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Sister trajectories and locality in multiloop string scattering
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The multiloop corrections to the high-energy behavior of four-tachyon scattering are studied in
string theory. In the limit of high center-of-mass energy, 8 ~ oo, for Axed transfer momentum
squared, t, we obtain the Regge behavior of the erst "sister" trajectory in two-loop scattering. The
multiloop-generated sisters are found to be independent of propagator twists, which are necessary
for exposing tree-level sisters. The presence of these trajectories in higher-order loop diagrams may
be sufBcient for string theory to be consistent nonperturbatively with locality.

PACS number(s): 11.25.Sq, 11.25.Db, 11.55.Bq

I. INTRODUCTION

String theory near the Planck scale is not fully under-
stood. There are several characteristics of the current for-
rnulation of string field theory (SFT) that suggest strings
behave nonlocally in this energy region. If they hold. at
a fundamental level, then acausality may result, which
is probably unacceptable. The most suggestive feature
is that strings are extended objects. Second, in well-
behaved local field theories, high-energy scattering ampli-
tudes obey the rigorous lower bound set by Cerulus and
Martin (CM) [1]. Specifically, in the limit of high center-
of-mass energy, s ~ oo, for fixed angle sin (0/2) = t/s-
where t is the momentum transfer squared, scattering
amplitudes obey ~A(s, t)

~

) e
String theory, on the other hand, has the four-point

tree-level behavior ~A(s, t)
~

—+ e ~( )', which was pointed
out even in Veneziano s original paper [2]. Finally, Eliezer
and Woodard [3] note that the cubic formulation of string
field theory produces an infinite number of Abelian so-
lutions [4]. This causes a breakdown of the initial value
problem, since it requires an infinite amount of initial
data. They show that attempts to restore this loss of pre-
dictability result in acausal behavior, which again leads
to nonlocality.

Yet, it has been argued [5] that, since the interaction of
strings is local, i.e. , at a (mid)point, causality is in fact
obeyed. Thus, although strings are extended objects,
they are not prevented from exhibiting local behavior.
This leaves open the possibility that strings may be ob-
tained from a local field theory. As noted by Thorn [6], it
is not necessary that we restrict ourselves to considering
only local SFT's, since strings may exist as bound states
of a more general local Beld theory. To lend support to
this notion it needs to be shown that string scattering
obeys the CM bound, or at a minimum, that it obeys
the postulate associated with locality.

The CM bound was derived under the assumptions of
the existence of a finite mass gap, polynomial bound-
edness, and unitarity. Although string theory does not
have a finite mass gap, since it has massless particles, it
is believed that this probably does not lead to the bound
violation. Uniform polynomial boundedness states that,

for fixed t, the amplitude ~A(s, t)
~

is bounded from above
by 8, where N does not depend. on s or t. There are no
elements of the string S matrix that obey this condition
in the region t ) N, since its fixed t behavior goes as 8,
i.e., the Regge behavior is linear. Nor does this behav-
ior obey even the weaker condition K O(~t~ ~ ), which
Martin showed also yields the CM bound [7]. In quantum
field theory, polynomial boundedness is a consequence of
locality. As a result, this type of power behavior for s in
string theory probably leads to the CM bound violation
at each order in perturbation theory. Since each element
of the S matrix violates the CM bound, we are left with
summing the perturbative series, and thereby obtain uni-
tarity, to determine if the nonperturbative amplitudes
obey the bound.

Attempts at restoring the CM bound through unitar-
ity have been made by Gross and Mende [5], and later
Mende and Ooguri [8]. These authors examined the dom-
inate elastic scattering behavior at each order in the per-
turbative expansion. This involves locating the saddle
points in moduli space, which were suggested to have the
general fixed t scattering behavior

&[cx(t)/(g+1) j ln s

(ln s) "g (1)

where g is genus number, and the linear Regge trajectory
is defined by n(t) = a't + no. The "lns" in the denomi-
nator in Eq. (1) is indicative of multiple Regge cuts. Un-
fortunately, due to the form of the energy-dependent co-
eKcients in the exact expressions of the fixed-angle scat-
tering amplitudes, the higher-order quantum corrections
could not be controlled during resumming to reach a de-
cisive conclusion. However, Mende and Ooguri were able
to show that the CM bound was obeyed for a finite range
of energies, which depends on the coupling constant.

Yet, there appears to be no basis for requiring the dom-
inate behavior, at each order in the perturbative expan-
sion, for restoring the CM bound. In the present paper,
we investigate a particular subdominate scattering be-
havior that seems to agree with the lower CM bound
limit. The hope is that the resulting perturbative sum
will be more yielding to summation. The central fea-
ture of our analysis is the so-called "sister" trajectories.
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Their discovery dates back almost twenty years to Hoyer,
Tornqvist, and Webber [9]. These authors showed that
in tree-level six-point tachyon scattering the removal of
unphysical poles, which threatened the consistency of the
theory, required a trajectory with a slope half that of the
leading Regge trajectory. Shortly after the discovery of
this first sister, Hoyer [10] uncovered the second sister in
the eight-point tachyon tree amplitude, and went on to
propose the generalization,

such that the mth sister first appears at tree level
for 2m + 4 interacting particles [11,12]. Sisters were
subsequently found in the Neveu-Schwarz sector of the
Neveu-Schwarz-Ramond (NSR) superstring [13], and re-
lated phenomenological implications were discussed [14].
Quiros showed that the first sister also appears in the
single-loop six-point diagram, although its identity is ab-
sorbed as it renormalizes the corresponding tree-level sis-
ter [15]. Finally, several papers have also considered
the closed bosonic string and found the same pattern
of decoupling in N-particle tree scattering as in the open
string [16—18].

The first three sister trajectories are shown in Fig. 1
along with the leading Regge trajectory. Due to suc-
cessively more gradual slopes, the net tendency of the
sisters is clearly not linear as t ~ —oo. We can find
the asymptotic behavior by considering the intersection
of two neighboring curves n (t) and n +i(t). Equating
these using (2) and then letting m ~ oo, we easily find
that to lowest order n(t) —2m2. Comparing with (2)
gives

of four-point tachyon scattering, where the sister n2(t)
is expected to mediate between two three-point one-loop
processes. This topology also allows us to foresee the
presence of each of the successive sister trajectories as
the number of loops increases. By comparison, there may
also be approaches that do not rely on quantum correc-
tions. In Ref. [19], for example, a classical restoration of
the CM bound in string theory was suggested through a
reinterpretation of the scattering of string states in terms
of the sisters as wee partons.

The plan of the paper is as follows. Due to the cum-
bersome calculations required at the multiloop level, it
is desirable to be able to compare our results using two
distinct procedures. Thus, here we will introduce an al-
ternate method to the algorithm given in Ref. [19]. In
Sec. II, we present a modified approach of the single-
Regge high-energy limit for exposing the sister trajec-
tory. The first and second sister trajectories are then ob-
tained in six-point and eight-point tree-level processes,
respectively. In Sec. III we will show that the first sister
appears in the open string four-point scattering ampli-
tude at the double-loop level. In Sec. .IV we give some
concluding remarks. Since the sister trajectories appear
in the bosonic sector, our results equally apply to the
Superstring and Heterotic string. Finally, our notation
is as follows. The standard Regge trajectory is given by
ni = n(t) = n't + no, where we choose the open string
slope o.' = 1 and intercept o.o ——1. This leads to a
tachyon mass of m = —1. The trajectory n(t, ) is asso-
ciated with the momentum transfer squared t, across the
propagator z;. Finally, the trajectory n(s;~) is defined
with respect to the energy

. 2s;, —= —(», + p.+i+ +», )

Thus, under unitarity, the fixed t scattering behavior now
agrees with the weaker polynomial boundedness condi-
tion of Martin. To restore the CM bound, for general
N-particle scattering, we must then exhibit each of the
sister trajectories, n (t), for all m. Since mediating sis-
ters decouple in tree-level exchanges for m ) (K —2)/2,
the approach in this paper will be to demonstrate their
existence in multiloop processes. The contributing sisters
are those that do not renormalize a lower-order sister.
The simplest case to consider is the double-loop diagram

FIG. 1. Plot showing the leading Regge trajectory n(t) and
the first three sisters.

II. SING LK-KKG G K LIMIT METHOD

Three different high-energy limit schemes have been
employed in the past to uncover the sister trajectories
in tree-level scattering processes. The most general is
the single-Regge limit where the energy across only one
off-shell mediating propagator is allowed to grow large,
while across the others it remains relatively small. Even
though this is the most desirable limit to apply, since
it is the most general, it has until now only been ap-
plied to six-point scattering [20]. In their first paper,
Hoyer, Tornqvist, and Webber exposed the sister trajec-
tory n2(t) using the helicity-pole limit [9]. This limit
was also used to first exhibit the ns(t) sister in eight-
point scattering [10]. Subsequently, the full spectrum of
sisters was found. using the even less general multiple-
Regge limit [11,12]. Since it is important to display the
general nature of the sister trajectories, in this paper we
use the single-Regge limit procedure.

The single-Regge limit, in which the transfer momen-
tum squared t is kept fixed, relates to the CM theorem
differently than using the fixed-angle limit as employed,
for example, by Gross and Mende. The fixed-angle limit
allows direct verification that scattering amplitudes obey
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the lower CM lower bound. On the other hand, using the
single-Regge limit, we are attempting to show that scat-
tering amplitudes obey the weaker fixed t upper bound
condition of Martin [7]. Recall that this condition is just
one of the three assumptions in the proof of the CM
bound but is a direct consequence of locality, which is
our main focus. Proving this condition through unitarity
will still not be enough, however, to conclude that the
CM bound holds in string theory. The finite mass gap
will always exist, since eliminating photons or gravitons
from string theory are beyond consideration.

Our main goal is to apply the single-Regge limit to a
multiloop string scattering process. For this, we must
reconsider two features of past approaches, which were
necessary for sister trajectories to exist in a tree-level pro-
cess. First, a four-dimensional space-time was assumed.
Though string theories are simplest in critical space-time
dimensions of 10 and 26, this restriction can be met in the
high-energy limit by allowing momentum to grow large
in only four dimensions. Removing this condition would
simply mean that we may have to start the search for
sisters at a higher N-point function, with an appropriate
dimensionality constraint. Second, to reach the sections
of moduli space, where sister trajectories dominate, re-
quires that at least one oQ'-shell mediating propagator
be twisted. Since the original single-Regge limit proce-
dure given in Appendix B of Ref. [20] requires a priori
knowledge of twists, we modify that approach to elim-
inate the need for their explicit presence in the initial
expression of the amplitude. We detail our method using
the six-point function and easily reproduce the result of
the above work. For higher point functions, our approach
allows many cases to be considered simultaneously, which
significantly reduces the necessary eKort. Below, we eval-
uate the eight-point scattering process to highlight this
advantage.

A. Six-particle tree scattering

On the other hand, the vertices V(n(t ), n(tt, )) have un-
physical poles for n(t ), n(tb) = —1, —2, . . ., which have
the undesirable properties of negative spin ("nonsense")
and wrong signature. Now, for a(tg) there is only one
zero coming from the central propagator, while there are
two poles coming from the adjacent vertices. This leaves
an unphysical pole, which does not appear in the exact
expression for the scattering amplitude. For the theory
to be consistent there must be some mechanism to cancel
this unwanted pole.

To examine the high-energy behavior of scattering am-
plitudes in a way that makes sense requires that the
energy first be analytically continued into the complex
plane, e.g. , s —+ ioo [21]. With large energy in only four
dimensions, there are eight kinematic degrees of freedom,
yet nine free parameters. Thus, one must apply a four-
dimensionality constraint [22]. Hoyer, Tornqvist, and
Webber observed that previous analyses have imposed
the dimensionality condition only after the energy had
been analytically continued back to the physical plane.
The efFect of not maintaining the constraint throughout
the calculation is that some critical point remains hid-
d.en. Imposing the constraint before the back continu-
ation, allows a factorization to occur in the amplitude,
which then exposes the critical point. Integration about
this point leads to the behavior IA(s, t)

I

~ s '~ l with
poles at a2(t) = —1,0, 1, . . .. For n(t) = —1, the pole
due to the sister trajectory ct2(t) precisely cancels the
remaining unphysical pole appearing on the n(t) trajec-
tory.

The sister trajectory n2(t) is exposed in the high-
energy limit of the six-point function only if twists are
placed on both of the adjoining propagators as shown in
Fig. 2. We begin, however, with the corresponding un-
twisted amplitude. This is easily calculated in the Fubini-
Veneziano formalism from

(o, p, Iv(p, )av(p. )av(p, )av(~, ) lo, p, )

As - A(n(t ))V(n(t ), n(ts))L3, (o'(tg))
xv(n(ts), n(t, ))A(n(t, )) .

The propagators A(n) have zeros for a = —1, —2, . . ..

n (t)2

'2 '3

FIG. 2. The first sister nq(t), requiring twists on both zi
and z3.

Figure 2 shows the lowest-order scattering process that
exhibits the first sister trajectory, n2(t). The original ob-
servation of Hoyer, Tornqvist, and Webber [9] that sug-
gested there must be other trajectories than the standard
Regge trajectory n(t) is as follows. In the limit s -+ oo,
the six-point amplitude factorizes:

In general, passing the vertex operators through each
other produces factors of the form

OO
Z

exp —2p; .
p~ ) —=—(1 —z) "*""~,

n (6)

Substituting the momentum scalar products, the full am-
plitude becomes

where z is the product of coordinates z, , which are as-
sociated with the mediating propagators connecting the
vertices. Final expressions for the amplitude are usually
written in terms of the right-hand factors. The left-hand
form is more convenient, however, for locating critical
points in the high-energy limit s —+ ioo. Consequently,
we use the left-hand side of (6) if one of the connecting
propagators sees the energy s, and the right-hand side
for nonoverlapping quantities. In the particular case of
Fig. 2, the complete exponential factor is easily found to
be

2 ). ( p2zl ps) ' (p4 + psz")
n=1
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1
1 n(ti ) —1—~(t2) —1—cx(t3) r ~ X —1—~(s23) /'1 X

—1—cx(s45)
dz1dz2dz3z1 Z2 Z3 (+ 1j

0
OO

x exp ) —[zi (834 —834) + zl z3 8 + 834 + z3 (835 —834)]
nn=1

where

8 = S34 + 861 824 —S35

In writing (8), we have also dropped terms in the exponential, which can be safely neglected in the high-energy limit.
We are now in a position to impose the four-dimensionality constraint, which, in the high-energy limit, is given by

[22]

835824 =1.
834861

(10)

Applying this constraint to (8) allows the argument of the exponential to be factorized, giving

1—cx(ti ) —1—cx(t&) —1—n(t3) l i —1—n(s23)Z1 Z2 Z3Z1 Z2 Z3 (1 —Z1)

x(1 —z, )
—'- l" lexp 8 —Z1 —X1 Z3 —X3

nn=1

where

( ssi1 ( ssi&
833)

'
4 8 4f

(12)

points would lead to the daughter trajectories associated
with the first sister. For the leading-order critical point
evaluation of (ll), we need retain only up to the n = 2
term in the exponential. After shifting z1 and z3, we
obtain

To evaluate the high-energy limit, we let s -+ ioo, where
the real part of s is held fixed in the strip of convergence.
The result is a Fourier integral whose asymptotic behav-
ior is dominated by its critical points [21]. For (xi, x3) to
be a useful critical point it must fall within the integra-
tion region, 0 ( z1, z3 ( 1. Critical points taken at the
boundaries do not produce sisters. Since the boundary of
the integration region is not included, the factors in (11),
other than the exponential, can be ignored during inte-
gration. To recover the proper limit s + ioo, we obtain
a double critical point by choosing the phases

—1—cx(ti ) —1—n(t3) g x —1—n(s23)X1 X3 L1 X

x(1 —x,)-'--l" ll, ,

where the integral is given by

1

Is —— dzzz3 e ' dzidz3 exp[szzziz3]
—1—cx(t2 ) sz2 c

0

834& S61 M lOO and we have defined the constant

824) 835 M —ZOO

This is completely equivalent to twisting the propagators
corresponding to z1 and z3, since energies that overlap
an odd number of twisted propagators change sign. In
other words, the role of the twists here is to place the
critical point inside the integration region.

The leading trajectory of the first sister from (ll) is
obtained by integrating about the n = 1 critical point,

c —
3 xix3 (xi —1) (x3 —1)

Setting y = —iEz2z3s, yields

1

0
E yp

x dzi dy exp(ie yzi),
—yp

where y0
———i~ z2s. Integrating over z1 we easily find

z, —xil + ~ Izs —x (14) I6 ——s
—2—n(t~) sz2c

dZ2Z2 C

where the relative smallness of e with respect to s will
be determined shortly. Choosing higher-order critical

x dy

~ ~

exp(iy) —exp( —iy)
—yp y
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—(3/2) —(1/2) n (t2 ) —z (20)

Note, that for us to consistently write z = —y e s c
we must have e ) s / to reach the lower limit z ~ 0 for
fixed y. Doing the z integral gives I'[—

2
—2n(t2)], which

is vahd only for n(t2) & —1. In this region the first sis-
ter trajectory dominates the ct(t) trajectory. Collecting
everything together, the complete amplitude is then

where the resulting y integral is now symmetric. If z3
were not critical, taking the limit e —+ 0 here would give
Is ——0 (use dy e). This explains the need for a double
critical point, which is not present in either the four-
or five-point amplitudes. Now, in the high-energy limit
s m ioo, yo —+ oo, and so the integration over y gives
2i7r.

To obtain a convergent representation for the z2 inte-
gral, we now take s ~ —oo, after which we will analyti-
cally continue back to s —+ oc). Define z = —sz2c, which
gives

(
—

)
('/2) ~(t2 )+(i/2) ——'

6 = Z7l —SC

at at at
z

1
z z

3 4
z

5

factor r + 1. Therefore, the poles of n2(t2) have pure
positive signature. Since these poles correspond to odd
values of spin, i.e. , n(t2) = 1, 1, 3, . . ., they have an un-
physical wrong signature.

To summarize, for the existence of the first sister it was
necessary that the argument of the exponential factorize,
producing a 2-tuple critical point. Integrating over both
coordinates, in efI'ect, removed the linear power of the
propagator variable z2 from the exponential. In general,
integrals of the form

FIG. 3. At tree level, the second sister cts(t) first appearing
in eight-point scattering. Concurrently, z2 and z4 see ct2(t).

( sc)(i/2)+{i/2)cx(t2)s —i

( )]
—i CX(ti) ——i—CX(t2)

(1 )
—i—n(s23) (1 )

—i—n{s42) (21)

z exp( —cz )

in the limit c ~ oo integrate to

(24)

A6 —a7t e
—27f CXg (t2 ) ~—n2 (tZ )—1 -n2 (t2 )2 8

/ i 4 1 ~2 (t2) ~(t1) ~2 (t2) ~(t3)

x (1 + gn2(t2) —~(823) f1 T An (t2) —2&X(s45)X1J (22)

We now analytically continue the energy back by making
the replacement —s ~ e ' s. Using ct2(t2) = 2n(t2)—
2, which corresponds to the first sister trajectory, and
simplifying, we finally arrive at

I —I'1 0! n (cx/m)+ (n/m) f (
m m m (25)

Thus, sisters do not appear in either four- or five-point
scattering, since both retain the linear power of z. Fur-
thermore, to produce the second sister cts(t), both the lin-
ear and quadratic powers of z must be integrated away,
leaving the cubic power. This occurs when the critical
point is a 4-tuple, which first arises in the eight-point
scattering amplitude.

Since each energy in s overlaps with s34, the Regge be-
havior s '( ') shows that the central propagator in Fig. 2
sees the sister. Using the four-dimensionality constraint
(10) we can write

S= S34 + 861 824 835

835 —861 824 —861

and easily recover Eq. B.19 of Ref. [20].
Examining the I' function in (22), we see that the poles

of the first sister trajectory are at n2(t2) = —1, 0, 1, . . ..
Our approach makes it particularly easy to determine the
signature r of these poles. Twisting the sister propagator
z2 changes the sign of each of the overlapping energies.
Although both the numerator and denominator of x1 and
x3 change sign in Eq. (12), the signs of the energy ratios
remain unchanged. Thus, the twisted and untwisted di-
agrams can be added together giving an overall weight

B. Eight-particle tree scattering

In this section we will expose the second sister, cts(t),
in the open string tree diagram of Fig. 3, where the sis-
ter appears across the propagator associated with zs [12].
In the corresponding amplitude, we isolate the relevant
terms by including in the exponential only quantities
that overlap the central propagator. We gather the other
terms into a function f (zi, z2, z4, zs), whose exact form
can be ignored, since, as shown in the last section, the
sisters depend only on the exponential factor. The evalu-
ation of the eight-point diagram has, until now, only been
carried out under the multiple-limit methods [10,12], and
never using the more general single-Regge limit taken
here.

Prom Fig. 3, ignoring twists, we immediately write
down

dz, f (zi, z2, z4, zs)zs ' exp 2 ) —(—p2zi zz —pszz —p4) . (ps + psz4 + p7z4 zs )nn=l
(26)
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Substituting in the high-energy limit values of the momentum scalar products gives the eight-tachyon amplitude

5 (
dz; f(zi, z2, z4, z5)z3 ' exp ) —[zi zz (s25 —s35) + zi z2 z4 (s26 —s25 + 835 s36)

+S45 + Zi Z2 Z4 Z5 8 + Z2 (835 845) + Z4 (846 —S45)

+Z4 Z5 (847 846) + Z2 Z4 (S36 835 + S45 S46) + Z2 Z4 Z5 (837 836 + 846 847)]

where, now,

8 (861 826 + 836 S37) (28)

As before, each energy in 8 overlaps with the energy 834 associated with the proposed sister propagator.
Applying the high-energy four-dimensionality constraints

s81 836 =1
82683?

881835

825837

881846 881S45
1 ) =1

S26S4? S25 84?
(29)

factorizes the argument of the exponential yielding

5

dz; f(zi, z2, z4, z5)z3 ' exp s ) —(zi —xi)(z2 —x2)(z4 —x4)(z5 —x5)n

where

836 83? + S4? 846
) X4

s25 835
)

826 S25 + 835 836

(31)
84? —846

X5
837 S36 + 846 S47

825 826 + S36 835

For the critical point(xi, x2, x4, X5) to be inside the integration region, we must place twist on each of the associated
propagators and apply an additional four-dimensionality constraint:

836845

835846

Consequently, due to the twists we have the sign changes

(32)

826, 835) 83?, 846 M —ZOO (33)

To remove the first two powers of z3 in the exponential in (30), and to obtain a leading trajectory, we will integrate
around

zi —xil + 6 Iz2 —x21 & ~

Iz, —~X41 + ~, Iz5 —~X51 + ~ .
(34)

Clearly, this is just one of many critical points that we could have chosen. By writing z4 —x4 ——(z4 —~X4)(z4+ ~X4)
2~X4(Z4 —~X4), etc. , and shifting the z's, we find

As —f(xi, X2, ~x4, ~x5)
—1—~(&3) sz3edZ3Z3 6 dZ1 dz2 exp[zsziz28(~x4 —x4) (~x5 —x5)]

dZ4 dz5 exp[2zsz4Z5sgx4X5(xi —xi) (x2 —x2)], (35)

where

C = 3 Xl —Xl X2 —X2 X4 X4 X5 X5 (36)

The last four integrals in (35) can be done in pairs, resulting in
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As - —4~ [2s x4x5(x, —x, )(x2 —x2)(1 —~+4)(l —~xp)] f(xi, x2, ~&4, ~&z)
—4—~(&3) sz,'cdZ3Z3 (37)

Using (25) and taking the limit s —i —oo, then gives

As - ——',f (xi, x2, ~x4, ~x, )vr'( —sc) l'~'l '"i+'I'[—
—,'o.(ts) —1]

x[s'x4»(xi —»)(x2 —»)(1 —vx4)(1 —v»)] ' (38)

which is valid only for n(ts) ( —3. Again, we analytically
continue back by replacing —8 with e '™8.Thus, we
find the Regge behavior A8 oc 8( ~ ~ ( '~ = 8~'( '~

which corresponds to the second sister trajectory. The
first pole at ns(ts) = —2 cancels the pole of the first
sister trajectory at n2(ts) = —2. The daughters of ns(ts)
cancel the other poles at n2(ts) = —3, —4, . . ..

When the central propagator in Fig. 3 mediates the
second sister ns(t), the adjacent propagators z2 and z4
see the First sister n2(t). The corresponding amplitudes
can easily be computed by writing the exponential fac-
tor in (26) in terms of the appropriate overlap quantities,
taking the corresponding high-energy limit, and then in-
tegrating over a 2-tuple. However, if the intent is just
to prove the existence of these sisters, then the form of
Eq. (30) suffices. By observation, this expression also
indicates that the n2(ts) trajectory occurs on the cen-
tral propagator if there are either two or three twisted
propagators, with at least one on both sides. In previous
methods, exposing each of these sisters required consid-
ering separate cases by including the various twists in
the initial amplitude. Consequently, we now have a more
direct procedure for examining sisters in loop diagrams,
where it is not clear what role twists will play.

III. DOUBI K-I OOP FOUR-TACHYON
SCATTERING

We turn now to four-point scattering, which at tree
level is known not to exhibit any sister behavior. The
single-loop diagram does not have a sister either, since its
scattering amplitude has at most a single critical point.
Thus, the erst sister trajectory is expected. to require at
least two loops. Since the single-Regge procedure un-
covers the dominate scattering behavior in selected parts
of moduli space, we must be careful to avoid processes
where the sisters have to compete with Regge cuts. For
example, Fig. 4 displays the two lowest order diagrams

with the cuts. The general form of an amplitude domi-
nated by a cut is given by

p [~(&)/(g+ &)j &~ 8

A
(ln s)&

(39)

for some constant p. This shows that for the double-
loop process the cut has the same Regge slope as the
second sister. As t goes to negative inanity, the high-
energy amplitude with the cut will eventually dominate
the amplitude of any potential sister trajectory o.2(t). In
general, the nth cut occurs at one lower order process
than that of the nth sister, but with a trajectory above
the sister in the high-energy limit.

This leads us to focus on processes in which the sis-
ter appears outside the loop. Two such topologies are
shown in Fig. 5. Although cuts may still arise if twists
are required in either loop, the procedure given in the
last section allows us to isolate terms in the scattering
amplitude that emphasize only the candidate propaga-
tor. We will evaluate the limiting situation where the
loops are suKciently separated such that they and the
connecting propagator can be treated as individual ob-
jects. Both amplitudes may be constructed by sewing
together two single-loop diagrams. For this, we use the
formalism from Appendix D of Di Vecchia et al. [23],
where the open string N-point multiple-loop vertex has
the form

l

s

)(

s

FIG. 4. The Regge cut behavior across the dotted line.
I'IG. 5. Two distinct topologies for producing the o2(t)

sister in double-loop four-point scattering.
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V(~.g) oc d p exp[ivrp w p+ p B+C],
1

V(~.~) oc exp[ —ivra r . B+C] . (41)
deti7rw D&2

and where w is the period matrix. Completing the square
and integrating over the loop momentum p gives

The factorized four-tachyon double-loop amplitude is
then given by

A (4.2) dz
1 (Ba)'

dz, dp(o, pl, p2~ exp —— + Cl. z ' exp —— + C& ~o, ps, p4),2 lnkl 2 ln k2

where the subscripts L and B refer to the left and right
loop, respectively, and the superscript on Lo' labels the
leg connecting the loops. The period matrix has been
reduced to the single-loop case 7 = 2vri ln k, where k will
be defined below. The details of the measure dp, which is
a function of kl and k2, may be suppressed in the analysis
below as long as the boundaries of the integration region
are avoided.

In the multiple-loop case, the coefficient B„ in (40) is
given by (with n' = 1)

(i)
a„=~2) ),0,

i=l m=O

((„)) (g
—T (U, (z)) &v

—T (zo)

n~ —T-(V(z)) 4 —T-(«) )

Zi 1(—Zi Zi+l)Z + Zi(zi+1 Zi —1) G1Z + G2
V, z

(Zi —Zi+1)Z + (Zi+1 —Zi 1) GSZ + G4

To reduce (42) we will need the commutator

[B,a.t(')] = —~2),[c), ln V (z)], e . (47)
rn= 1

Partial derivatives of the projective transformation can
easily be taken giving

QlG4 —G2G3 Z' —Z'+l Z l —Z
BzV (z = 0) 2 ~~=O(az+a) '

= z+, —z,

(48)

or, more generally,

T = S„"'S„"' - . S„"", r = 1, 2, . . . , g

n, e zl(0); u, , gs
(44)

where zo, r)~, and („are fixed points, and a product of
Schottky group elements is defined by

c), V(z=o) = m. —G3 Gl Q4 —Q2 Qg

(a Z + a )m+1

, ("—"+1) (Z*—1 —Z*)

(z,+, —z;, )

where g is the genus number. Also, (")P means that
the sum is over all elements of the Schottky group ex-
cept that the leftmost element in T cannot be S„. It
would be quite dificult to proceed from this point if it
were not for the fact that we have factorized into single
loops. In practice, the Schottky group formalism describ-
ing the multiple-loop diagrams is much too formal to be
of use. In the single-loop case T = Sl and Sl (y) = k y,
where k is the multiplier and related to the radius of the
loop. Here, however, the sum restriction leaves just the
identity. Finally, for one loop ( ~ oo, 1)1 —+ 0. Thus,
dropping the loop index,

The single-loop three-point diagram is constructed by
sewing together two legs of a five-point diagram, and
then fixing three of the projective coordinates. For that
case, following Di Vecchi et al. [24] we sew together
legs 3 and 4 and then choose z3 ——k, z4 ——oo, and
zs ——1. In the present case, we will associate the co-
ordinate zq with the connecting leg coordinate z . This
gives B,V, (z = 0) = zl —1, along with c) V (z = 0) = 0
for m ) 2. Thus, the commutator (47) becomes

3 oo (i)
a=~~) ) ™~

a ln V(.) ) .=.
(45)

[a t()] ~2) ( ) [ ( )]
V (z)rn

= v2 ) (1 —zl)
m=1

(5o)

where the projective transformation is explicitly given by Next, the coefficient C in (40) is given by
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3 oo

C = ) ) nof*l . n~*l, O™ln[V, '(z)], o+2
i=1 m=O

(i) (~)) " 88, ln[V (y) —V (z)]v o

n, m=o

V(y)-V-( )
" (51)

where the prime form is de6ned by

, z —T (m) u) —T (z)
z —T (z) lo —T (m)

' (52)

and the prime indicates that the identity is not included. For a single loop the prime form reduces to

E(z, lU) = (z —lu)
, z —k"m m —k"z

z —knz e —k"u)
n=1

(53)

Below, we will also need the commutator

(oI[C ~"']Io p') = ). , ~. »[V.'(z)] =o+ 2) ) ', ~. »[z* —V.(z)].=.
m=1 inc m=1

+2) ) "',cf, ln
i m, =l

z, —k V(z) V, (z) —k z,
z, —knz; V (z) —k"V, (z)

z=O
n=1

(54)

where p = p. Because of momentum conservation, we can neglect the second denominator in the last term. Further,
in the high-energy limit s —+ oo, we have pl .ps —+ s/2, pl p4 a —s/2, p2. ps -+ —s/2, and p2 p4 -+ s/2. These imply

P P' = (Pl + P2) S * ~ o . (55)

Consequently, some terms in (54) do not survive the high-energy limit in (42). This permits us to drop the entire first
term and the i = c term in the last sum. Rearrangement then yields

(ol[C, n~&'l]lo, p;) = 2 ) ) ' 0, ln [z, —k"V, (z)] [V, (z) —k"z, ]
inc m=1 ( n=O v =1

Evaluating the derivatives gives

z=O

(56)

kmn [V/(z)]m
~

( )m+1[Vi(z)]m
k-V(.)]- - [V(.) ~-.,]-+

m=1 m, n=1
n=O z=O

(57)

which simplifies to

(ol[c ~"']lo p') = —2).p'
ZgC

kmn, (1 )m
~

(1 )m

(kn —Z, )m ~ (]. —knZ )m
+

m=1 m, n=l
n=o

(58)

Finally, we need the single-loop result

1 B2
exp ——

1 k
+ C lo, pl, p2) = glz'"' lo, pl, p2),

2 lnk1
(59)

where g arises in planar loop amplitudes and can be expressed in terms of the Jacobi 0 function. Substituting (50)
and (58) into (42) then gives
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A(4.2) dzz () dp
p; p~ lnz;lnz~

lnkl lnk2

4 m
..-1-2» » '~ 2». &4 '2 )Zi rp] 2 (f34 eXp

mi=1 m=1 ~ 92

lnz; t . k2" 1

C

lnz, &

'lnk2 i (ki —z;)m - (1 —ki z;)m)
2 n=l

f oo

+) p p, ).
i,jpc (n=O

km'

kmn 1

(ki —z;)m (1 —ki z;)m
+

(] krz. )m
(60)

where i and j correspond to the different loops, and we have dropped a momentum-independent factor, which can be
ignored in the high-energy limit. Replacing the momentum scalar products by their high-energy limits allows us to
factorize the argument of the exponential to get

A (4.2) dzz ' ') dp
4

d (P y )
—1—n(ti:z (1 — ) (1 —z.)x exp s ) g (zi, z2 ki)g (zs, z4, k2)

m=1
(61)

where we have defined

lnx k

n=o

1) ~ (] knx)mn=l
—(x 4-i y) . (62)

The function g (x, y, k) is for orientable planar loops and is essentially the mth derivative of ln@. Thus, we can
immediately write down the expression in the nonorientable case:

lnx . (—k) " . 1

and for the nonplanar case:

lnx
g"~(x, y, k) = )

mkmn) r
( kn x)mn=0

(64)

Now, we search for critical points, which do not reside on the boundary of the integration region. Unfortunately,
due to its complicated form, one must numerically search for zeros in g (x, y, k). It is found that g (x, y, k), for all
m, does indeed possess zeros that are exclusively within the integration range. These zeros generate the critical-point
curve x = P(y, k), for some function P(y, k) that satisfies g (P(y, k), y, k) = 0. In addition, numerical analysis
indicates that both nonorientable and nonplanar cases also possess critical-point curves. In all these cases the zeros
do not seem to be confined to any particular region of integration space. This case differs from the tree calculation
in two respects. First, to factorize Eq. (60) it was not necessary to impose a dimensionality constraint. Clearly, this
is due to the fact that there are only four interacting particles and not because of the loops. Second, unlike the tree
amplitudes, the presence of twists is not significant. In the former case, the twists were necessary to change the sign
of some of the energies to place critical points inside the integration region. In the loop amplitudes, the signs change
because of the periodicity of the Jacobi 0 function.

Continuing with the calculation, in the limit s —+ ioo (61) becomes

A(4.2) dzz dp
4

h,dz;($12@34) ' e" "'exp[sz(1 —zi)(1 —z3)gi(zi z2)k])gi(z3 z4 k2)j (65)
i=1

where

h2 ——'(1 —zi) (1 —z3) g2(zl)iz2) kl)g2(Z3)iz4&ik2) (66)
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We will evaluate about the critical curve

zz —P(z2, k) ) I
+ e Izs —P(z4, k2)

I

+ e . (67)

Expanding the g1's about this curve, and then shifting z1 and z3, gives

A(4.2)

1 C

dz2dz4(gq2@34) e" "' dz) dz3 exp[szzzz3hg] (68)

where

hy —[1 —P(z2, ky)] [1 —P(z4, k2)] gI (zg ——P(z2, kg), z2, kg)gg(z3 = P(z4, k2), z4, k2) (69)

and h2, @q2, and vP34 are now evaluated on the critical curve. The integration of zq and z3 proceeds as before, giving

A(4.2) ~ 2z~s dzz-'- (') dp )
—1—n(t) g

—1 sz hz
(7O)

Similarly, the z integration is also easily done giving

4~4.2l
—iae ' ' s ' ll'[ —n2(t) —1] dp dz2dz4(g g )

' ~'lh ))k
' (71)

which exhibits the first sister trajectory n2(t). Since the integrands involve derivatives of the Jacobi 0 functions, we
are unable to complete the calculation showing explicitly that the sister does not decouple. For the planar diagram,
however, at n2(t) = —1 it can easily be shown that the signs of each of the integrand factors are the same over
the entire integration region. On the other hand, to show that decoupling does not occur in the nonorientable and
nonplanar cases is more difficult, although in the latter case there are indications that this does not happen [25].

The form of (61) suggests that higher-order sister trajectories may also exist. For example, the second sister n3(t)
is present if it can be shown that two of the g's share the same critical point. Using

(1++) '+' —(1++) ' = —me*, (72)

it follows that

g (T, y, k) —g, +x(T, y, k) = ) (k"xe —k"ye "")+) ( e " ——e "
)n=1 n=o

Note that the right-hand side is independent of the index r. Thus, for any given critical point either one g„vanishes,
resulting in a single sister, or they all vanish simultaneously giving the full sister spectrum. In the latter case, (61)
reduces to the form

A(4.2)
—1—~(t)

1

dz2dz4($12434) dzqdz3 exp szqz3 ) z e

)
(74)

Integrating over z1 and z3, we obtain

A(4.g) z7l 8 dzz-'- (') dp
1 OC)

dz2dz4(g) 2vP34)
' ) z e

m=1
(75)

The right factor gives a z in leading order. Con-
sequently, the z integral generates a leading pole at
n(t) = —1, whereas the second sister requires n(t) = —2.
We conclude, then, that only the first sister can appear
in double-loop processes.

Presumably, the n3(t) trajectory is present if there are
at least two loops on both sides of the propagator. We
suspect that, in this case, there would be a factorization
of the form

G (z, y, kg, k2) = g (T, y, kg)g (T, y, k2) (76)

where k1 and k2 correspond to same-side loops. In Fig. 6
we display two distinct possible multiple-loop topologies
for producing the higher-order sisters. In both cases the
central propagator may allow up to the mth sister if there
are at least m loops on either side. However, evaluating
Fig. 6(a) is not practical, since the Schottky representa-
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(s)

FIG. 6. Two distinct topologies for producing the o. (t)
sister in multiple-loop four-point scattering.

tion of the prime form (52) is generally intractable when
two or more irreducible loops are present. On the other
hand, since Fig. 6(b) completely factorizes the loops, the
computation may not require many additional techniques
beyond those presented in this section.

combined high-energy behavior may actually agree pre-
cisely with Martin's upper bound. We have made a first
step in confirming this by showing that for four-point
scattering the first sister appears at two-loop order. In
general, to show that N-point scattering in string theory
obeys the bound, the set of scattering amplitudes reveal-
ing the full spectrum of sisters trajectories must be eval-
uated. Each perturbative series must then be summed
to obtain nonperturbative amplitudes, which are then to
be checked against the bound.

An alternative is to show the CM bound directly us-
ing sister-dominated amplitudes. Unfortunately, at this
time it is not clear how to take the fixed-angle limit with
the high-energy approach employed in this paper. We
may try to adopt the saddle-point method of Gross and
Mende [8]. However, for the sister trajectories, the lead-
ing saddle-point expansion terms vanish in both the s and
u channels. This leads to a predominantly fixed t limit in
fixed-angle scattering. As noted in Ref. [8], this is where
the saddle points approach the boundary of integration
space and their methods break down. As an aside, since
the saddle points evaluated by Gross and Mende dom-
inate those due to sister trajectories, their final ampli-
tudes would actually exceed the lower CM bound if the
sister generated amplitudes agree with the CM bound.
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cality in string theory. At a minimum, for locality to
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bound, be obeyed in the high-energy fixed t limit. The
key feature in our analysis is the sister trajectories, whose
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