-loop equation
can be linearized in the amplitude of oscillations about
the nonzero expectation value of the field. Even in this
linearized approximation, while a term involving the first
time derivative of the field does appear, it is convolved
with a nontrivial kernel, that again has no limit (at zero
temperature) in which it becomes a local term.

We show that the loop expansion or the amplitude ex-
pansion for the dynamics of the field expectation value
must break down at long times. In the loop expansion,
the order 6 term has an amplitude that grows in time due
to resonance phenomena induced by the existence of a
two-particle threshold. Thus, it will eventually dominate
over the tree amplitude, and perturbation theory will
then break down. Dissipation can only be understood
beyond perturbation theory. We then use the Hartree ap-
proximation in the single scalar Beld case and the large-
N approximation in an O(N) symmetric theory to try
to understand the efFects of quantum fluctuations on the
oscillations of the field expectation value as well as parti-
cle production due to these same oscillations. Although
in inflaton models of reheating there are no Goldstone
bosons, the physics of dissipation via particle production
is of much broader scope and we studied these processes
in presence of Goldstone bosons.

The Hartree approximation reveals dissipative efFects
due to particle production and open channels. How-

ever, we find that the damping is not exponential, and
asymptotically, the field expectation value undergoes un-
damped oscillations with an amplitude that depends on
the coupling and the initial conditions. The same fea-
tures are found in the large N limit in the O(N) model
in the case of unbroken symmetry. Here we find that
the asymptotic oscillatory behavior can be expressed in
terms of elliptic functions.

The dissipation in the system is caused by a collision-
less type of process, reminiscent of Landau damping [10].
This process is a result of particle production arising from
oscillations of the Beld expectation value via paramet-
ric amplification. These quantum fluctuations then react
back on the Beld expectation value, but not in phase with
it, thus damping the oscillations. This behavior is similar
to that found in the damping of strong electric fields in
a collisionless regime [11].

An unexpected and quite remarkable result comes from
the analysis of the O(N) model in large N when the sym-
metry is spontaneously broken. We Bnd that the field ex-
pectation value oscillations are damped very quickly in
this case, much more so than in the unbroken situation.
This by itself is perhaps not so unusual, since the exis-
tence of Goldstone modes allows the field to lose energy
by radiating a large number of soft Goldstone particles.
What is unusual, however, is that there are some initial
conditions, corresponding to "slow-roll" behavior [4], for
which the field expectation value relaxes (via dissipation)
to a value that is very close to the origin. This final value
is a minimum of the efFective action for which the expec-
tation value of the scalar Beld has moved very slightly
from the initial value. Most of the potential energy is
converted into long-wavelength Goldstone bosons. Thus
the symmetry-breaking phase transition is actually dra-
matically modified by the dissipational dynamics. These
initial conditions are generically "slow-roll" conditions in
which the scalar field begins very close to the top of the
potential hill and the couplings are extremely weak (in
our case about 10 7-10 ~2 ). This is one of the most
striking results of this article.

We provide extensive numerical evidence for all our
assertions; we can follow the evolution of the field expec-
tation value and the quantum fluctuations, and we also
compute the number of particles created via the method
of Bogoliubov coefIicients.

In the next section we provide an outline of the formal-
ism we use to generate the equations for the expectation
value of the scalar field that include the efFects of the
fluctuations of the quantum fluctuations. We then in-
vestigate the meaning of these equations within the one-
loop and the amplitude expansions. In Secs. III and IV
we utilize nonperturbative approximations such as the
Hartree approximation and the large N approximation
in the case of the O(N) model to perform our numerical
calculations. After this analysis, we reconcile the dissi-
pative dynamics that we find with the concept of time
reversal invariance.

Section V contains our conclusions, in which we com-
pare our results to other results on dissipation and re-
heating obtained in the literature.
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II. NONEQUILIBRIUM FIELD THEORY
AND EQUATIONS OF MOTION

The generalization of statistical mechanics techniques
to the description of nonequilibriurn processes in quan-
tum field theory has been available for a long time [12—16]
and there are many clear articles in the literature us-
ing these techniques to study real time correlation func-
tions [8, 17—22] and effective actions out of equilibrium
[9, 23—25]. This formulation has already been used by
some of us previously to study the dynamics of phase
transitions [28].

In our analysis we will take the P -+ oo limit (zero
temperature) following the argument provided in the In-
troduction. We will also limit ourselves to a Minkowski
space-time rather than expanding Friedmann-Robertson-
Walker (PRW) space-time by considering phenomena
whose time variation happens on scales much shorter
than the expansion time H of the universe, where H
is the Hubble parameter.

A. Equations of motion

The method described in Ref. [28] allows the derivation
of the effective equations of motion for a coarse grained
field. To focus the discussion, consider the situation of a
scalar field theory with Lagrangian density

B. Amplitude expansion

Diacv'ete syvnm, et''y

We treat the term P (t)(Q+) as perturbation, along
with the linear, cubic, and quartic terms. The conditions

(& (*,t)) =o (4)

will give rise to the effective nonequilibrium equations
of motion for the background Beld. This is the general-
ization of the "tadpole" method [30] to nonequilibrium
Beld theory. Since the mass of the Huctuations is the
bare mass, the essential ingredient for the nonequilibrium
propagators introduced above are the spatial Fourier
transforms of the homogeneous solutions to the free-Geld
quadratic forms:

sorbed into a time-dependent mass term for the Huctua-
tions, if one wants to generate a loop expansion. We will
now study both cases in detail.

egg @ 2@2 @4=2-"
2 4.

The "coarse grained" field (order parameter) is defined
as

G~(t t ) = ~ e'~" ~"
2(dy

~I, ——gk2+ m2

where we have used translational invariance. We write
the field as 4(x, t) = P(t)+Q(x, t) with vP(x, t) the fjuctu-
ations, obeying (@(x,t)) = 0 and consider P(t) as a back-
ground field in the evolution Hamiltonian. The nonequi-
librium generating functional requires

To O(gs) the diagrams are shown in Pigs. 1(a)-l(h).
Since the (++) and the (——) propagators are indepen-
dent, the diagrams 1(a)—1(h) finally lead to the equation
of motion

&[&+@+1—&[&+& ]
= —&++ &oW+]

bd

2 + 2 + 3
—A +

4 6

(b)

+( ) (@+
+41

with Zo[g+] the &ee field Lagrangian density of a field
of mass m. . We can now "integrate out" the Buctuations,
thus obtaining the nonequilibrium effective action for the
"coarse grained" background field.

The linear, cubic, and quartic terms in @+ are treated
as perturbations, while the terms P (t)(@+) may either
be treated as perturbations, if one wants to generate a
perturbative expansion in terms of the amplitude of the
coarse grained Geld, or alternatively, they may be ab-

(c)

(e)

+

/+
/

FIG. 1. Diagrams contributing to the equation of motion
up to one-loop order, and in the amplitude expansion up to
O(P').
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3 A d3k 1 A2
~(t) + ~(t) + —~ (t) + —~(') ——~(t)

6 2 (2~)s 2(ui, 4

dsk sin[2~k (t —t')] = 0.
(2vr)' 2(u„'

Notice that the diagrams of Figs. 1(e) and 1(f) contain the one-loop two-particle threshold typical of the two-particle
to two-particle scattering amplitude. The last term in (5) is the real-time expression for this one-loop contribution.
We can perform an integration by parts in the time integral, discarding the contribution at t = —oo by invoking an
adiabatic switching-on convergence factor to obtain

d A: 1

(27r) 2coy 4

dt'P(t') P(t')

The fourth term in the above equation is recognized as
a mass renormalization and the fifth term as the cou-
pling constant renormalization. Using a Fourier expan-
sion for P(t) and its derivative, it is straightforward to see
that after integration in the time variable, the remaining
integration in k is ultraviolet finite. There are several
noteworthy features of this expression that point to a
more complicated description of dissipative processes in
field theory. The first such feature is an expected one.
The "dissipative" contribution, that is, the last term in
the above equation, has a non-Markovian (i.e. , memory-
retaining) kernel. Secondly, the equation is nonlinear in
the amplitude of the coarse grained variable. These fea-
tures are in striking contradiction with a simple I'P term
in the equation of motion. Originally [7] such a term was
argued to arise if the scalar field in question is coupled
(linearly) to other fields in the theory and truly speaking
such a situation does not arise within the present context.
However, the issue of a memory kernel (non-Markovian)
is quite general [26], and a legitimate question to ask is:
is there a Markovian (local) limit of this kernel? Such a
limit would imply that

2. Broken 8yrnmetry

2

b+ 2p~b+ AR
3~R

2
dt' h(t')

In the case of unbroken symmetry, the above equation
of motion does not admit a linearization of the dissipative
contribution. However, in the case when the symmetry is
spontaneously broken, such a linearization is possible [9].
In this case let m = —p, and let us look for small oscil-
lations around one of theeninima. To achieve this, write

P(t) = /6pz/A + 8(t). The mass term for the fluctua-
tions now becomes 2p, and we will only keep the linear
terms in h in (3). We now follow the steps leading to the
equation of motion obtained before. That is, (@ ) = 0 is
imposed to one-loop order. After integration by parts in
the time integral (again with an adiabatic switching-on
convergence factor), there appear several tadpole contri-
butions. Those that are independent of b renormalize

Po corresponding to a shift of the position of the vac-
uum expectation value, while those that are linear in b

renormalize the mass. We thus obtain in the linearized
approximation

K(t —t') = Dh(t —t')

with K(t —t') being the nonlocal kernel present in the
last term of (6). However, we find that at small (t —t')
the kernel has typical logarithmic divergences.

If a local approximation were valid, the "dissipative
constant" D may be found by integrating the kernel in
time. A straightforward calculation shows that infrared
divergences give a divergent answer for such constant,
clearly indicating that there is no Markovian limit for
this kernel. In Ref. [24] a Markovian limit was argued to
be available in the high temperature limit; since we are
working at zero temperature the approximations invoked
there do not apply. Thus, this lowest order calculation
reveals two conclusive features that will persist in higher
orders and even in nonperturbative calculations (see be-
low): the "dissipative contribution " to the equations of
motion obtained by integrating out the Quctuations are
typically nonlinear and, furthermore, they do not allow
for a Markovian (local) description. We will postpone a
numerical analysis of these equations until we study the
full one-loop equations of motion below.

(p(s) = e "8(t)dt
0

(9)

This solution corresponds to summing Dyson's series for
the propagator with the one-loop contributions depicted
in Fig. 1 (for the linearized case).

We find from Eqs. (8) and (9) after some calculation,

h, P
p s = —' 1—

s s2+ @2+G Z(s)
(10)

dsk cos[2~g(t —t')]
(2'�)' 2cu„'

with wi = /12 + 2p&. Here p~ and A~ stand for renor-
malized mass and coupling constant. This expression is
similar to that found by Paz [9]. In that reference the
short time behavior was analyzed. In order to solve this
equation for all times, we must specify an initial condi-
tion. We will assume that for t & 0 8(t & 0) = b, and
b(t & 0) = 0 and that Eq. (8) holds for t & 0 [31].

Under this assumption, the linearized equation can be
solved via the Laplace transform
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where p, = 2pR, G = 3p, /(4vr) AR and

f2pi'
Z(s) = 1 +

~

—
~

arctanh(sp

The Laplace transform exhibits the two-particle cut
[8, 9] in the analytic continuation of the transform vari-
able s and one-particle poles at the renormalized masses
s = +iM, where

p —M + GZ(iM) = 0.

That is,

M =p, —Gi1 — i+O(G).

The function 8(t) can be expressed as the inverse Laplace
transform of p(s) using Brouwer's inversion formula.
Upon deforming the integration contour, the one-particle
poles are explicitly computed by the residue theorem and
we find

b t =b, & cosMtP

( M M —
2 F'(iM)

r((u) cos((ut) d(u

~ ~ D(~)'+(—;)'r(~)' (13)

where

and

D(~) = p —cu + Gr(~) [arctanh r(~) —1].
For large t the integral in Eq. (13) is dominated by the
end point u = 2p and tends to zero as

f r(cu) cos(cut) d~

( )'+(—)' ( )'
~sr cos(2pt + 3n/4)

m 0. 144(pt)" (»'+ G)'

Hence, the change in the oscillation amplitude is just due
to the wave function renormalization that here is Z2 ( 1.
In other words, quantum corrections push down the P
amplitude.

We want to stress that Eq. (13) is more than a simple
perturbative solution.

A strict perturbative solution would be

h(t) = 8; cos[pt] + Mi(t) + A b2(t) + O(A ), (15)

where bi (t), h2 (t), . . . are A-independent functions. The
equation is then solved order by order in A. The corre-
sponding equation for bi(t) is now easily solved via the
Laplace transform. The transform exhibits resonances
at +p, and the large time behavior is dominated by the
secular term hi(t) t sin[pt]. This result also follows by
expanding Eq. (13) in powers of A.

Thus the conclusion from the perturbative series (15) is
that it is valid only for short times; the long time behavior
will not be captured by this perturbative approximation.
On the contrary, the solution (13) contains in fact an in-
finite (but partial) resummation of perturbation theory.
As we will see again below, some nonperturbative treat-
ment is always necessary in order to properly describe
dissipative behavior.

The solution (13) can only be trusted qualitatively
since the higher loop contributions [O(A ) and higher]
are of the same order as the contributions retained
there. Only through the 1/N expansion will we be
able to control quantitatively the eKects nonperturbative
in A.

The analysis provided in Refs. [8, 9, 23] in which a
dissipative behavior was observed also assumes implic-
itly such a resummation, because their solution contains
higher order terms in the coupling that are not warranted
in the approximation considered. Even in this case in
which there is an explicit linear velocity dependence in
the "dissipative kernel, " the same argument presented
before applies. There is no Markovian (local) limit in
which this term becomes simply I'b, despite the fact that
b has a linear coupling to the Buctuations.

8. Continuum symmetries and Goldstone bosons

We see from Eqs. (13) and (14) that P(t) = g6/A p+b(t)
oscillates asymptotically around a shifted minimum

+6/Ap —
i

—3 ih, +O(A )
( 5~

2 4~ '
with an amplitude 6, [1 —c A + O(A2) j and frequency M
[see (12)], where c = 2f4 l, ( ~ —3) = 2.18464. . . x
10 ) 0. We find that the amplitude of the oscillation
decreases when A grows.

In the present P4 model the wave function renormal-
ization is finite to one loop and takes the value

(Z2) ' = 1+cA+O(A ).

An important issue that we want to study in detail
in this article is the process of dissipation by Goldstone
bosons. As discussed in the Introduction, dissipation via
particle production becomes effective whenever the trans-
ferred energies become larger than multiparticle thresh-
olds. To lowest order, as shown in the perturbative cal-
culation of the previous section, the lowest threshold is
the two-particle one, at an energy twice the mass of the
particle. In the case of a spontaneously broken, contin-
uous symmetry, there will be Goldstone bosons and the
thresholds are at zero energy. In this case any amount
of energy transfer may be dissipated by the Goldstone
modes.

This efFect may be studied in the O(2) linear o model
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with Lagrangian density

8= —0 oB". o+ —8 7rci"~+ —p (o +z' )
1 1 1 2 2 2

P P 2

——,(o. +sr ) .
A

4I

We now write

o(x, t) = 6p2 + ~(t) + &(» t) (17)

and use the tadpole method to impose

(~(» t)) = o h(» t)) = o. (18)

Carrying out the same analysis in terms of Feynman di-
agrams to linear order in b(t) we find the following equa-
tion of motion (after integrating by parts invoking an
adiabatic switching on convergence factor and absorbing
the local terms in proper renormalizations):

be valid. Second and perhaps more important, the long
time behavior is clearly beyond perturbation theory as the
contribution from the nonlocal kernels is unbounded as a
result of in&ared divergences associated with Goldstone
bosons.

C. One-loop equations

The full one-loop equations of motion are obtained by
absorbing the terms P (t)(@+) in Eq. (3) as a time-
dependent mass term for the fluctuating fields. In order
to determine the dynamics for the background field, we
will assume that P(t ( 0) = Po and that at t = 0 the
background Beld is "released" with zero velocity. Now
we must Bnd the corresponding nonequilibrium Green's
functions. Consider the following homogeneous solutions
of the quadratic form for the fluctuations

t
b + 2p, ~ + 6p~A~ dt'b(t')

d2 A

, + k'+ m'+ —P'(t) U„+(t) = 0,

U„+(0) = 1;U„+(0) = ~i(u„, (21)

with iC&(t —t') the same kernel as in Eq. (8) and

with

Ak'+ m'+ —P'(0)
2

1
2

(22)

d k cos[2 ik [(t —t') ]

(2~)&

= ln[M(t —t')], (2o)

where M is an in&ared cutoff introduced to define the
integral. This in&ared divergence is the result of the fact
that the threshold for Goldstone bosons is at zero energy
momentum. This result clearly reflects many important
features of "dissipation" via Goldstone bosons. First, as
before, the dissipative kernel cannot be described in a
local (Markovian) approximation even in this linearized
theory in which the arguments leading to a I'b term would

I

The boundary conditions (21) correspond to positive U+
and negative U frequency modes for t ( 0 (the Wron-
skian of these solutions is 2i~&). Notice that U& (t) =
[U&+(t)]*. In terms of these mode functions we obtain

G~(t„ t, ) =,U~+(t, )U„—(t, ).
2M A.

Now the equation of motion to one-loop order is obtained
from the diagrams in Figs. 1(a) and 1(d) [but with the
modified propagator including the contribution of P(t)].
Thus to one-loop order we Bnd the following equations:

s Ah d k ~U+(t)~
P(t) + m'P(t) + —qP(t) + P(t), ", = 0,

d
, + k'+ m2+ —P'(t) U~+(t) =0,

Uq+(0) = 1;Uq+(0) = —i(uq,

(24)

where we have restored the h to make the quantum corrections explicit. This set of equations clearly shows how the
expectation value (coarse grained variable) "transfers energy" to the mode functions via a time-dependent frequency,
which then in turn modify the equations of motion for the expectation value. The equation for the mode functions
(24) may be solved in a perturbative expansion in terms of AP (t) involving the retarded Green's function. To first
order in that expansion one recovers Eq. (5).

The renormalization aspects may be found in Refs. [28, 29], obtaining, finally the renormalized equation of motion,

P(t) + m'„P(t) + gP(t) +,P(t) k'dk ", + ",P(t) [P'(t) —P'(0)] ln [A/r] = 0,
0

(26)

with A an ultraviolet cutoff and K a renormalization scale. In the equations for the mode functions the mass and
coupling may be replaced by the renormalized quantities to this order. One would be tempted to pursue a numerical
solution of these coupled equations. However, doing so would not be consistent, since these equations were obtained
only to order 6 and a naive numerical solution will produce higher powers of h, that are not justified.
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Within the spirit of the loop expansion we must be consistent and only keep terms of order h. First we introduce
dimensionless variables

AR k
, P(~);7. = m~t; q =;g =

6mR
'

mR

ARh
8m2 ' (27)

and expand the field in terms of g as

q(~) = q.&(r)+ gq, (r)+ .

Now the equations of motion consistent up to O(h) become

j,&(~) + rI.&(r) + rI.', (~) = 0,

(28)

(29)

6i( )+n. ( )+3m.', ( )n.(.)+n.i( ) q'dq - ', -„,+-~., ( ) &.', ( ) -&.', (0)'I [A~ ] =0.
p [q + 1+3r12i(0)]'&' 2

'

4.0

2.0

0.0

-2.0

-4.0
0.0 5,0

I

5 0.0 15.0 20.0

FIG. 2. First-order quantum correction for discrete sym-
xnetry case rlq(r) for gq(0) = 0; h(0) 7= 0; g,~(0) = 1; i).~(0) =
0. The cutofF is A jina = 100.

The solution to Eq. (29) is an elliptic function. The equa-
tions for the mode functions become

„,+q'+1+3'.', (~) U+(r) =0 (30)

with the boundary conditions as in Eq. (25) in terms of
the dimensionless &equencies and where for simplicity,
we have chosen the renormalization scale K = mR. The
chosen boundary conditions q(0) = gp, rI(0) = 0 can be
implemented as

q.&(O) = q„. q.&(0) = 0; q, (0) = 0; q, (0) = 0. (31)
In Fig. 2 we show qq(w) with the above boundary condi-
tions with qp

——1 and g = 0.1. A cutoff A/mR = 100 was
chosen but no cutoff sensitivity was detected by varying
the cutoff by a factor 3. Notice that the amplitude grows
as a function of time. This phenomenon can be under-
stood as follows. A first hint was obtained in the case
of the linearized equations for a broken discrete symme-
try. There we learned that because of resonances below
the two-particle threshold, the amplitude grows at long
times. This is the behavior shown in Fig. 2. An alterna-
tive and perhaps xnore convincing argument is the follow-
ing. The mode functions U+(r) obey a Schrodinger-type
equation with a potential that is a periodic function of

l

time because the classical solution is periodic. Let us call
the period of the classical solution T. Floquet's theorem
[32] guarantees the existence of solutions that obey

U+(~+ T) = e"~U+(~). (32)

The Floquet indices p are functions of the paraxneters of
the potential. The classical solution is an elliptic func-
tion, and in this case the Schrodinger equation for the
modes may be shown to be a Lame equation with n = 2
(see Ref. [44]) whose solutions are Weierstrass functions.
This yields a two-zone potential with two forbidden and
two allowed bands for q & 0. The Floquet indices p are
pure imaginary for large q, but they are real and positive
for q near zero. That is, the long wavelengths belong to
an unstable band.

A more intuitive understanding at a simpler level en-
sues if we look at small oscillations near the origin for
the classical solution g,i(r) = rk~(0) cos(7). Then the
Schrodinger equation for the modes becomes a Mathieu
equation [32], for which the dependence of the Floquet in-
dices on the parameters (q; q, i(0)) is known [32]. There
are unstable bands in which the Floquet index has posi-
tive real part for certain values of these parameters. Since
the one-loop correction involves an integral over all wave
vectors, the values of q in these bands give growing con-
tributions to the one-loop integral. These instabilities of
the one-loop equations preclude a perturbative analysis
of the process of dissipation.

f . Goldstone bosons at one loop

It proves illuminating to study the one-loop contribu-
tion to the equations of motion for the scalar field expec-
tation value from Goldstone bosons. We proceed as in
the previous case but now with the Lagrangian density
of the O(2) linear 0 model (16). We now write

&(» t) = ~o(t) + &(~ t)
(~(~ t)) = o (&(» t)) = o

where the terxns y oo ,'m 00 are now included with the
mass terms for the respective fields. The procedure is
exactly the same as in the previous case, but we now use
p,R as the mass scale and introduce the dimensionless
variables of Eq. (27) in terms of this scale. Performing
the proper renormalizations and a subtraction at t = 0
we finally find the following equations for this case:
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&,'(~)l' —&'+ -' f«~la«JIn'(~) —n*(")I)il —@+i' +gal U

l+'(~)l' —' + - '«f A/PR]f9'(~) —9'(0)l
I

The mode functions satisfy the equations

+ q' —1+3il'(~) U+(~) = 0,
d7

+ ' —1+ii'(~) V,+(~) =0,
cl'T
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where 0 is the spatial volume, 8 the action per unit spatial volume, So the free-field action, and the terms
O((g+)s, (g+)4) will contribute at the two-loop level and beyond. To this order, the coupling between "bath"
and "system" is similar to the biquadratic coupling considered in Ref. [37] (see also [25]). Integrating out the @+
fields in a consistent loop expansion gives rise to the in8uence functional [25, 34, 35] for the zero modes. The one-loop
diagrams contributing to this functional up to 0((g+) ) are shown in Fig. 4. In order to obtain the Langevin equation
it is convenient to introduce the center of mass [P(t)] and relative [R(t)] coordinates (these are the coordinates used
in the Wigner transform of the coordinate density matrix) as [33, 35, 36]

(35}

Being patient with the algebra we find the eHective action per unit spatial volume

A 83k 1S,g[P, R] = dt Z[P+ R/2] —l:[P —R/2] ——R(t)P(t)
2 (2')' 2(ui,

4 (2vr) s 2(v~2

OD OO

(36)

The higher order terms O(R ) receive contributions &om two and higher loops and give higher order corrections to
the lowest order (one-loop) Langevin equation. The imaginary part of the efFective action above (last nonlocal term)
gives a contribution to the path integral that may be written in terms of a stochastic field as

with

OO OO OO

exp —— dt dt'R(t) K(t, t') R(t') oc 'D(P [(]exp i dt((t) R(t)
—OO —OO —OC)

OO1 OO

V [i] = exp —— dt f dt'((t)K (tt)((t')',
2

(37)

4 (2~)s 2(u2

The nonequilibrium path integral now becomes (keeping track of volume factors)

(38)

Z oc 'V PRE 7 exp iO Spif )B + dt t R (39)

with S„ir[g,R] the real part of the effective action in (36) and with P[(] the Gaussian probability distribution for the
stochastic noise variable given in (37).

The Langevin equation is obtained via the saddle point condition [25, 33, 35, 36]

(40)

leading to

3 A d3k 1 A2
4(&) + '4 (t) + -4'(t) + -4 (&) ——4 (t)6 2 (27') 2cdy 4

dt'p'(t')
dsk sin[2(ui, (t —t')] t,(2') s 2(u2

where the stochastic noise variable ((t) has Gaussian correlations

((G~))) = 0 ((i(')i(~ ))) = ~(' ') = '—4(')4'(') f (42)
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Here, the double brackets stand for averages with respect
to the Gaussian probability distribution 'P[(]. We can
see that the noise is colored (not 8 function correlated)
and multiplicative. By integrating by parts the "dissipa-
tive kernel" in Eq. (41) (the last nonlocal term) in the
same way as done in Eq. (6), we can clearly see that the
resulting "dissipative kernel" and the noise correlation
function obey a generalized Quctuation-dissipation theo-
rem [25, 33]. In the broken symmetry case, in the lin-
earized approximation (around the tree-level minimum)
and if the k integral could be replaced by a 8 function,
we would obtain the usual Huctuation-dissipation rela-
tion. By taking the average over the stochastic noise of
(41) with the Gaussian probability distribution (37), one
obtains the equation of motion (6) by replacing the av-
erage of product of fields by the product of the averages
(thus considering the field as a classical background).

The higher order terms in the efFective action (in8u-
ence functional) give rise to modifications to the noise
correlations, making them non-Gaussian and involving
more powers of P in the kernels; in principle these cor-
rections may be computed systematically in a loop ex-
pansion.

Although this Langevin equation clearly exhibits the
generalized fluctuation-dissipation theorem connecting
the "dissipative" kernel to the correlations of the stochas-
tic noise, it is a hopeless tool for any evaluation of the
dynamics. The long-range kernels and the multiplicative
nature of the noise prevent this Langevin equation from
becoming a useful tool. Its importance resides at the fun-
damental level in that it provides a direct link between
fluctuation and dissipation including all the memory ef-
fects and multiplicative aspects of the noise correlation
functions. This last correlation function is related to the
decoherence functional [25]. Although the appeareance
of colored noise has already been found in difFerent prob-
lems [26, 27], our purpose in deriving the Langevin equa-
tion in this case is to point out once again that the phe-
nomenological local damping term proportional to the
time derivative of the coarse grained field is not consis-
tent with the fluctuation dissipation theorem which is a
fundamental result of nonequilibrium statistical mechan-
ics.

8. Eailure of perturbatiou theory
tlat «SC8«Pi&8 C688iyatian

This section has been devoted to a perturbative analy-
sis of the "dissipative aspects" of the equation of motion
for the scalar field. Perturbation theory has been car-
ried out as an amplitude expansion and also up to O(h),
both in the broken and the unbroken symmetry case. In
both cases we found both analytically and numerically
that the amplitude of the quantum corrections grow as a
function of time and that the long time behavior cannot
be captured in perturbation theory. This failure of per-
turbation theory to describe dissipation is clearly under-
stood from a very elementary but yet illuminating exam-
ple: the damped harmonic oscillator. Consider a damped
harmonic oscillator

q+I'j+q = 0 (43)

with I = O(A) where A is a small perturbative coupling.
One can attempt to solve Eq. (43) in a perturbative ex-
pansion in I' That is, set q(t) = qo(t)+I'qi(t)+ . The
solution for qi(t) may be found by the Laplace transform

qi(t) ~ I t cos(t),

clearly exhibiting resonant behavior. This is recognized
as a secular term. If Eq. (43) had been obtained as an
effective equation of motion in a perturbative expansion
in A, this would be the consistent manner to solve this
equation. However, we would be led to conclude that per-
turbation theory breaks down at long times. The correct
solution is

q(t) = e "cos[(u(I' )t]
I'= cos(t) — t cos(t) +—O(I' ).
2 (45)

We see that the first-order correction in I' is correctly
reproduced by perturbation theory, but in order to find
appreciable damping, we must wait a time O(1jl') at
which perturbation theory becomes unreliable.

In order to properly describe dissipation and damping
one must resum the perturbative expansion. One could in
principle keep the first order correction and exponentiate
it in an ad hoc manner with the hope that this would be
the correct resummation. Although ultimately this may
be the correct procedure, it is by no means warranted in a
Geld-theoretic perturbative expansion, since in field the-
ory, dissipation is related to particle production and open
multiparticle channels, both very subtle and nonlinear
mechanisms. Another hint that points to a resummation
of the perturbative series is provided by the set of equa-
tions (29) and (30). In Eq. (29), the classical solution is
a periodic function of time of constant amplitude, since
the classical equation has a conserved energy. As a con-
sequence, the "potential" in the equation for the modes
[Eq. (30)] is a periodic function of time with constant
amplitude. Thus although the Huctuations react back
on the coarse grained field, only the classically conserved
part of the motion of the coarse grained field enters in
the evolution equations of the mode functions. This is
a result of being consistent with the loop expansion, but
clearly this approximation is not energy conserving.

As we will point out in the next section, in an energy
conserving scheme the 8uctuations and amplitudes will
grow up to a maximum value and then will always remain
bounded at all times.

Thus, in summary for this section, we draw the con-
clusion that perturbation theory is not suflicient (with-
out major ad hoc assumptions) to capture the physics of
dissipation and damping in real time. A resummation
scheme is needed that efFectively sums up the whole (or
partial) perturbative series in a consistent and/or con-
trolled manner, and which provides a reliable estimate
for the long-time behavior. The next section is devoted
to the analytical and numerical study of some of these
schemes.
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III. NONPERTURBATIVE SCHEMES I:
HARTREE APPROXIMATION

Motivated by the failure of the loop and amplitude
expansions, we now proceed to consider the equations of
motion in some nonperturbative schemes. First we study
a single scalar model in the time-dependent Hartree ap-
proximation. After this, we study an O(N) scalar theory
in the large N limit. This last case allows us to study
the efFect of Goldstone bosons on the time evolution of
the order parameter.

In a single scalar model described by the Lagrangian
density of Eq. (1), the Hartree approximation is imple-
mented as follows. We again decompose the fields as
C + = P+ g+ and the Lagrangian density is given by Eq.

(3). The Hartree approximation is obtained by assuming
the factorization (for both + components)

@ (x, t) m 3(@ (x., t))@(x,t),

0'(x, t) + 6(@'(x t))&'(» t) —3(&'(x '))'.
Translational invariance shows that ((@+(x,t)) (x, t))
can only be a function of time, and because this is an
equal time correlation function, we have that

(X ( t)1)=(W ( t)j) =8 (t)) (46)

The expectation value will be determined within a self-
consistent approximation. After this factorization we
find

~IN+@') —~Id —@ I
=

I

— &0(&'(')) -I @'+—(() &') —-~'(')(@') )
—((&' ~ @ ))

pbbs

2 ) 2 " 2
(47)

where

~ (t) =& (~)+ —(@ (t))

'+ -4'(t) + -8'(t))
2 2

(48)

The resulting Hartree equations are obtained by using
the tadpole method (Q+(x, t)) = 0 as before. They are
given by

P+ m'P+ —P'+ —P(Q'(t)) = 0,
6 2

U„+(t)

(27r) s 2(ug (0)
(@'(t)) = ... -'G, (t, t) =d3k

d2
(t) U„+(t) = 0;

The initial conditions for the mode functions are

(u„ (t) = k + M (t).

U~+(0) = 1; Uq+(0) = —i(ug, (0). (49)

It is clear that the Hartree approximation makes the
I

I

Lagrangian density quadratic at the expense of a self-
consistent condition. In the time-independent case, this
approximation sums up all the "daisy" (or "cactus") di-
agrams and leads to a self-consistent gap equation.

At this stage, we must point out that the Hartree ap-
proximation is uncontrolled in this single scalar theory.
This approximation does, however, become exact in the
N —+ oo limit of the O(N) model which we will discuss
in the next section.

We refer the reader to Refs. [28, 29] for a detailed
description of the renormalization procedure. With an
eye towards the numerical analysis, it is more convenient
to write

(&'(t)) = (W'(t)) —(0"(0)) ) + (&'(0)) (»)
and perform a subtraction at time t = 0 absorbing
(g (0))R into a further finite renormalization of the mass
term (m2R + (@2(0))R = MR2).

The renormalized equations that we will solve finally
become

+ MR0+ 1 —
I
—, 4'+ y((q'(t)) —(y'(0)) ) = 0,

+ 0 (t) + ((4' ( )) —((t' ( )) ) U (t) =

and

(0'("))a —(@'(o))a =, ,„, ~ (
dsk U„+(t) —1 AR (Ai

with the initial conditions for U&+(t)

U~+(0) = 1; U+(0) = —iu„(0); cu (0) = k' + M' + P'(0). (52)

It is worth noticing that there is a weak cutoK depen-
dence on the renormalized equations of motion of the
order parameter and the mode functions. This is a con-
sequence of the well known "triviality" problem of the

I

scalar quartic interaction in four space-time dimensions.
This has the consequence that for a fixed renormalized
coupling the cutoK must be kept fixed and finite. The
presence of the I andau pole prevents taking the limit of
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the ultraviolet cutoff to infinity while keeping the renor-
malized coupling fixed.

This theory is sensible only as a low-energy cutoff ef-
fective theory. We then must be careful that for a fixed
value of AR, the cutoff must be such that the theory
never crosses the Landau pole. Thus Rom a numerical
perspective there will always be a cutoff sensitivity in the
theory. However, for small coupling we expect the cut-
ofF dependence to be rather weak (this will be confirmed
numerically), provided the cutofF is far away from the
Landau pole.

A. Particle production

Before we engage ourselves in a numerical integration
of the above equations of motion we want to address the
issue of particle production, since it is of great impor-
tance for the understanding of dissipative processes. In
what follows, we consider particle production due to the
time varying efFective mass M (t) in Eq. (48) of the quan-
tum field g for the single scalar model.

The Lagrangian density for the fluctuations in the
Hartree approximation is given by Eq. (47). Demanding
that the order parameter satisfies its equation of motion
implies that the linear term in g in Eq. (47) vanishes.
The resulting Lagrangian density is

&W] = —(~ ~) ——~ (t)~ + —(~ ). (53)

The Hartree-Fock vacuum state at t = 0 is chosen as
the reference state. As time passes, particles (as defined
with respect to this state) will be produced as a result
of parametric amplification [38, 39]. We should men-
tion that our definition differs from that of other authors
[26, 39] in that we chose the state at time t = 0 rather
than using the adiabatic modes (that diagonalize the in-
stantaneous Hamiltonian) .

We define the number density of particles as a function
of time as

dsg Tr at„(0)a), (0)p(t)

(2~)s Trp(0)

2
UI+, (t)

I&+,A:(t) I' = — Ug+(t) ~ + + —,4 "
2(0) U+(t) 2

~ = —~ (t) + V(~(t)) + (58)

with V(P) the classical potential and 'R is the Hartree
Hamiltonian with II@,g expanded in terms of the Hartree
mode functions and creation and annihilation operators
acting on the Hartree-Fock states. Using the equations of
motion for P(t) and the mode functions, and after some
lengthy but straightforward algebra, one finds E' = 0.

B. Numerical analysis

Unbt'oken symmetry y case

In order to perform a numerical analysis it is neces-
sary to introduce dirnensionless quantities and it becomes
convenient to choose the renormalization point v = MR.
Thus we define

g(t) =P(t), ; q = —;r = M~t; g =AR A: AR
2M2 '

MR ' 8+2'

After some algebra, we find

~a(&) = (21~+ a(&)l' —
~) ~~(o)+(I&+a(&)l' —

&) .

(57)

This result exhibits the contributions Rom "sponta-
neous" ( proportional to the initial particle occupations)
and "induced" ( independent of it) particle production.
Since we are analyzing the zero temperature case with
JV), (0) = 0, only the induced contribution results.

Before moving on to the numerical analysis, it is im-
portant to point out that the Hartree approximation is
energy conserving. The energy density is

dsk Tr a„"(t)ag(t)p(0)

(2~)s Trp(0)

where by definition

a~t(t) = U '(t, 0)at„(0)U(t, 0),

ay(t) = U (t, )aors( )U0(t, )0

(54)

4'
~(t) = ((@ (t)) —(0 (o)) )

and finally, the equations of motion become

d' (2)

(59)

are the time-evolved operators in the Heisenberg picture.
Following Refs. [29, 45], we find that the creation and
annihilation operator at time t can be related. to those at
time t = 0 via a Bogoliubov transformatiom:

(56)

The X~(t) can be read ofF in terms of the mode functions
U+(t),

+ggZ(7. ) = 0,

+ q' + & + q'(r) + gZ(~) U+ (~) = O, (6o)

U+(0) = 1;—U+(0) = —iraq +1+q'(0),
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F' 5( )—5( ) show rj(~), Z(~), and N(~) m the
Hartree approximation, for g = 0.1, g~«&

A/MR = 100; we did not detect an appreciable cutofF
dependence by varying the cutoK between 50 and 200.
Clearly there is no appreciable damping in. q(w). In fact
it can be seen that the period of the osciHation is very
close to 2z, vrhich is the period of the classical solution of
h 1 th This is understood because the coeK-

~ ~cient of the cub&c term is very small and g~(+
hie. Particle production ls also DegllglMe. This sltuatlon
should be contrasted with that shown in Figs. 6(a)—6(c)

d 7~ j—7(c~g ill which thel'e ls dlsslpatlon aIld daIDplng
in the evolution of rI(w) for q(0) = 4, 5, respective y, an

ures. First the fluctuations become very large, such that
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gram that enters in the two-particle collision amplitude
with the two-particle cut is contained in the Hartree ap-
proximation and is responsible for thresholds to particle
production). The physical mechanism is reminiscent of
that of Landau damping in the collisionless Vlasov equa-
tion for plasmas [10] and also found in the study of strong
electric fields in Ref. [11]. The difFerence with the usual
Landau damping mechanism is that in our case damp-
ing is manifest in the zero momentum component of the
scalar field, whereas in the plasma situation it occurs in
a nonhomogeneous plasma, however, the main similarity
is that just as in the plasma case, damping occurs in the
collisionless regime.

In the case under consideration, energy is transferred
&om the expectation value to the quantum fluctuations,
which back-react on the evolution of the field expectation
value but out of phase. This phase difference between
the oscillations of g (7) and those of Z(r) can be clearly
seen to be vr in Figs. 6(a), 6(b), 7(a), and 7(b), since the
maxima of g (r) occur at the same times as the minima
of Z(r) and vice versa.

This is an important point learned from our analy-
sis and that is not a priori taken into account in the
usual arguments for dissipation via collisions. The pro-
cess of thermalization, however, will necessarily involve
collisions and cannot be studied within the schemes ad-
dressed in this paper.

2. Bv'oken 8ymmeh y

The broken symmetry case is obtained by writing
M& ———p& ( 0 and using the scale pR instead of M~
to define the dimensionless quantities as in Eq. (59) and
the renormalization scale. The equations of motion in
this case become

2 1
q —q+ 1 —— q + gqZ{v.) = 0,

31 —-' ln

— + g —1+q {r)+gZ(r) U+(v. ) = 0,
gd7

(65)

U,+(0) = 1;—U,+(0) = -iraq'+1+ q (0)
d + (66)

with Z(r) given in Eq. (62) but with M~ replaced by
p~. The broken-symmetry case is more subtle because of
the possibility of unstable modes for initial conditions in
which g(0) « 1. We have kept the boundary conditions
of Eq. (66) the same as in Eq. (61). This corresponds to
preparing an initial state as a Gaussian state centered at
g(0) with real and positive covariance (width) and let-

ting it evolve for t ) G in the broken-symmetry potential
[28, 45]. The number of particles produced within a cor-
relation volume (now p& ) is given by Eq. (63) with MR
replaced by p,R.

Figures 9(a)—9(c) depict the dynamics for a broken
symmetry case in which i1(0) = 10, i.e., very close
to the top of the potential hill. Notice that as the
field expectation value rolls down the hill the unsta-
ble modes make the fluctuation grow dramatically until
about w —50 at which point gZ(7) 1. At this point,
the unstable growth of Quctuations shuts ofF and the field
begins damped oscillatory motion around a mean value
of about 1.2. This point is a minimum of the effective
action. The damping of these oscillations is very similar
to the damping around the origin in the unbroken case.
Most of the particle production and the largest quan-
tum Quctuations occur when the field expectation value
is rolling down the region for which there are unstable
frequencies for the mode functions [see Eq. (65)]. This
behavior is similar to that found previously [28].

IV. NONP ERTURBATIVE SCHEMES II:
LARGE N LIMIT IN THE O(K) MODEL

Although the Hartree approximation offers a nonper-
turbative resummation of select terms, it is not a con-
sistent approximation because there is no a priori small
parameter that defines the approximation. Furthermore,
we want to study the effects of dissipation by Goldstone
bosons in a nonperturbative but controlled expansion.

In this section, we consider the O(N) model in the
large N limit. The large N limit has been used in stud-
ies of nonequilibrium dynamics [40—42, 45] and it provides
a very powerful tool for studying nonequilibrium dynam-
ics nonperturbatively in a consistent manner. The La-
grangian density is

1l:= —ct @ 0"P —V{cr 7r)P

V(om) = —m P P+ (@ @), (67)

o(x, t) = o-p(t)+ y(x, t). (68)

Expanding the Lagrangian. density in Eq. (67) in terms
of fluctuations y(x, t),we obtain

for A fixed in the large N limit. Here P is an O(N)
vector, P = (o, 7r), and m represents the N —1 pions. In
what follows, we will consider two different cases of the
potential V(o, 7r), with (m & 0) or without (m ) 0)
symmetry breaking.

Let us define the fluctuation field y{x,t) as

&I~o+ x+ ~+I &I~o+ x ~ I
= (~I~o ~+I+ x++ (~~&+) + (~~~+)

boo
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The tadpole condition (X~(x, t)) = 0 will lead to the
equations of motion as previously discussed. We now
introduce a Hartree factorization. In the presence of a
nonzero expectation value the Hartree factorization is
subtle in the case of continuous symmetries. A naive
Hartree factorization violates the Ward identities related
to Goldstone's theorem. This shortcoming is overcome
if the Hartree factorization is implemented in leading or-
der in the large N expansion [45j. We will make a series
of assumptions that seem to be reasonable, but that can
only be justified a posteriori when we recognize that with
these assumptions, we obtain the equations of motion
that fulfill the Ward identities. These assumptions are as
follows. (i) No cross correlations between the pions and
sigma field and (ii) the two-point correlation functions of
the pion field are diagonal in the O(N —1) space given by
the remaining unbroken symmetry group. Based upon
these assumptions we are led to the following Hartree

I

factorization of the nonlinear terms in the Lagrangian
density (again for both 6 components):

m 6(X )X + const,

x' -+ 3(x')x,

4(~.~) ~
~

2+
~

(m')~'+ cons~,
N —1)

~'x' ~ (~')x'+ ~'(x'},
m'x -+ (7r')x,

where by const we mean the operator-independent ex-
pectation values of the composite operators which will
not enter into the time evolution equation of the order
parameter.

In this approximation, the resulting Lagrangian den-
sity is quadratic, with a linear term in y:

c]oo + y+, m+] —I'[~n + y, vr ]
= ( —]B„y+) + —(B„m+) —y+v'(t) ——M'„]t)(x+)' ——Af'(t)]m+)')

—((x+ -+ x
—), (~+ ~ ~ ) ),

where V' is the derivative of the Hartree potential defined
below. To obtain a large % limit, we define

( ') = N(@') . .(t) = 4 (t) ~N
with

(@') = &(N') (x') = O(N') 4' = &(N') (7o)

We will approximate further by neglecting the O(~)
terms in the formal large % limit. We now obtain

V (~(~) &) = ~~4(t) + —~ (&) + —8' (&))

M.'(t) = '+
—,O'(t)+ —,W'(t)),
A 2 A

M'. (t) = '+ —,4'(t)+ —,(&'(t)} (»)
Using the tadpole method, we obtain the following set of

y fields decouples, and the dynamics of y does not inQu-
ence that of P or the mode functions and (@ ), we will
only concentrate on the solution for the m fields.

A. Renormalization

The renormalization procedure is exactly the same as
that for the Hartree case in the preceding section. We
carry out the same renormalization prescription and sub-
traction at t = 0 as in the last section. Thus we find the
equations of motion

~ + MR~ +
2

~ +
2

4 ((0'(&))~ —(0'(0)}z)

equations:

(t)+4,(t), + A4, ,(t)+ A(~, (t)} 0

+~ +M + 2~(&)+ 2 ](@(&)) (73)

U~+(0) = 1 U&+ (0) = —i~ i, (0) . (72)

Since in this approximation, the dynamics for the m and

U+(t)
(@'(t)}=

(2 ), 2",
(0)

2

, + '„(t) U+(t) =O, '„(t) =1'+M'(t).
It is clear from the above equations that the Ward identi-
ties of Goldstone's theorem are indeed fulfilled. Because
V'(P(&},&) = JNQ(t)M (t), whenever V'(P(t}, t) van-
ishes for P g 0, then M = 0 and the "pions" are the
Goldstone bosons. The initial conditions for the mode
functions U@+(t) are

(g'(0)) U„+(t) = o,

with the initial conditions given by Eq. (72) and with the
subtracted expectation value given by Eq. (51).

In contrast to the Hartree equations in the preceding
section, the cutofI' dependence in the term proportional
to Ps in Eq. (73) has disappeared. This is a consequence
of the large N limit and the Ward identities, which are
now obvious at the level of the renormalized equations
of motion. There is still a very weak cutofI' dependence
in Eq. (51) because of the triviality issue which is not
relieved in the large N limit, but again, this theory only
makes sense as a low-energy cutoff theory.
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H. Numerical Analysis

Unbt oken 8ymm, ett'y

To solve the evolution equations in Eqs. (51) and (73)
numerical1y, we now introduce dimensionless quantities
as in Eq. (59), obtaining the following dimensionless
equRt loIls:

q + q + g' + grIZ(~) = 0,

CL + q' + 1+g'(7.) + gZ(~) U+(7-) = 0,

U+(O) = &, —U+(0) = —igq2+ &+„2(o),
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U+ (~) —1
dq

Qq2 + 1+ )72(0)

+—»
I

I

[a*(~) —n' PH )
(A')

1.0 I

g (&)

os
rtI II

0.0

I

150.0
I

50.0

I

II I

I

I

-1.0
0.0 1O0.O

(75)

200.0

For particle production in the O(N) model, the final
expression of the expectation value of the number opera-
tor for each pion field in terms of dimensionless quantities
is the same as in Eq. (63), but the mode function U+(t)
obeys the difFerential equation in Eq. (60) together with
the self consistent condition.

Figures 10(a)—10(c), 11(a)—ll(c), and 12(a)—12(c)
show rI(r), Z(w), and N(7) for )7(0) = 1, 2, g = 0 1,.0.3,
and A/MR = 100 (although again we did not find cutoff
sensitivity). The dynamics is very similar to that of the
single scalar field in the Hartree approximation, which is
not surprising, since the equations are very similar (save
for the coeKcient of the cubic term in the equation for
the field expectation value). Thus the analysis presented
previously for the Hartree approximation remains valid
in this case.

2. HroIcen 8ymmetvy

The broken-symmetry case corresponds to choosing
M& ———pR ( 0. As in the case of the Hartree ap-
proximation, we now choose p,~ as the scale to define
dimensionless variables and renormalization scale. The
equations of motion for the field expectation value and
the mode functions now become

1.5

z(. )
(b) , il —g+ il +g(7Z(~) = 0,

d7

1.0 , + g' —1+ q'(7-) + gZ(~) U+(7-) = 0,
d7

0.5
with K(v) given by Eq. (75). As in the Hartree case,
there is a subtlety with the boundary conditions for the
mode functions because the presence of the instabilities
at ~ = 0 for the band of wave vectors 0 & q ( 1, for
il (0) ( 1. Following the discussion in the Hartree case
(broken symmetry) we chose the initial conditions for the
mode functions as

-0.5
0.0

0.08—

I

50.0
I

100.0
t

150.0 200.0

U+(0) = 1, —U+(0) = —igq + 1+)7 (0). (76)

(r) (C)

0.06
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These boundary conditions correspond to preparing a
Gaussian state centered at il(0) at v = 0 and letting
this initial state evolve in time in the "broken-symmetry
potential" [28].

Figures 13(a)—13(c) show the dynamics of )7(w), Z(w),
and N(7)for g(0) = 0.5, g. = 0.1, and cutoff A/pR = 100.
Strong damping behavior is evident, and the time scale
of damping is correlated with the time scale for growth of
Z(w) and N(w). The asymptotic value of )7(w) and Z(w),
q(oo), and Z(oo), respectively, satisfy

—1 + il'(oo) + g Z(oo) = 0, (77)
-0.02

0.0
I

50.0
I

100.0 150.0 200.0

FIG. 12. (a) i)(~) vs 7. in the large-N approximation in
the O(N) model, unbroken-symmetry case. g = 0.3; q(0) =
1; A/MR = 100. (b) Z(7) vs w for the same case as in (a).
(c) N(7. ) vs v for the same case as in (a).

as we confirmed numerically. Thus the mode functions
are "massless" describing Goldstone bosons. Notice that
this value also corresponds to V'(P) = 0 in Eq. (71).
An equilibrium self-consistent solution of the equations
of motion for the Beld expectation value and the Guctu-
ations is reached for w = oo.
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Figure 13(d) shows the number of particles produced
per correlation volume as a function of (dimensionless)
wave vector q at w = 200. We see that it is strongly
peaked at q = 0, clearly showing that the particle pro-
duction mechanism is most efFicient for long-wavelength

Goldstone bosons. Figures 13(e)—13(g) show snapshots
of the number of particles as a function of wave vector
or 7 = 13,25, 50, respectively; notice the scale. Clearly

at longer times, the contributions from q g 0 becomes
smaller. Figures 14(a)—14(c) show the evolution of q(q ),
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FIG. 13. (a) g(q ) vs q in the large-N approximation in the O(N) model, broken-symmetr case. = 0.1 (0)
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particles in (dimensionless) wave vector q, Nq(q ) at q = 200. (e) Number of particles in (dimensionless) wave vector q, Nq(q ) at
= 13. (f) Number of particles in (dimensionless) wave vector q& Xq(q) at q = 25. (g) Number of particles in (dimensionless

wave vector q, Nq q.) at q. = 50.
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FIQ. 13. (Continued).

Z(7'), and N(7) for rl(0) = 10, g = 10 . The initial
value of g is very close to the "top" of the potential. Due
to the small coupling and the small initial value of il(0),
the unstable modes (those for which q ( 1) grow for a
long time, making the fluctuations very large. However,
the Buctuation term E(r) is multiplied by a very small
coupling and it has to grow for a long time to overcome
the instabilities. During this time the field expectation
value rolls down the potential hill, following a trajec-
tory very close to the classical one. The classical turning
point of the trajectory beginning very near the top of the
potential hill, is close to ritz

——~2. Notice that rl(r) ex-
hibits a turning point (maximum) at rl = 0.45. Thus the
turning point of the effective evolution equations is much
closer to the origin. This phenomenon shows that the ef-
fective (nonlocal) potential is shallower than the classical
potential, with the minimum moving closer to the origin
as a function of time.

If the energy for the field expectation value was abso-
lutely conserved, the expectation value of the scalar field
would bounce back to the initial point and oscillate be-
tween the two classical turning points. However, because
the fluctuations are growing and energy is transferred to
them from the q = 0 mode, g is slowed down as it bounces
back, and tends to settle at a value very close to the origin
(asymptotically about 0.015). Figure 14(b) shows that

the fluctuations grow initially and stabilize at a value for
which gZ(oo) = 1. The period of explosive growth of the
fluctuations is correlated with the strong oscillations at
the maximum of rl(~). This is the time when the Quctua-
tions begin to effectively absorb the energy transferred by
the field expectation value and when the damping mech-
anism begins to work. Again the asymptotic solution is
such that —1 + rl (oo) + gE(oo) = 0, and the particles
produced are indeed Goldstone bosons but the value of
the scalar field in the broken-symmetry minimum is very
small (classically it would be rl;„= 1, yet dynamically,
the field settles at a value il(oo) 0.015!!for g = ]0 ~).
Figure 14(c) shows copious particle production, and the
asymptotic final state is a highly excited state with a
large number (~ 10 ) of Goldstone bosons per correla-
tion volume.

The conclusion that we reach &om the numerical anal-
ysis is that Goldstone bosons are extremely ejective for
dissipation and damping. Most of the initial potential
energy of the Beld is converted into particles (Goldstone
bosons) and the field expectation value comes to rest at
long times at a position very close to the origin.

Notice that the difFerence with the situation depicted
in Figs. 13(a)—13(c) is in the initial conditions and the
strength of the coupling. In the case of stronger cou-
pling, the fluctuations grow only for a short time because
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gets near the origin again, the Buctuations have grown
dramatically, absorbing most of the energy of the Geld
expectation value and completely damping its motion.
The condition (77) is now fulfilled with g(oo) —0. It is
again clear from Figs. 15(b) and 15(c) that the time scale
at which the Buctuations grow explosively is of the same
order as the classical period. At this time gZ(7) = 1 and
dissipation by particle production becomes very effective.
We have checked that this effect is not a numerical arti-
fact. The numerical code was run changing the grid size
in time and also for wave vector integration. We found
the same results consistently with no appreciable varia-
tions in the numerical results. This gives us confidence
that we are finding a new genuine physical result which
is a consequence of dissipation by Goldstone bosons. In
this case almost atl the initial potential energy has been
converted into particles. The conclusion of this analysis
is that the strong dissipation by Goldstone bosons dra-
matically changes the dynamics of the phase transition
even for very small couplings. For slow-roll initial condi-
tions the scalar Geld relaxes to a final value which is very
close to the origin. This is the minimum of the effective
action, rather than of the tree-level efFective potential.
Thus dissipative efFects by Goldstone bosons introduce a
very strong dynamical correction to the effective action,
leading to a very shallow effective potential (the effective
action for constant field configuration). The condition for
this situation to happen is that the period of the classical
trajectory is of the same order of magnitude as the time
scale of growth for the Buctuations.

The physical interpretation of this effect is as follows:
although we are working at zero temperature, the ini-
tial potential energy stored in the scalar field is fairly
large; most of this energy is effectively dissipated away
in the production of low momentum Goldstone bosons.
The value of the coupling constant determines the time
scale of growth of the Buctuations. During this time the
expectation value of the scalar Geld "rolls down the po-
tential hill, " when gZ(v) 1, dissipative effects become
very eKcient, and slow the rolling to a halt. If the cou-
pling is rather large, dissipative efFects become efFective
very early on and the Geld does not roll very far. If on
the other hand, the coupling is very small [as in Figs.
15(a)—15(c)] the field can oscillate one (or several) peri-
ods before dissipation is effective and most of the energy
is converted into Goldstone bosons. The time scales that
have to be compared are the time at which gZ(~) = 1
and the period of the (classical) trajectory (for weak cou-
pling).

The weak coupling estimate for this dynamical
nonequilibrium time scale of growth of Buctuations is

ln(1/g)/2, which is obtained by requiring that
gZ(w) 1. For weak coupling the mode functions grow
as U+(v) e for q ( 1, and Z(w) e2 . The numerical
analysis confirms this time scale. For weakly coupled the-
ories, this nonequilibrium time scale is much larger than
the static correlation length (in units in which c = 1) and
the only relevant time scale for the dynamics.

Our results pose a fundamental question: how is it
possible to reconcile damping and dissipative behavior,
as found in this work with time reversal invariance?

In fact we see no contradiction for the following rea-
son: the dynamics is completely determined by the set of
equations of motion for the field expectation value and
the mode functions for the Buctuations described above.
These equations are solved by providing non equilib-
rium initial conditions on the Geld expectation value, its
derivative and the mode functions and their derivatives
at the initial time t = 0. The problem is then evolved
in time by solving the coupled second order differential
equations. We emphasize the fact that the equations are
second order in time because these are time reversal in-
variant. Now consider evolving this set of equations up to
a positive time tp, at which we stop the integration and
find the value of the field expectation value, its derivative,
the value of all the mode functions, and their derivatives.
Because this is a system of differential equations which
is second order in time, we can take these values at tp
as initial conditions at this time and evolve backwards in
time reaching the initial values at t = 0. Notice that
doing this involves beginning at a time tp in an excited
state with (generally) a large number of particles. The
conditions at this particular time are such that the en-
ergy stored in this excited state is focused in the back
reaction to the Geld expectation value that acquires this
energy and whose amplitude will begin to grow. It is at
this point where one recognizes the fundamental neces-
sity of the "in-in" formalism in which the equations of
motion are real and causal.

V. CONCLUSIONS AND DISCUSSION
We have focused on understanding the Grst stage of

a reheating process, that of dissipation in the dynam-
ics of the field expectation value of a scalar field via
particle production. Starting from a scalar field theory
with no apparent dissipative terms in its dynamics, we
have shown how the evolution of expectation value of the
scalar field is afFected by the quantum Buctuations and
particle production resulting in dissipative dynamics.

We started our analysis with a perturbative calcula-
tion, both in the amplitude of the expectation value of
the field and to one-loop order. Analytically and nu-
merically we find that dissipative processes cannot be
described perturbatively. A systematic solution to the
equation of motion reveals the presence of resonances and
secular terms resulting in the growth of the corrections
to the classical evolution. The perturbative study of the
O(2) linear o model reveals infrared divergences arising
from the contribution to the dissipative kernels from the
Goldstone modes which require nonperturbative resum-
mation.

A Langevin equation was constructed in an ampli-
tude expansion; it exhibits a generalized fluctuation-
dissipation theorem with non-Markovian (memory) ker-
nels and colored noise correlation functions, thus offering
a more complex picture of dissipation.

Motivated by the failure of the perturbative approach,
we studied the nonequilibrium dynamics in a Hartree
approximation both in the symmetric as well as in the
broken-symmetry case. This approximation clearly ex-
hibits the contribution of open channels and the dissi-
pation associated with particle production, which in this
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approximation is a result of parametric amplification of
quantum fluctuations.

In the case of unbroken symmetry we Gnd that asymp-
totically the expectation value of the scalar field oscil-
lates around the trivial vacuum with an amplitude that
depends on the coupling and initial conditions. An ex-
tensive numerical study of the renormalized equations of
motion was performed that shows explicitly the dynamics
of particle production during these oscillations.

Although the Hartree approximation offers a self-
consistent nonperturbative resummation, it is not con-
trolled. Thus we were led to study the large N limit in an
O(N) model, which also allows us to study in a nonper-
turbative manner the dissipative dynamics of Goldstone
bosons. In the case of unbroken symmetry the results are
very similar to those obtained in the Hartree approxima-
tion.

The broken-symmetry case provides several new and
remarkable results. An extensive numerical study of
the equations explicitly shows copious particle produc-
tion while the expectation value of the field relaxes with
strongly damped oscillations towards a minimum of the
effective action.

It is intuitively obvious that Goldstone bosons are ex-
tremely effective for dissipation since channels are open
for arbitrarily small energy transfer. What is remark-
able, however, is that for "slow-roll" initial conditions,
that is, when the initial expectation value of the scalar
Geld is very close to the origin and the coupling is very
weak, ( 10 or smaller) the final value of the expecta-
tion value remains very close to the origin; most of the
potential energy has been absorbed in the production of
long-wavelength Goldstone bosons. This is confirmed by
an exhaustive numerical study, including snapshots at
different times of the number of particles produced for
difFerent wavelengths showing a large peak at small wave
vectors at long times. This study clearly shows that par-
ticle production is extremely effective for long-wavelength
Goldstone bosons. Another remarkable result is that the
asymptotic value expectation value of the scalar Geld de-
pends on the initial conditions. These asymptotic val-
ues correspond to minima of the effective action. Thus
we reach the unexpected conclusion that in this approx-
imation the efFective action has a continuum manifold of
minima which can be reached &om different initial con-
ditions.

We also pointed out that the basic mechanism for dis-
sipation in this approximation is that of Landau damping
through the parametric amplification of quantum Huctu-
ations, and. production of particles. These Huctuations
react back in the evolution of the expectation value of
the scalar field, but out of phase. This is a collision-
less mechanism, similar to that found in the collisionless
Boltzmann-Vlasov equation for plasmas.

Our study also reconciles dissipation in the time evo-
lution for the coarse grained variable with time reversal
invariance, as the evolution is completely specified by an
infinite set of ordinary second order differential equations
in time with proper boundary conditions.

Our formalism and techniques are suKciently powerful
to give a great deal of insight into the particulars of the

dissipation process. In particular, we can see that the
damping of the Beld expectation value ends as the parti-
cle production ends. This shows that our interpretation
of the damping as being due to particle production is
accurate.

It is useful to compare what we have done here with
other work on this issue. We have already mentioned the
work of Calzetta and Hu [8] and Paz [9]. These authors
use the closed time path formalism to arrive at the ef-
fective equations of motion for the expectation value of
the field. Then they solve the perturbative equations and
find dissipative evolution at short times. In particular
Paz Bnds the kernel that we have found for the effec-
tive equations of motion of the expectation value in the
perturbative and Hartree case.

We remedy this situation by studing the nonperturba-
tive Hartree equations, which must necesarily be solved
numerically as we do.

There has been other work on the reheating problem,
most notably by Abbott, Farhi, and Wise [7], Ringwald
[46], and Morikawa and Sasaki [26]. In all of these works,
the standard effective action is used, so that the expecta-
tion value is of the "in-out" type and hence the equations
are noncausal and contain imaginary parts. In essence,
they "Gnd" dissipational behavior by adding an imag-
inary part to the frequency that appears in the mode
equations. We see from our work (as well as that of
Calzetta, Hu, and Paz) that this is not necessary; dissi-
pation can occur even when the system is evolving uni-
tarily. This comment deserves a definition of what we
call dissipation here: it is the energy transfer &om the
expectation value of the q = 0 mode of the scalar field
to the quantum fluctuations (q g 0) resulting in damped
evolution for the q = 0 mode.

To what extent are we truly treating the reheating
problem of inflationary models' As stated in the Intro-
duction, reheating typically entails the decay of the infla-
ton into lighter particles during its oscillations. What we
do here is understand how the quantum Huctuations and
the ensuing particle production influence the dynamics of
the evolution of the expectation value of the field. Thus
technically speaking, this is not the reheating problem.
However, we are able to understand where dissipation
comes from in a field theory, and are able to give a quan-
titative description of the damping process for the expec-
tation value of the field. We expect that the physics of
dissipation when the scalar Geld couple to others will be
very similar to the case studied in this article. Further-
more, the techniques we develop here are easily adapted
to the case where the inflaton couples to fermions, a case
that we are currently studying [47]. In this connection,
during the writing of this paper, two related pieces of
work on the reheating problem have appeared [48]. They
both look at the effect of particle production &om the
oscillations of the inflaton Geld due to parametric ampli-
fication. What they do not do is to account for the back
reaction of the produced particles on the evolution of the
expectation value of the inHaton. As we have learned
with our study, this back reaction will eventually shut off
the particle production, so that these authors may have
overestimated the amount or particle production.
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We recognize that our nonperturbative treatment ne-
glects the eKect of collisions as mentioned above. Dis-
sipation appears in a manner similar to Landau damp-
ing. In the Hartree approximation there does not seem
to be a natural way to incorporate scattering processes
because this is a mean-field theory. However, the large
N expansion allows a consistent treatment of scattering
processes for which the first contribution (two-to-two par-
ticle scattering) will appear at O(1/1V). This will be a
necessary next step in order to fully understand the col-
lisional thermalization which is the second stage of the
reheating process. This will clearly be a fascinating and
worthy endeavour that we expect to undertake soon.
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