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From the literature one infers that the bulk of the order 0;, corrections to the Drell-Yan cross-
sections do/dm and m d cr/dmdx~ is constituted by the soft plus virtual gluon part of the coefficient
function. In the case of do/dm it can be shown that at fixed target energies the effect of the exact
order o., corrected coefBcient function is very well approximated by its soft plus virtual gluon part.
Since the complete order a, contribution to the coeKcient function is missing we have to assume
that the same approximation also holds for m d o/dmdz~ It a. ppears that the discrepancy between
the exact order a, corrected cross section and the massive lepton pair data taken at fixed target
experiments can be partially explained by including the order o., soft plus virtual gluon part of the
coefBcient function.

PACS number(s): 13.60.Hb, 12.38.Bx, 13.85.+k

I. INTRODUCTION

Massive lepton pair production in hadronic interac-
tions is, aside flom deep inelastic lepton-hadron scatter-
ing, one of the most important probes of the structure of
hadrons. It is well established that one of the dominant
production mechanisms is the Drell-Yan (DY) process
[1]. Here the lepton pair is the decay product of one
of the electroweak vector bosons of the standard model
(p', W, and Z) which in the Born approximation are pro-
duced by the annihilation of quarks and antiquarks com-
ing from the colliding hadrons. This process is of experi-
mental interest because it provides us with an alternative
way to measure the parton densities of the proton and
neutron which have been very accurately determined by
the deep inelastic lepton-hadron experiments. Moreover,
it enables us to measure the parton densities of unstable
hadrons such as pions and kaons which is impossible in
deep inelastic lepton-hadron scattering. In addition to
the measurement of the parton densities there are other
important tests of perturbative quantum chromodynam-
ics (QCD) which can be carried out by studying the DY
process. Here we want to mention the scale evolution of
the parton densities, although not observed in this pro-
cess yet because of the low statistics, and the measure-
ment of the running coupling constant n, (p, ) which in-
cludes the QCD scale A. Finally this process constitutes
an important background for other production mecha-
nisms of lepton pairs. Exainples are J/@ and T decays
or thermal emission of lepton pairs in heavy-ion collisions
[2].

The DY process is also of theoretical interest. Since it
is one of the few reactions which can be calculated up to
second order in perturbation theory it enables us to study
the origin of large QCD corrections which are mostly due
to soft gluon bremsstrahlung and virtual gluon contribu-
tions. In order to control these corrections in the pertur-
bation series one has constructed various kinds of resum-
mation techniques mostly leading to the exponentiation
of the dominant terms [3—7]. Another issue is the depen-

dence of the physical quantities on the chosen scheme
and the choice of scales. Since the perturbation series
is truncated the theoretical cross section will depend on
the scheme and the renormalization and/or factorization
scale p. These dependences can be reduced by including
higher-order terms in the perturbation series. An alter-
native way to determine p itself (optimum scale) by us-
ing so-called improved perturbation theory like the prin-
ciple of minimal sensitivity (PMS) [8], fastest apparent
convergence (FAC) [9], or the Brodsky-Lepage-Mackenzie
(BLM) procedure [10].

The first fixed target experiment on massive lepton
pair production was carried out by the Columbia-BNL
group [11]. Later on this process was studied in many
other experiments which were carried out at increasing
energies (for reviews see [12]). When the statistics of the
data were improving one discovered that the cross sec-
tion could not be described by the simple parton model
given by Drell and Yan in [1]. This was revealed for
the first time by the NA3 experiment [13] (see also [14))
where the data show a discrepancy in the normalization
between the experimental and theoretical cross sections.
This discrepancy is expressed by a so called K factor
which is defined by the ratio between the experimentally
observed cross section and its theoretical prediction. The
above group and the experiments carried out later on [15]
show that this K factor ranges between 1.5 and 2.5 and
is roughly independent of the type of incoming hadrons.
The most generally accepted explanation of this K fac-
tor was provided by perturbative QCD. The calculation
of the order n, corrections [16—19] to the DY cross section
in [1] show that a considerable part of the K factor can
be attributed to next-to-leading order efFects. However
the order a, corrections do not account for the whole
K factor. More recent experiments [20—23] still indicate
that the ratio between the experimental cross section and
the order o., corrected theoretical prediction is about 1.4,
a number which might be explained by including QCD
corrections beyond order o., as we will show in this paper.

As has been mentioned at the beginning, the DY pro-
cess is one of the few processes where the order o., cor-
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rections to the coefIicient function are completely known.
The latter refers to the cross section do /dm only where m
denotes the lepton pair invariant mass. This coefIicient
function has been calculated in the modified minimal sub-
traction MS [24] as well as in the deep inelastic scattering
(DIS) [25] scheme. However in the case of the double dif-
ferential cross section d o/dmdxy (d o/dmdy) one has
only calculated the order a, part of the coefBcient func-
tion which is due to soft and virtual gluon contributions
[26] because the remaining part is very complicated to
compute. Fortunately, as shown in the literature [16—19],
the soft plus virtual gluon corrections dominate the total
and difFerential DY cross sections in particular at fixed
target energies, so that we can restrict our study to them
to make reliable predictions.

An analysis of the higher-order corrections to the to-
tal DY cross section for R' and Z production at large
hadron collider energies has been performed in [24,25].
Such an analysis is still missing for the DY process at
fixed target energies, and therefore we present it here. In
particular we want to show that the discrepancy in the
normalization between the order o., corrected DY cross
section and the one measured at the fixed target experi-
ments can be partially explained by including the order
o., contributions due to soft plus virtual gluon effects.

This paper is organized as follows. In Sec. II we
present the expressions for the various DY cross sections
and give a review of the partonic subprocesses included
in our analysis. In Sec. III the validity of the soft plus
virtual gluon approximation will be discussed, and we
make a comparison between the order o., corrected cross
sections and the most recent fixed target DY data. In
Appendixes A and B we give the coefEcient functions for
d o/dmdx~(d o/dmdy) corrected up to order n, and or-
der Q.„respectively. They are presented for arbitrary
renormalization and mass factorization scale in the MS
as well as in the DIS scheme.

Here Q2 = m2 where m denotes the lepton pair invariant
mass. The longitudinal momentum fraction x~ of the
lepton pair and the Bj@rken scaling variable are defined
by

XQ —Xg X2
2&L, Q'

) 7 — —XyX2)S (2.3)

where ~S stands for the center-of-mass energy of the
incoming hadrons H~ and H2. The quantity 0~ is the
pointlike DY cross section which describes the process

qi+ q2 m V m lg+ L2 „ (2.4)

where q~ and q2 denote the incoming quark and anti-
quark, respectively. If we limit ourselves to V = p*, Z
then o~ gets the form

4~~'
2 ~ 2Q'(q' —Mz')v(q z) =

gq, 'i'&+
iZ(Q2)~2 i, vi v, ,

2 2 2 2+
iZ(Q2)i2 ( v, l + A, l)( v, q + A, q)

(2.5)

with

Z(Q') = Q' —Mz'+ ~Mzl z . (2.6)

2 1c~= —1, c = —, cd ————.3' 3 (2.7)

The vector and axial-vector coupling constants of the Z
boson to the leptons and quarks are equal to

Here the width of the Z boson is taken to be energy
independent and all fermion masses are neglected since
they are much smaller than QQ2. The charges of the
leptons and quarks are given by

II. HIGHER-ORDER +CD CORRECTIONS TO
d o/dmdzg(d~o/dmdy) AND do/dm +A, I,

— 1
~ 2Cv, 1 = —CA, 1(l —4 sin 01')2 sin 20~'

+A, u — +A, d — +A, 1 )

Massive lepton pair production in hadron-hadron col-
lisions proceeds through the reaction

Hi + H2 —+ V+ "X"
4 l1+ lg . (2.1)

0 1 1
= ) &v(q, Mv) dt1 dt2II;~(t1, t2, p2)X+ &2t2

XAij (tl)t2)X1& 2'2) Q ) P )
2 2 (2.2)

Here Hq and H2 denote the incoming hadrons, and
V is one of the vector bosons of the standard model
(p*, Z or W), which subsequently decays into a lep-
ton pair (l1, l2). The symbol "X" denotes any inclusive
hadronic final state which is allowed by conservation of
quantum numbers. Following the @CD improved parton
model as originally developed in [1] the double differen-
tial DY cross section can be written as

Cv ~ = C~ ( (1 —
s S111 01v ),

Cv, g = —CA i(1 —4sin281v).

(2.8)

i+ j —+ V+ "X", (2.9)

where "X" now represents any multipartonic final state.
Both functions H;~ and 4;~ depend, in addition to the
scaling variables t; and z, , also on the renormalization
and mass factorization scales which are usually put to be
equal to p, . In addition to the cross section in (2.2) one
is sometimes also interested in the rapidity distribution

The function H;z in (2.2) stands for the combination of
parton densities corresponding to the incoming partons
i and j(i,j = q, q, g). Finally A;~ denotes the DY coeffi-
cient function which is determined by the partonic sub-
process
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of the lepton pair. In this case the left-hand side in (2.2)
is replaced by d o/dQ dy where y denotes the rapidity
defined by [see (2.3)]

=1 X1y= —ln —
) x, =v~e", x, =~~e"

2 X2' (2.io)

or

1 xF + Qx2F +4r
y = —ln

2 —xF + gx2F + 4v.
(2.11)

Furthermore on the right-hand side the coefficient func-
tion L,~ is replaced by its analogue corresponding to the
cross section d2cr/dQ dy

The coefficient function A;~ (2.2) can be expanded as
a power series in the runinng coupling constant n, (p2)
as follows:

)-~ ( )
~

~(l
4vr )

(2.12)

In lowest order the coefficient function of the differential
cross section (2.2) is determined by the subprocess

d0

dQ2

G H d0

dQ2dxF dQ2

1——lnT2

lnT

CT

dQ2dy '

(2.19)

variant mass.
All above corrections contribute to Aqq and can be

found in Appendix B for arbitrary factorization and
renormalization scale p where they are presented in the
MS, as well as in the DIS scheme. The hard gluon cor-
rections (2.17) and the other two to three-body processes
(see below) are very hard to compute at least for the dou-
ble difFerential cross sections. Fortunately as has been
shown in [16—19] the bulk of the order n, radiative cor-
rections to the cross sections do/dQ and d2o/dQ dxF
is constituted by the soft plus virtual gluon contribu-
tions to 4 —. Therefore within the experimental and the-
oretical uncertainties one can assume that the order o;,
part of the coefficient function Aqq, which is only due
to soft plus virtual gluon contributions, is sufficient to
describe the next-to-next-to-leading order DY cross sec-
tion at Axed target energies. This can be tested for the
quantity da/dQ which is defined by

q+q+ V. (2.13) which can also be written as

Here V stands for either the virtual photon p* or the Z
boson and the coefficient function is given by

1 dX1 dX2
1

2H;, (xi, xp, p )
X1 T/~ X2

b(ti —xi)b(t2 —x2) .(o)
qq z +z (2.14) Q'~

(xix2 p j (2.2o)

The order n, corrections to the Born process (2.13) de-

noted by L — are given by the one-loop contributions to
(2.13) and the gluon bremsstrahlung process

q+q —+ V+g . (2.i5)

In addition to the process above we have another re-
action which instead of a quark or antiquark has a gluon
in the initial state:

y+ v(v) ~ &+ v(v) . (2.i6)

This reaction contributes to Agq . Both contributions
and Ag~ have been calculated in [17,18,27] (DIS

scheme) and in [28] (MS scheme) and are presented in
(Al), (A7), and (A8), respectively. A part of the order
o., corrections to the coefficient function corresponding to
d cr/dQ dxF has also been calculated in [26]. These cor-
rections originate &om the soft plus virtual gluon contri-
butions. They consist of the two-loop corrections to pro-
cess (2.13) and the one-loop correction to process (2.15)
where the gluon is taken to be soft. Furthermore one has
also included the bremsstrahlung process

(2.17)

g + v(v) ~ &+ c(~) + g (2.21)

which entails the computation of the one-loop corrections
to (2.16). In addition one has to add the subprocesses

q1+ q2 ~ U+ q1+ q2 (2.22)

~(v) + ~(~) ~ & + ~(~) + ~(~) (2.23)

and

where 4;~ now stands for the coefficient function corre-
sponding to the integrated cross section der/dQ2.

Since the exact order o., corrections to this coefficient
function are completely known, see [24] (MS scheme) and
[25] (DIS scheme), one can now make a comparison be-
tween the exact DY cross section coming from the com-
plete coefficient function and the approximate cross sec-
tion due to the soft plus virtual gluon part. The full
order o., contribution to the DY coefficient function re-
quires, besides the calculation of the subprocesses men-
tioned above, the computation of the following two-to-
three-body partonic subprocesses. First, we have the
bremsstrahlung correction to (2.16):

and fermion pair production g+g —+ V+q+q. (2.24)

q+q+ V+q+q, (2.i8)

where the gluons were taken to be soft and the quark-
antiquark pair in the final state of (2.18) has a low in-

Reactions (2.21)—(2.24) contribute to the coefFicient func-

tions Azq, A —,Lqq, and Lzz, respectively. The exact(2) (2) (2) (2)

result of the coefficient function calculated up to order o.,
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for do/dQ2 gives an indication about the validity of the
soft plus virtual gluon approximation of d20/dQ dx~ (or
d20/dQ2dy) for which a complete order o., calculation is
still missing. In [25] one has made a detailed analysis of
this approximation for the total cross section of W and
Z production which is derived from (2.20) by integrating
do/dQ over Q . From this analysis one infers that the
approximation works quite well in order o., as well as in
order n2 when M&2/S ) 0.01 provided the DY coefficient
function is computed in the BIS scheme.

This implies that in practice one can only apply it to
the cross section measured at the CERN Super Proton
Synchrotron (SppS) (~S =- 0.63 TeV). The reason that
this happens in the BIS scheme is purely accidental. It
originates from the large coeKcient of the delta function
6(1 —x) appearing in A~~(x) which is small in the MS
scheme. Apparently the combination of the anomalous
dimension (Altarelli-Parisi splitting function) and the re-
maining part of the coeKcient function is very small in
the BIS scheme. It is expected that the approximation
will even work better when v = Q /S ~ 1, a condi-
tion which is satisfied by fixed target experiments. In
this case the phase space of the multipartonic final state
in the above reactions will be reduced so that only soft
gluons or fermion pairs with low invariant mass can be
radiated ofF. Their contributions manifest themselves by
large logarithms of the type [ln" (1 —x)/(1 —2:)]+ which
appear in the coeKcient function in the BIS as well as in
the MS scheme.

Notice that the above analysis holds if the mass fac-
torization scale p is chosen to be p, = Q . Therefore it
is not impossible that the above conclusions have to be
altered when a scale completely diferent from p = Q
is adopted.

Finally, one has to bear in mind that a complete next-
to-next-to-leading order analysis cannot be carried out
yet because the appropriate parton densities are not
available. The latter can be attributed to the fact that
the three-loop contributions to the Altarelli-Parisi split-
ting functions or the anomalous dimensions have not
been calculated as yet. Therefore, the analysis of the
order n, corrected result for do/dQ has to be consid-
ered with caution. This holds even more so for the or-
der n2 corrected differential distribution d a/dQ dx~ or
d2o. /8 Q2dy.

III. KESUI.TS

In this section we start with a discussion of the validity
of the soft plus virtual gluon (S + V) approximation of
the order n2 correction to d o/dQ dx~ (2.2). This is
done by making a comparison with the integrated cross
section do/dQ (2.19) for which the coefficient function is
completely known up to order o, Then, we include this
approximation in our analysis of the fixed target muon
pair data published in [20—23]. In particular we show that
this correction partially accounts for the difFerence in the
normalization between the data in [20—23] and the order
o., corrected cross section calculated in [17,18,27,28].

The calculation of the cross sections da /dQ (2.19) and
d a/dQ2dx~ (2.2) will be performed in the DIS as well
as in the MS scheme chosen for the coeKcient functions,

as well as for the parton densities. The coefficient func-
tions for do /dQz up to order a, can be found in [24] (MS
scheme) and [25] (DIS scheme). The coefficient functions
for d2o/dQ de~ corrected up to order n, are obtained
&om [17,18,27] (DIS scheme) and [28] (MS scheine). In
order to make this paper self-contained we have also pre-
sented them in Appendix A. The order o., contribution
as far as the soft plus virtual gluon part is concerned has
been calculated in [26] and is presented in both schemes
in a more amenable form in Appendix B. For the next-
to-leading order nucleon parton densities we have chosen
the Martin-Roberts-Stirling set D [MRS(D )] [29] for
which a DIS (A = 230 MeV) and an MS version (A = 215
MeV) exist. Further, we use the two-loop- (MS scheme)
corrected running coupling constant with the number of
light ffavors ny = 4, and the @CD scale is the same as
chosen for the MRS (D ) set. For the pion densities we
take the leading log parametrization [Duke-Owens set 1
(DO1)] in [30]. Using this set one could only fit the old
lepton-pair data (for references see [30]) by allowing an
arbitrary normalization (or K factor) with respect to the
leading order theoretical BY cross section. In this section
it is shown that this factor can be partially explained by
including higher-order @CD corrections. Next-to-leading
(NLO) order parton densities for the pion exist in [28] and
[31],but they are only presented in the MS scheme. Also,
here one has to use an arbitrary K factor to fit the data,
which is smaller than found for the leading order process
since a part of the normalization is accounted for by the
order a, corrections. Because of the missing (NLO) par-
ton densities of the pion in the DIS scheme we prefer to
use the leading log parametrization in [30]. Finally, we
choose the factorization scale p to be equal to the renor-
malization scale where p2 = Q2. All numerical results in
this paper are produced by our FORTRAN program DIFDY
which can be obtained on request.

The plots will be presented at three difFerent fixed
target energies given by ~S = 15.4, 21.8, and 38.8
GeV/c. At the first energy, i.e. , v S = 15.4 GeV/c
one has observed muon pairs produced in the reactions
p+W m p+p + "X" and~ +W —+ p+p, + "X"
measured by the E537 group [20]. The second experi-
ment is carried out at ~S = 21.8 GeV/c by the E615
[21] group where the same lepton pair is measured in
the reaction m + W —+ p+ p + "X". Finally, we dis-
cuss the E772 experiment [22,23] at ~S = 38.8 GeV/c
where the reaction p + N ~ p+ p + "X" is studied,
where N is represented either by the isoscalar targets 2H

and C or by W (tungsten) which has a large neutron ex-
cess. Here we will only make a comparison with the H
data. In the case of the E537 and E615 experiments W
is given by Z/A = 0.405, whereas E772 used tungsten
with Z/A = 0.409. Here Z and A denote the charge and
atomic number of the nucleus, respectively. Finally, no-
tice that at the above energies we can safely neglect the
contributions coming from the Z boson in (2.5) since the
virtual photon dominates the cross section.

I et us first start with the discussion of the S+ V ap-
proximation to the coeKcient function corresponding to
do /dQ2. The soft plus virtual gluon part of the coefficient
function, which only appears in Aqq, can be written as
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W,',+~(t„t„x„x„q',p') =
X1+ Z2

h(ti —xi)h(t2 —x2)

)-~& ( )
~

, ;& 4
k, l

k+ l & 2i —2

(;), , l ln" (t, /x, —I) ( ln'(t, /x, —I) ~

ti —xi ) ( t2 —x2

+h(ti —xi)

+h(t, —x, )
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k+l (2i —X

k, l
k+l & 2i —1
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k+l (2i

"W' ')I-"' *'I-" *')
Xl X2

(3.4)

d2 (0) d2 s+ v, (1)

dP(] )(~ )
dmdzF dmdxF+

d~ cr &0) d2 (r(»
dmdzF dmdz F

(3 5)

where the meaning of d rr(')/dmdxJ; and d2a. ~+~(')/
dmdx~ is the same as for der(')/dm and dos++ (')/dm
defined below (3.3). Notice that here we cannot
present dR( )(~w, x~) because the exact cross section

where the definitions for the distributions indicated by a
plus sign can be found in Appendix A.

To study the S + V approximation we define an anal-
ogous quantity as given for do/dm in (3.2). In the sub-
sequent figures we plot the ratio

d o ( ) /dmdx~ is still unknown.
Starting with the DIS scheme we have plotted

dR( ) (~v, x~) at ~S = 15.4 GeV/c (E537) for three rep-
resentative v/7 values as a function of x~ in Fig. 3. From
this figure one infers that at small ~7 around x~ = 0 the
approximate cross section overestimates the exact one by
about 20%. This value is much larger than in the case
of the integrated cross section do/dm where 'it was at
maximum 10%.The approxiznation becomes better when
either ~x~~ or ~w gets larger.

The overestimation is even bigger when the energy in-
creases. This can be observed in Fig. 4 (~S = 21.8
GeV/c, E615) or Fig. 5 (~S = 38.8 GeV/c, E772). Here

1.3 I I I I
I

I I I I
I

I I I I
I

I I I I

1.3 I I I I
I

I I I I
I

I I I I
I

I I
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XlI
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FIC. 3. The ratio dR( )(~w, zF) (3.5) presented in the DIS
scheme for vr + W —+ p+p + "2C" at ~S = 15.4 GeV/c
(E537). Solid line: ~7 = 0.25; dotted line: ~7 = 0.42;
dashed line: ~w = 0.60.

FIG. 4. The ratio dR (~v, XF) (3.5) presented in the DIS
scheme for vr + W —+ p+p + "X'" at ~S = 21.8 GeV/c
(E615). Solid line: ~v = 0.18; dotted line: ~w = 0.42;
dashed line: ~a = 0.65.
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FIG. 5. The ratio dR (~r, xs ) (3.5) presented in the DIS
scheme for p+ H -+ p+ p +"4"at ~S = 38.8 GeV/c (E772).
Solid line: ~7 = 0.13; dotted line: ~v = 0.23; dashed line:
~~ = 0.34.

one overestimates the exact cross section at small ~w
values even by 25'Po. If we repeat our calculations in the
MS scheme we observe a considerable improvement of the
S+ V approximation to the double difFerential cross sec-
tion (see Figs. 6—8). Although like in the case of der/dm
the approximation underestimates the cross section at
high v 7 values, the difference with the exact one is less
than 5%.

Summarizing our findings we conclude that in the case
of the DIS scheme the S + V approximation works bet-
ter for der/dm than for d2o/dmdx~ whereas for the MS

FIG. 7. The same as in Fig. 4 but now for the MS scheme.

scheme just the opposite is happening, except for v —+ 1
where B( )(~w) and dR( ) (~~, x~) become close to 1 in-
dependent of the chosen scheme. Further Rom Figs. 3—
8 it appears that when d o ++( )/dmdx~ is integrated
over x~ according to (2.19), we get a result which difFers
from the one obtained form d~ + ( I/dm in (2.20) in
particular at small v 7.. On the first sight this is surpris-
ing because one expects the same cross section do. /dm
independent of the order of integration. However, both
procedures only lead to the same answer for der/dm when
the full coeKcient functions are inserted in the equations
for d 0'/dmdxp (2.2) and du/dm (2.20). If we limit our-
selves to the S+ V part of the coeKcient functions as
given in (3.1) and (3.4) then the two procedures to com-

1.3 t I I I
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I I I I
I

I I I I 1.3 I I I I
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I I I I
I
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0.9 I I I I j I I I I I I I I

0.9 I I I I I I I I I I I )

0
XF

-0.5 0
Xp
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FIG. 6. The same as in Fig. 3 but nova for the MS scheme. FIG. 8. The same as in Fig. 5 but noir for the MS scheme.
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pute der/dm only provide us with the same answer when
w —+ 1. This we have also checked for the order n, S+ V
contribution. Therefore, the expression in (3.1) is not the
integrated form of Eq. (3.4) except if w ~ 1. This ex-
plains why at large v R( ) (~w) (3.2) and dR( ) (~v, x~)
(3.5) are roughly the same and equal to 1, irrespective of
the chosen scheme. The above properties of the S+V ap-
proximation also reveal that if ~w becomes much smaller
than 1, one has to be cautious in predicting the still un-
known dR( )(~w, x~) from the values obtained for the
known R( )(~w) (3.3) and dR( )(~w, z~) (3.5). In the
subsequent part of this work we will use as a guiding
principle that as long as ~dR( )(~7', x~) —I[ ( 0.1 we

expect that the S+V approximation of the second-order
contribution to d cr/dmdxp will be very close to the ex-
act result. If ~dR( ) (V 7, x~) —1[ ) 0.2 then one should
not trust this approximation, and one has to rely on the
predictions obtained from the erst-order corrected cross
section. This implies that for the experiments discussed
in this paper one can make a reasonable prediction for
the second-order correction as long as ~r ) 0.3.

After having discussed the validity of the above ap-
proach at Axed target energies, we will now make a com-
parison with the data of the E537 [20], E615 [21], and
E772 [22,23] experiments. For that purpose we compute
the Born cross section d oo/dmdx~, the order n, cor-
rected exact cross section d oi/dmdx~ and the order ci,
corrected cross section d o2/dmdx~. Notice that in the
latter only the contribution due to the coeKcient func-
tion b, + (3.4) (see Appendix B) has been included
because the other contributions are still missing. The
computations have been carried out in the DIS scheme.
The results for the MS scheme will be shortly commented
upon at the end of this section.

Starting with the experiment E537 (II/ S = 15.4 GeV/c)
we have plotted the quantity

I
]

I I I I I I I I I
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I I I I I I I I I
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I I I I I I I I I
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I I I I I I I I I
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FIG. 10. The same as in Fig. 9 but now for the reaction

vr + W —+ p+p + "X."

do d 0
XQ

dm p dmdxF
(3.6)

in Figs. 9 and 10 for the reactions p+ W ~ p,+p + "X"
and vr + TV ~ p, +p + "X", respectively. Notice
that xp in [20] is defined as x~ = 2pL, /[(I —w)~S]
which difFers from the usual definition in [17,18,27,28].
Since the higher-order @CD corrections are calculated for

d o'/dmdxJ; with z~ defined in (2.3) and the cross sec-
tion is not a Lorentz invariant we had to change the xF
bins in Table III of [20] according to our definition above.
Figures 9 and 10 reveal that the data are in agreement
with the order n, as well as with the order n, corrected
cross section but lie above the result given by the Born
approximation. The difference between the latter and
the data is also observed when we consider the quantity

do d 0
dm

4 p dmdxy
(3.7)

0.1
0
0

0.01

E

b
0.001

--:Lx

I I I I I I I I I I I I I I I I I I I I I \ I I I I I I I I I I I I I I I I I I I I I I XI I I I

6 7
m [GeV/cs)

FIG. 9. do/dm (3.6) for the reaction p+W —+ p+p, + "X"
at ~S = 15.4 GeV/c. The data are obtained from the E537
experiment [20]. Dashed line: Born; dotted line: O(o.,) (DIS);
solid line: O(o., ) (DIS); long dashed line: O(n, )(MS).

do. 1 d 0
d~v

d~~dz p ~~p —~~g ~ d+vdz p-(3.8)

which is presented in Figs. 11 and 12 for the above two
reactions. Even the order n, corrected cross section lies
below the data for x~ ( 0.6 as can be seen in Fig. 12.
On the other hand the order n, corrected cross section is
in agreement with experiment over the whole zF range.

The second experiment, E615 [21] also studies the re-
action 7r + W ~ p p, + + "X" but now for ~S = 21.8
GeV/c. In Fig. 13 we have compared the quantity
do/d~w = ado/dm with the data where do/dm is de-
fined in the same way as in (3.6). Apart from the bump,
which is due to the T resonance at about ~w = 0.43,
the order n, corrected cross section reasonably describes
the experimental results whereas the Born and the order
n, prediction fall below the data. The importance of the
order n, contribution is also revealed when we study the
double differential cross section
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FIG. 11. do./dz p (3.7) for
action p+ W m p+p + "X" at v S = 15 4
data are obtained from the E537 experiment
line: Born; dotted line: O(n, ) (DIS); solid line:
long dashed line: O(n, )(MS).
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the re-
GeV/c. The
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0.0001
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FIG. 13. do'/d~r = v Sdrr/dn [see (3.6)] for the reaction
+ ~ ~ p+p + "X" at v S = 21.8 GeV/c. The data are

obtained from the E615 experiment [21]. Dashed line: Born;
dotted line: O(u, ) (DIS); solid line: O(n, ) (DIS); long dashed
line: O(o2)(MS).

for various xF regions, see Figs. 14—19. The curves pre-
dicted by the Born and the order o., corrections all lie
below the data. For ~r ) 0.277 even the order n, con-
tribution is not suKcient to close the gap between theory
and experiment. This is due to the presence of the T in
the region 0.323 ( ~w ( 0.599 which has not been sub-
tracted. from the data. The discrepancy between the or-
der o,, corrected cross section and the data becomes even
more clear when we plot the K factor (Fig. 20) defined
by

l T
g d g p

2

0 F d+zdzF
(3.10)

where d a, /d~wdx~ denotes the order n', corrected cross
section. Figure 20 shows that neither Kq nor K2 Bt the

in Fig. 20 and compare the above expression with the
experimental K factor which is given by

1—~~& d cr;
0 F d~rdgp
1—T ~ d2g

(Xx 0
0 F d~v. d

(3.9)
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FIG. 12. The same as in Fig. 11 but now for the reaction
7r + R" —+ p+p + "X."

FIG. 14. d cr/d~rdz~(3. 8) with 0.185 ( vier ( 0.231 for
the reaction vr + W —+ p, +p + "X" at ~S = 21.8 GeV/c.
The data are obtained from the E615 experiment [21]. Dashed
line: Born; dotted line: O(n, ) (DIS); solid line: O(o, ) (DIS);
long dashed line: O(cr, )(MS).
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FIG. 15. The same as in Fig. 14 but now for 0.231
& ~«0.277.

FIG. 17. The same as in Fig. 14 but now for 0.323
& ~~ & 0.369.

data. The second-order corrected K factor is closer to
the data in the small ~w region. It is a pity that due to
the presence of the T in the data it is difticult to compare
theory with experiment, in particular in those regions of
~T where the S + V approximation is supposed to work.

Finally, we also made a comparison with the data ob-
tained by the E772 experiment for the reaction p+ H ~
p,+p, + "X"carried out at ~S = 38.8 GeV/c. The main
goal of this experiment was to Gnd a charge asymmetry in
the sea-quark densities of the nucleon, i.e. , u(x) g d(x).
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Here we are also interested in whether the data obtained
for msd2cr/dmdzF are in agreement with the order a2
corrected DY cross section. In Fig. 21 we have plotted
the data for m = 8.15 GeV/c and compared them with
the predictions given by the Born, the order o;, corrected,
and the order o,, corrected cross section. The figure
shows that the order o., corrections are needed to bring
theory into agreement with the data. Notice that at this
m value one obtains ~w = 0.21, which is quite small for
the 8+V approximation so that the result has to be inter-
preted with care. In the next figure (Fig. 22) we study
the effect of the higher-order @CD corrections on the
suppression of the cross section near x~ ——0.0 which is
caused by the difference between the up-sea and down-sea
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FIG. 16. The same as in Fig. 14 but now for 0.277
& ~~ & O.323.

FIG. 18. The same as in Fig. 14 but now for 0.369
& ~~ & 0.484.
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quark densities. Notice that the pp reaction is symmetric
whereas the pn reaction is asymmetric around x~ ——0.0
irrespective of whether or not there is charge asymmetry.
Therefore the pn reaction leads to an x~ asymmetry even
for isoscalar targets such as H. In Fig. 22 we have pre-
sented the order o,, corrected cross section for three dif-
ferent parton density sets for the nucleon. They are given
by MRS(SO) and MRS(DO) where the former has a sym-
metric sea [u(x) = d(x)] whereas the latter contains an
asymmetric sea [u(x) g d(x)] parametrization. For com-
parison we have also shown MRS(D ) which only differs

FIG 21. m d o/dmdx~ for the reaction p+ H~ p+p
+"X"at v S = 38.8 GeV/c and m = 8.15 GeV/c . The data
are obtained from the E772 experiment [23]. Dashed line:
Born; dotted line: O(o.,) (DIS); solid line: O(o.,) (DIS); long
dashed line: O(n, )(MS).

from MRS(DO) in that the gluon and sea densities have a
much steeper small 2: behavior (Lipatov-Pomeron) than
the ones given by MRS(DO) and MRS(SO) (nonperturba-
tive Porneron). Figure 22 reveals that there is hardly any
suppression of the cross section for 2;~ ( 0 while goiiig
Rom the symmetric sea [MRS(SO)] to the asymmetric sea
[MRS(DO)] parametrization so that both parton density
sets are in agreement with the data.
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FIG. 20. Order o.*, corrected K factor denoted by K, (3.9)
compared with the experimental K factor (3.10) for the reac-
tion vr + W m p, +p + "X"at v S = 21.8 GeV/c. The data
are obtained from the E615 experiment [21]. Dotted line: Kq
(DIS); solid line: Kq (DIS); long dashed line: K2(MS).

FIG. 22. Parton density dependence of m d o/dmdx J..cor-.
rected up to order n, for the reaction p+ H~ p+p, + "X"
at ~S = 38.8 GeV/c and m = 8.15 GeV/c . The data are ob-
tained from the E772 experiment [23]. Solid line: MRS(SO);
dotted line: MRS(DO); dashed line: MRS(D ).
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If other parton densities are used such as those dis-
cussed in [23] the suppression for x~ ( 0 can be much
larger. For the MRS set it appears that a change in the
small x behavior of the parton densities leads to a larger
suppression of the cross section [compare MRS(DO) with
MRS(D )] than the introduction of a charge asymmetry
in the sea-quarks [MRS(SO) versus MRS(DO)].

In addition to the calculations performed in the DIS
scheme we have also presented in Figs. 9—21 the order
o., corrected cross section computed in the MS scheme.
Although the latter is an improvement with respect to
the order o., corrected result it is smaller than the cross
section computed in the DIS scheme except when x~ is
large. This is not surprising because Figs. 6—8 already in-
dicate that the approximation underestimates the exact
cross section in the case of the MS scheme.

Summarizing the content of this work we can conclude
that up to the order n, level the soft plus virtual gluon
contribution gives a fairly good approximation of the ex-
act DY cross section d2cr/dmdx~. Therefore we expect
that this approximation will also work for the o., correc-
tion as long as the cross section is computed at fixed tar-
get energies and for ~w & 0.3. In this r region we expect
that all other partonic subprocesses are suppressed due to
the reduction in phase space. This expectation is corrob-
orated by a thorough analysis of the second-order contri-
bution to der/dm for which the exact coefficient function
is known. Because of the missing pieces in the order
o., contribution to the coeKcient function corresponding

to the cross section d2o /dmdx~ and the absence of the
next-to-next-to-leading order parton densities, we have
to rely on the order a, soft plus virtual gluon approxi-
mation to make a comparison with the data. Using this
approach we can show that a part of the discrepancy be-
tween the data and the order o., corrected cross section
can be attributed to the higher-order soft plus virtual
gluon contributions.

APPENDIX. A

In this Appendix we will present the order o., con-
tributions to the coeKcient functions corresponding to
d o/dQ dx~ coming &om the partonic subprocesses in
(2.15) and (2.16). Although these processes have been
calculated in the DIS scheme in [17,18] (see also [27])
and the MS scheme [28], we have some different defini-
tions for the distributions and we have a small disagree-
ment with the coefBcient function for the qg subprocess
in [28]. Moreover we want to give a clear definition for
the soft plus virtual (S+V) gluon part of the coefficient
function corresponding to the qq subprocess.

We have recalculated the double differential cross sec-
tion d2o/dQ dx~ for the partonic subprocesses (2.15)
and (2.16). After performing the mass factorization in
the MS scheme the coefficients A, . [see the definition in
(2.12)] read

1 4 t, +x2 ( 1
+Cp — —2

+
ti+ xi ( 2 2

+ — +
x2) + (t2 + xi)(ti + x2) t2(tl + x2) ti(t2 + i)

2(xi+»)(t +t2)
ti(t2+xi) tit2( i+ g)

2xl
t', (t, + x2)

~(l) rt b(t, —x, )b(t, —x, )
qq ( i, t2, xl, x2, , p ) = ~p

Xl + X2

( —* )(1 — ) 6 1
Q'

6 (( )+2 1„(1— )( — )
XlX2 P XlX2

h(t, —x, ) ( 4 l t2+x2 Q
xi + x2 kt2 —x2) + t2 p ( t2 —x2) +

ln +2( ln(t2/x2 —1) l 4 x +x2 t2 —x2

t2 —x2 p+ t2 —x2 xi +t2 t2

—2 2 ln
t2 + x2 (xi + x2)(l xi)(t2 x2) + [ti M t2) xi ++ x2]

t2 xlx2 t2 + xi

(Al)

where the color factor C~ is given by C~ = (N —1)/2N (QCD:N = 3). In this Appendix and in the next one the
distributions indicated by a plus sign in the denominator are defined as

tie —xA: ) „ tg —xg



P. J. RIJKEN AND %'. I . VAN NEERVEN 51

f
~ ln'(t, /x, —1)~ ( ln' (t, /z, —1)~

dtl dt2 f(tl, t2)
tl Zl ) ( t2 Z2 )

ln'(tl/xl —1) ln (t2/z2 —1)4't l EB2 f(tl, t2) —f(*i,t2) —f(ti, *2) + f(xi, Z2)
tl —Xl t2 —X2

Expression (Al) for 6 ~ is in agreement with Eq. (A4) in [28]. Notice that the authors in [28] give a different
definition for the distributions. This leads to a diff'erence between (A2) and Eq. (A.12) in [28] which equals

f lnti, /xi, 1
dt's f (xi, ) = f (xg) —ln xi, + Li2(1 —xA, )

&A:
—XI 2

(A4)

where the dilogarithmic function Li2(x) is defined by

dt
Li2(x) = — —ln(1 —t) . (A5)

The expression between the square brackets in (A4), multiplied by 2, has to be added to the coefficient of the
h(tl —zl)h'(t2 —x2) term in Eq. (A4) of [28] so that one obtains the same result as we have in (Al) above.

The soft plus virtual gluon part of 6 — is deffned by isolating the double singular terms in (Al) of the types
h(tl —xl)h(t2 —x2), h(tl —xl)(~ )+, h(t2 —x2)(, )+, and (, )+(i )+. Hence we obtain

—16 + 12~(2) + 2
Xl X2

1
+Cy )

(t, —z, )+(t2 —x2)+

9+V, (l) 2 2 ( 1 ) ( 2 2)
(tl, t2, », x2, Q I ) =(-~

qq ) ') ) ) Xl + X2

x 4 ln + 6 ln(1 —x,)(1 —x, ) Q'
X1X2 p

+C~ ' '
I ~

ln, +]( 4 l Q' ~ 4

(t2 —X2) + P, qt2 —X2) + Xl

f'ln t2 x2 —1) + [tl ++ t2, Zl ++ X2]
)+

(A6)

+&here @re have taken the residues at tg ——xI, .
For the gq subprocess ere obtain the coefBcient function

(l)(t t Q2 2) T ( 2 x2) 2xi+ ( 1 xi)'
l Q

Xl + X2 g3 p

+2 In
zl + (tl xi) (xi + x2) (1 x2) (tl xi) '4xi (tl xi)+

g3 xlx2(tl + x2) tl

+Ty
xi+(tl zl) ~ 1 z2+(tl+z2) zi+z2+4

Xl + X2 g.3 (t2 —Z2 + t', (t2+»)
zlz2(zl + x2) zi x2 (zl + z2)(t2 z2)(t2 + zl) zlz2(zl + z2)+4

2 El~2 tlt2(tl + t2) t', t', (t, + t, )

(A7)

(tip t2y Zly Z2y Q y p ) + (t2&tl& Z2& Zl& Q & P ) (A8)
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where Ty = 1/2.
There is a discrepancy between our answer in (A7)

and the one given in Eq. (A8) of [28]. The difference

between their result and ours equals 2 '+ ', ' . This
1

discrepancy can be attributed to the procedure that in n-
dimensional regularization before mass factorization the
cross section with one gluon in the initial state has to be
divided by n —2 in order to average over the initial gluon
polarizations. Only in this case one can combine the co-
efBcient functions with the parton densities of which the
scale evolution is determined by the two-loop anomalous
dimensions (or Altarelli-Parisi splitting functions) calcu-
lated in the literature (see, e.g. , [32]). The expression

in Eq. (A8) of [28] can be only obtained if the polar-
ization average factor is a 1/2 instead of 1/(n —2). In
the latter case one has to modify the two-loop anoma-
lous dimensions via a finite renormalization. However
the MRS parton densities in [29] were constructed using
the anomalous dimensions in [32] so that one has to di-
vide the parton cross section by n —2 and not by 2. The
choice of the polarization average factor shows up again
when we want to present the coeFicient functions in the
DIS scheme. The results in the DIS scheme are obtained
by performing a finite mass factorization. The coefBcient
functions in the two schemes are related by

&' (t1, t2», x2, Q, v ) =). «1 «21'~,
~

—
~

I'i,
I I &~i( 1, u2, 1, 2, Q, p )

(u1) (u2 ) 2 2

& t1 ) 0 t2 )
(A9)

Up to order o.„l'z~(x), and I'~g(x) are given by

(x) = ~(1 —x) + 'Cp 4
~

—
~

—2(1+ x)ln(1 —x) + 6+4xn, (ln(l —x) &

4m 0 1 —x

1+x' ( + &(1 —*)( —9 —4((2))
1 —x

(A10)

I' (x) = 'Ty 2(x —+ (1 —x) )ln + 16x(1 —x) —2
x

(All)

Expressions (A10) and (All) are in agreement with C&2 and CG 2 in Appendix I of [33]. Notice that the authors

in [28] used a I'~s(x) where 16x(1 —x) —2 is replaced by 12x(1 —x) which is obtained when the gluon polarization

average factor is taken to be 1/2 instead of 1/(n —2). See the discussion above.

The coeKcient functions in the DIS scheme read

(1), 2 2, C b(t1 —x1)h(t2 —x2) 1 —x1 1 —x2
Aqq (t1, t2, xr, x2, , p ) = C~ 4 ln ln

X1+X2 Xl X2

+ 4 l +6 ln + 2+2p
X1X2 p X1X2

C ~(t1 —») ( 4 & t2+ x2 q'
+ j' —2 2 ln

1+ *2

4 x2———6—2 + [t1 ++ t2, x1 ~ x2]
t2 t2

1 4 xg+ x2+/41n +3//
x1 ) kt2 x2 j+ t2 x2 xl+t2

—2 ln
t2+ x2 (x1+ x2)(1 —x1)

g2 x1(t2 + x, )

1
+C~ x1+ x2 (t, —x, )+(t2 —x2)+

t1+x1 ( 1—2
t2 (t2 —X2) + (t2+ X1)

,t2+x2 (
t, —»)

4 2 2
+ +

(tl + X2) t2(t1 + X2) tl (t2 + X1)

—22
Xl X2—22 +2 (x, + x, ) (t', + t', )

t2( 1 + X2) t21(t2 + X1) t1t,'(t1 + t2)

The soft plus virtual gluon part is obtained in the same way as discussed in the case of the MS scheme:

(A12)
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S+V,(l) I 2 2, b (tl —x1 )b (t2 —x2) 1 —xl
4 ln ln

X1 +X2 X$ X2

2 1 —x ~ —x
x 41n +6 ln +2+20/(2)+31n

Xlz2 p XQX2

b(t, —x ) r 4 ) q2

xl + x2 (, t2 x2) P'

1 —x, ) t 1
+~4ln +3~ ~

~

+. [t, +et„x, e+x, ]) « -*)+
1 4

+Cp x, + x2 (tl —x, )+ (t2 —x2)+
(A13)

The coeKcient function for the subprocess with the gluon in the initial state becomes

(~) (i
b(t2 —x2) xl + (tl —xl)

(tl) t2) Xl) X2) ) P j f 2 3 ln
X1 +X2 t~ P

xl + (tl xl) (xl + x2) (1 x2) 2 xl (tl xl)+ ——12
X2 (tl + X2) t 1

1
+Ty

X] + X2

xlx2(xl + x2)
g3g2

1 2

xlx2(xl + x2)+4
tlt2(t, + t2)

xl + (tl —xl) ( 1 ) x2+ (tl + x2) xl + x2+ 4
t', (t, + x, ) t, t2

x2 —x2 (xl + x2)(t2 —x2)(t2 + x, )
t, t,'(t, + t,)'

(A14)

where Azs is related to Agz via relation (A8).
We have explicitly checked that if the above coefficien functions are inserted in (2.2) and the integrations over xF

are performed according to (2.19) one gets the same answer as given by do./dm (2.20) with the coefficient functions
obtained f'rom [24,25]. The coefficien functions for d2o/dQ dy have not been explicitly listed here but are present in
our computer program DIFDY. In the case of d2o'/dQ2dy we agree with the results for the Ms scheme published in

[28] except for 1/2tl in Eq. (A20) which has to be replaced by ' ', ' . This difference follows again from taking the
1

average over the initial gluon polarizations as discussed for A~q above. Our results for the DIS scheme agree with

those presented in the Appendix of [27]. Notice that the soft plus virtual gluon part of 4 ~ for d2o. /dQ2dy can be
obtained from (A6) and (A13) by multiplication with xl + x2.

APPENDIX B

The order n, contribution to the coefficient function in the 8 + V approximation has been calculated in [26].
Including the mass factorization parts represented by lnQ2/p2 and rewriting the coefficient function in a more amenable
form as presented for the erst order correction in Appendix A it reads in the MS scheme as

b(t, —xl)b(t2 —x2)
Zy +2;2

W

CF 18 —8I,"(2) + 8(P (xl) + P (x2)) + 24(P(xl) + P(x2))

+16P(x,)P(x2) L„+ —93+ 60t,'(2) + 80$(3) + 8(P (xl) + P (x2))

+24((P (xl)P(x2) + P(xl)P (x2)) + 24P(xl)P(x2)
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+12(P (z, ) + P (z2)) + ( —64+ 16((2))(P(x,) + P(z2)) L„

—128((2) —60((3) + (2(2) + 2(P'(x, ) + P'(x2))
4 9

+8(P (xl)P(x2) + P(xl)P (x2)) + 12P (zl)P (x2)

+( —32+ 8((2))(P (xl) + P (x2)) + ( —64+ 16((2))P(xl)P(x2)

+32C(3)(P(Ti) + P(oo)) )
+C~C~ —11 ——(P(xl) + P(x2)) L„+ —22((2) —24((3)

22 193

22 2 2 (268——(P (*)+P'( ))+ I

—8&(2) I(P( )+P(*.))9

44 1535 860 172 52P(*1)P(x2) L — + ('(2) + ('(3) ——C'(2)3 12 9 3 5

(P (xl) + P (x2)) ——(P (zl)P(z2) + P(x, )p (x2))

(134 &, , (268+
I

—4(,'(2)
I
(P'(* ) + P'(* )) +

I

—8( (2)
I
P(* )P( )

+
l

— + t'(2) + 28((3) l (P(») +P(oo)))( 808 44

r27 3

+nfC~ 2+ —(P(xl) + P(x2)) L„+4 2 , +44(2)+-, (P'(* )+P'( .))
8 40 127

+-,P(-.)P(-.) ——,(P(*.) + P(-.)) L.+, 152 8
9 &(2)+ 3('(3)

+—( (xl) + P (*2)) + —( (xl) (x2) +

20 (112 8(P (zl) + P (x2)) +
I

(8(2)
I
(P(xl) + P(x2))9 q27 3

+ C~ [16(D1(t2) + P(zl)Dp(t2)) + 24Dp(t2)j L~ + 24D2(t2)
b(ti —xl) 2

X1+X2

+48P(zl)D1(t2) + 24P (xl)Dp(t2) + 24(D1(t2) + P(zl)Dp(t2))

+( 64 + 16((2)o)DG(t2) L)8 + 8D3(t2) + 24P(xl)D2(t2) + 24P (xl)D1(t2)

+8P (oo)Do(to) + ( —66 + 16t(2))(Do(to) + P(oi)Do(to)) + (( 3) 2(3toD))o

22 ~ 44 44
+C~C~ — Dp(t2) I + Dl (t2) — P(xl)Dp—(t—2)3 " 3 3

(268 22 44+
I

—8(,'(2)
I Dp(t2) L„— D2(t2) — P(z—l)D1(t2)

q 9 r
" 3 3

22 2 (268
P'(»)Do(t2) +

I

—8&(2) I (Dl(t2) + P(»)Do(t2))3 )
+

~

— + —((2) + 28j(3)
~

D ( ))oto( 808 44

)27 3

4 8 40
+nyCJ; —Dp(t2) L~+ —(Dl(t2) + P(zl)DG(t2)) — Dp(t2) L~



P. J. RIJKEN AND W. L. VAN NEERVEN

8 4 40+—D2(t2) + P—(zi)D) (t2) + P—(zy)Dp(t2) ——(Dy(t2) + P(zx)Do(t2))3 3 3 9

(112 8+
l

——C(2) l Do(to)) + (ti OO tooi ,O4 oo)
27 3 j

+ C+ 16Dp(t) )Dp(t2) L& + 48(D] (ty)Dp(t2) + Do(ty)Dy(t2))~1+ +2

+24Dp(ty)Dp(t2) L)4 + 48D) (ty)Di(t2)

+24(Do (t )Di(t o)+oD (t o)Di(t o)) +o( 64 + 16( (2))D (t o)Di(too) j
44 44

+C~Cp' — Dp(t ))D—p(t )2L)4 ——(D) (ty)Dp(t2) + D o( yt)Dy( t)2)

(268+
~

—6((2) l
Do(t, )D, (t, )j)

8 8
+Af Cf —Dp(t] )Dp (t2) L)4 + —(Dz (t) )Dp(t2) + D()(tz)D] (t2))

40
Do (ti )D—o (to) )9 (B1)

Here the color factors are given by C~ = N, C& = (N —1)/2N (QCD:N = 3), and nf denotes the number of light
flavors. In the above expression we have introduced the shorthand notation

)
(in*(~ —1) l

D, (t1,) =
)

L'„= ln'
jl

ln the DIS scheme the above coefBcient function becomes

(B2)

(B3)

(B4)

b(t, —z, )b(t2 —z2)
X] + X2

C~ 18 —8((2) + 8(P (zg) + P (z2)) + 24(P(z) ) + P(z2))

+16P(zg)P(z2) L„+ 15+ 84(, (2) + 48((3) + 12(P (zi) + P (z2))

+16(P'(* )P( )+P( )P'(* ))+48P(* )P(* )

+(26+ 64((2))(P(z)) + P(z2)) L~ + 14((2) + 72((3) + ( (2)
964

+12(P (zi)P(z2) + P(zg)P (z2)) + 8P (zi)P (z2)

+(17+80((2))P(»)P(z2) +
~

——8(,'(2)
~
(P (zi) + P (z2))

(9 2

)
+

l

—+ Mo(2) + 24((6)
l
(4'(oi) + 2'(oo)))l(15

2 )
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22 193
+C~Cp —11 ——(P(xg) + P(x2)) L„+ —22((2) —24((3)

22 ~ 2 (268
(P (zl) + P (z2)) + I 8((2) I (P(zl) + P(z2))

44 215 2366 194—P—(* )P(* ) L, + + &(2) —3«(3) — ( (2)
3 9 9 5

——(P ( )P( )+P(* )P (* )) ——(P ( )+P (* ))
22 2 2 11 2 2

+
I

——»((~) 1(J'(») + P(*~)) +
I

—K(')
l
I'(»)~(*2)

I
)57 (268
) 2 ) E9

4 34
+nfCF 2+ —(P(z&) + P(x2)) L + ——+ 4((2)

3 P

4 8 40 38+-(P'(* )+P'(*.))+-P(* )P(* ) — (P( )+P(* )) L ——
3 3 9 P 9

380 40
('(2) ——P(»)P(») + —(P (»)P(») + P(»)P (»))9 9 3

y(P'(zg) y P'(z2)) —5(P(zg) y P(z2))

+ C~ 16 Dy &2 +I' xy Dp t2 +24Dp &2 Lh(ti —zi)
zy+z2

+ 32P(zy)Dy(t2) + 16P (zy)Dp(t2) + 24Dy(t2) + 48P(zy)Dp(t2)

y(26+ 64((2))D0(t2) L„+.16P (zg)D) (t2) y (9 —16((2))Dg(t2)

+24P(xy)Dy(t2) + 1.2P (zy)Dp(t2) + (17 + 80((2))P(zy)Dp(tg)

/15—+ 36((2) / 24((3)
I
Dp(t2)

22 2 44 44
gC~Cp ——D()(t2) I g — D) (t2) ——P(zi)D0(t2)

3 " 3 3

f268 44 22 2+I P 3

(268 /57
11D) (t2) +

I

—8~(2)
I
P( )zD)p(t, ) +

I

— 12((3)
I
Do(tg)( 2

4 8 40
+nfCJ —Dp(t2) L„+ —(D) (t2) + P(z) )D()(t2)) ——Do(tz) L„

8 4 40+ P(zl)D1(t2) + —P (zl)DO(t2) + 2Dy(t2) ——P(z1)DO(t2)
3 3 9

—5D0(t2) / I't) ++ t2, z) ++ z2]

1++i+ &2
C~ 16Dp ty Dp &2 L~ + 32 Dy ty Dp t2 + Dp Cy Dy

+48D0(ty)Dp(t2) L)I, + 32D&(t) )D&(t2)
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+24(D, ( t)oDo(to) + Do(to)Do (to)) + (17 + ttO((&))tto(to)tto(to) )
44 44

+C~Cp — D—p(t ))D p(t 2) L)t ——(D) (ty)Dp(t2) + Dp(ty)Dy(t2))

/ 268
+

I

—8('(2)
I
tto(to)tto('o) )

8 8
+nfCy' —D p(ty)D p( t2) L~+ —(D)(t ))Dp(t 2)+Dp( ty)Dy( t2))

40 Ito—(t.—)&o(t,)I9 (B5)

If one chooses the renormalization scale pR unequal to the mass factorization scale p one has to add the following
term to the expressions in (Bl) and (B5):

(
tt () R j l PR

tIl
S+V(1)(t t q2 2)4' p'

where Pp is the lowest-order coefficient in the P function given by

11 2
Pp

— C~ — nf, —
3 3

(B6)

and A~~+ ' ) can be found in (Al) for the MS scheme and in (A13) for the DIS scheme.
The coefffcient functions for the cross section d o./dQ d2y can be very easily derived from the above expression by

multiplying the coefficient functions in (Bl), (B5), and (B6) by the factor xq + x2.
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