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Stress-energy tensor of quantized scalar fields in static spherically
symmetric spacetimes
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A method for computing the stress-energy tensor of quantized scalar fields in static spherically
symmetric spacetimes is described. The fields can be massless or massive with an arbitrary coupling
( to the scalar curvature. They can be either in a zero temperature vacuum state or a nonzero
temperature thermal state. Analytical approximations which apply to all of these cases are obtained.
The method is used to numerically compute the components of the stress-energy tensor of massive
and massless scalar fields in Schwarzschild and Reissner-Nordstrom spacetimes. The results are
compared to the analytical approximations and the accuracy of the analytical approximations is
discussed.
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I. INTRODUCTION

Despite decades of e8'ort, a fully satisfactory theory
of quantum gravity does not yet exist. In the absence
of an adequate complete theory of quantum gravity, it
behooves us to attempt to construct and study model
theories which approximate the full theory. Such models
can provide guidance in the quest to construct the com-
plete theory, and can also provide insight into the sorts
of physical efFects which may occur in quantum gravity.
Even when a successful theory of quantum gravity has
been developed, model theories and approximations will
still have an important role to play, as the full and correct
theory is likely to be computationally intractable when
applied to situations of physical interest.

One such model theory is quantum Geld theory in
curved spacetime and the associated theory of semiclassi-
cal gravity. While the study of quantized Gelds in curved
spaces has a long history [1],significant progress has been
achieved in the last two decades due to the stimulus of
Hawking's discovery [2] that black holes emit thermal ra-
diation. During this period it has been realized that con-
cepts such as the number of particles present are observer
dependent, and that the description of the vacuum state
of a quantized Beld should be made in terms of tensorial
quantities such as the vacuum polarization (P ) and the

stress-energy tensor (T~„). The latter quantity is also
of particular interest as a source term in the Einstein
equations. The semiclassical theory of gravity sets the
classical Einstein tensor equal to the expectation value of
the stress-energy tensor operator of the quantized matter
Belds present:

G„=8'(T„„).

A primary computational diKculty in the theory of
semiclassical gravity is that (T~„) depends strongly on
the metric tensor g~ . While it is possible, with greater
or lessor efFort depending on the amount of symmetry
present, to calculate (T„„)in a specific fixed background
spacetime, it is exceedingly difBcult to calculate it within
a general class of spacetimes, which is necessary in order
to find self-consistent solutions to Eq. (1.1).

A secondary difFiculty, and common criticism, of semi-
classical gravity is that the eKects of the quantized gravi-
tational Beld are ignored. This is held to be unacceptable
as the gravitons will in general perturb the classical met-
ric by an amount of the same order as any other quan-
tized field present. Various solutions to this objection
have been proposed. A popular one is to justify ignor-
ing the graviton contribution by working in the "large
N" limit, in which the number of matter Gelds present
is so large that the graviton contribution is negligible.
An alternative approach is to study the separate efFects
of difFerent sorts of quantized fields in classical space-
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times. In this way one develops knowledge of the type
and. range of physical effects created by quantized Beld.s.
If a wide enough assortment of other kinds of quantized
Belds has been examined, we feel it is justifiable to as-
sume that the graviton contributions will not be wildly
different. For example in homogeneous and isotropic
spacetimes, gravitons can be modeled by considering the
effects of minimally coupled massless scalar fields [4]. To
date most computations have centered 'on conformally in-
variant quantum Belds. However, the gravitational Beld
is emphatically not conformally invariant, so it is impor-
tant to investigate the effects of conformally noninvariant
Beld s.

In this paper we describe a method of calculating (T~„)
for quantized scalar fields which allows both of these dif-
Bculties to be addressed. The second difBculty is ad-
dressed because the method works for scalar fields with
arbitrary masses and curvature couplings. This allows
quantum effects to be investigated for a large range of
conformally noninvariant quantum fields. The first dif-
Bculty is addressed because the method works for arbi-
trary static spherically symmetric spacetimes, thus allow-
ing the semiclassical backreaction equations to be solved
in these spacetimes. Interesting examples of static spher-
ically symmetric spacetimes include hot fiat space (in a
cavity), a nonrotating black hole in equilibrium with ra-
diation in a cavity, and an extreme nonrotating black
hole in empty space. Solutions to the semiclassical back-
reaction equations in cases such as these will provide sub-
stantial insight into the questions of how quantum effects
distort the spacetime geometry near a black hole and how
they affect the thermodynamic properties of black holes.
An overview of our method was given in Ref. [5].

The inspiration for our method and the source of many
of our ideas are the calculations by Howard and Candelas
[6,7] of (T„„)and (P2) for the conformally invariant scalar
field in Schwarzschild spacetime. A previous version was
developed to compute the vacuum polarization, (&j&2), in
static spherically symmetric spacetimes. It is discussed
in Ref. [8], hereafter referred to as paper I. The present
version is an extension of and an improvement on that of
paper I. It can be applied to computations of both (P2)
and (T„). Throughout this paper we will limit most of
the discussion to the computation of (T„„),but impor-
tant results relating to the computation of (P ) will be
presented.

To illustrate our numerical method, we have com-
puted the stress-energy tensor of massless and massive
quantized scalar fields with arbitrary curvature couplings
in the Schwarzschild and Reissner-Nordstrom black hole
spacetimes. These are spacetimes containing uncharged
and charged black holes, respectively. The Belds are in
the Hartle-Hawking state. These sample computations

are of interest in themselves since the only numerical
computations of (T„„) previously coinpleted for black
hole spacetimes have been for the massless conformally
coupled scale field [9,6] and for the electromagnetic field
[10], both in Schwarzschild spacetime.

Numerical computations of (T~„) are usually extremely
computer intensive. Thus it is useful, when possible, to
have analytical approximations to (T„„).We present in
this paper an analytical approximation which works for
massless scalar fields in arbitrary static spherically sym-
metric spacetimes. For the special case of a conformally
coupled massless Geld our analytical approximation is
equivalent to the approximation of Frolov and Zel'nikov
[11], given particular values for the arbitrary parame-
ters in their expression. As a result, it is equivalent to
Page's approximation [12] for the stress-energy tensor of
a conformally coupled scalar Geld in any static spheri-
cally symmetric Einstein spacetime (such spacetimes sat-
isfy R„=Ag„„). Our new approximation thus extends
the previous approximation schemes of Page and Frolov
and Zel'nikov to nonconformally coupled scalar Gelds.
In addition, our derivation provides the first justifica-
tion for the local approximation of Frolov and Zel'nikov
from quantum Beld theory. The original derivation of the
Frolov-Zel nikov approximation was motivated primarily
by geometric concerns rather than field theory.

For the conformally invariant field, Frolov and
Zel'nikov [ll] pointed out that their approximation pre-
dicts a logarithmic divergence for one component of the
stress-energy tensor on the event horizon of a charged
black hole. Our analytical approximation predicts the
existence of such a divergence for all massless scalar fields
in charged black hole spacetimes. If such a logarithmic
divergence exists, then quantum effects would be impor-
tant near the event horizon of any charged black hole, no
matter how large the black hole or how small the charge.
This would be a very surprising result. In fact our nu-
merical computations indicate that no such divergences
exist. Thus we Gnd that the apparent logarithmic di-
vergences are only an artifact of the approximation, and
are not physical. The analytical approximat, ion for this
component is then valid near the event horizon only for
Schwarzschild spacetime.

Comparisons of our analytical approximation with our
numerical calculations in Reissner-Nordstrom spacetimes
indicate that, for other components both on and away
from the event horizon, the accuracy of the approxima-
tion depends on the charge to mass ratio of the black
hole. The larger the charge to mass ratio, the worse the
approximation.

For scalar Gelds with large enough masses, the DeWitt-
Schwiu. ger expansion can be used to provide approxima-
tions for both (P ) and (T~„). This has been done in
Schwarzschild and Kerr spacetimes by Frolov [13] and
Frolov and Zel'nikov [14], respectively. For the Feyn-
man Green's function, and hence (P2), the first three
coeFicients in the De&itt-Schwinger expansion in an ar-

This assumes, of course, that one is working at scales sufB-
ciently removed from the Planck scale so that the very notion
of a classical spacetime still has some meaning. These are commonly denoted as ao, az, and a2.
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bitiary spacetime have been computed by DeWitt [15].
The fourth coefBcient has been computed by Gilkey [16].
The fifth coefficient has been computed by Avramidi [17]
and Amsterdamski, Berkin, and O' Connor [18].

We have developed a method of deriving the De Witt-
Schwinger approximation for (P ) and (T„„)in a static
spherically symmetric spacetime using the WKB approx-
imation for the modes of the scalar field. We have used
this method to compute (P ) and (T„) to order m
and m, respectively, where m is the mass of the scalar
field. These orders correspond to using the first four co-
efIicients in the DeYVitt-Schwinger expansion. To our
knowledge, the DeWitt-Schwinger expansion for (T„)
has not previously been computed to this order for a
general static spherical spacetime. When applied to the
Reissner-Nordstrom spacetime, we find that the DeWitt-
Schwinger approximation provides values extremely close
to the exact numerical results for values of the field mass
m & 2M, where M is the black hole mass.

In Sec. II we develop an unrenormalized expression for
(T~„) for a scalar field with arbitrary mass and curva-
ture coupling in a general static spherically symmetric
spacetime in terms of the Euclidean Green's function.
In Sec. III the resulting expression is renormalized us-
ing the method of covariant point splitting. Section IV
describes our method of calculating the renormalized val-
ues of (T„„)using the WEB approximation. In Sec. V we
derive and discuss the analytic approximations to (T„„)
for massless and massive fields. In Sec. VI the stress-
energy tensors of massless and massive scalar fields are
numerically computed for Reissner-Nordstrom black hole
spacetimes; the predictions of the analytic approxima-

tions are compared with the numerical results for these
spacetimes. The details of some of the more tedious al-
gebraic calculations are given in a series of Appendices.

II. AN UNRENORMALIZED EXPRESSION
FOR (T„„)

In this section an unrenormalized expression for (T„„)
is derived for a scalar field in an arbitrary static spheri-
cally symmetric spacetime. It is assumed that the field is
either in a thermal state at temperature T or a vacuum
state defined with respect to the timelike Killing vector
which always exists in a static spacetime. The calcula-
tion proceeds in a manner similar to that of the Howard-
Candelas calculation of (T„„)for the conformally invari-
ant scalar field in Schwarzschild spacetime. As in their
calculation, a Euclidean space approach is used. The
metric for a general static spherically symmetric space-
time when continued analytically into Euclidean space
is

ds = f(r)dr + h,(r)dr + r d0 + r sin 8 dP . (2.1)

Here r = it is the Euclidean time, and f and 6 are arbi-
trary functions of r which, if the space is asymptotically
fIat, become constant in the limit r ~ oo.

(T„) is computed using the method of point splitting
[19,20]. One begins by noting that (T„)can be obtained
by taking derivatives of the quantity (P(x)P(x')) and then
letting x' —+ x. The calculation is simplified by noting
that in the limit x' —+ x, the following relations hold:

( - -(*,*')),
(ii(e)Veil(e)) = Re ( lim e [Ge (e, e );„+g„Gg(e, e ); ])

(&,ii(*)&A(*))=R (l lfg- G (**');,:- +g, G (* *'):-;-[)

(g(e)egest P(e)) = Re(lim i[Gg(e, e')e, +g„g g
( Gg)e , e])g

(2.2)

Here G~ is the Euclidean space Green's function. It obeys the equation

[
—m —(R(x)]G (x, x') = —g ) (z)b (x, x'), (2.3)

Iwhere m is the mass of the scalar field and ( is its coupling to the scalar curvature R. The quantity g is called
the bivector of parallel transport. It parallel transports a vector at z' to one at x. It appears in Eq. (2.2) because
GE(x, z'), e is a vector at z' and must be parallel transported to x before the limit x' ~ z is taken. Similarly
GE(x, z'), e,pe is a second rank tensor at z' and must be parallel transported to z before the limit x' ~ x is taken.

With this notation we find that the unrenormalized expectation value of the stress-energy tensor with the points
split is given by the expression

(T»)~R«R ——
~

——( ~
(g„GE;n'v + g. GE;, ) + (2( ——,)g&vg GE;Gn' ((GE;yv + gy, g GE;n'p')

+2(g„(m + (R)GE + ((R„—2 g„„R)GE —
2 m g„GE . (2.4)

Since we are interested in the values of the components
of the stress-energy tensor in I orentzian space we com-
pute these components directly. The most straightfor-
ward way to do this is to have all of the components of

I

all of the tensors in Eq. (2.4) be the Lorentzian space
components. This implies that all of the time derivatives
will be with respect to t rather than v. An alternative
approach (which we do not take in this paper) would
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G~(x, x') = dp cos[w(r —r')]

be to perform all computations in Euclidean space and
to transform the components of the renormalized stress-
energy tensor back to Lorentzian space at the end of the
calculation.

In paper I the form of G~(x, x') was derived for scalar
fields in static spherically symmetric spacetimes when the
fields are either in the Euclidean vacuum state or in a
thermal state at temperature T. The result is

They also satisfy the Wronskian condition

dg f dp~( 1 )(hl
~l P~l

d
gcul

d
—

2 ~ f ) (2 7)

There is a WEB approximation for the modes which
is very useful in both analytical and numerical calcula-
tions of (T„). The WEB approximation for the modes
is obtained by the change of variables

x ) (2l + 1)P~ (cosy) C~~p~~ (r & )q~~ (r& ),
L=O

(2.5)

where, for an arbitrary function F,

1

(2r2W) &~2
W/ —

/

dr
&fr

(2.8)

1
dpI'(~) =

4' 2
d Cd F(Cd ), T = 0 q, =. . .exp — W

~

—
~

dr2'W'~' q )

Here P~ is a Legendre polynomial, cosy = coso coso'
+sino sino'cos(P —qV), C ~ is a normalization constant
and w = 27rnT if T g 0. The modes p~~ and q~~ obey the
equation

1 d2S 2 1 df 1 dh dS
h dr2 rh 2fh dr 2h2 dr dr

+ m' + (R s = 0 . (2.6)
l(l + 1)

W = 0 + Vj (r) + V2(r)

f d'W /1 df
2 hW dr2 hdr

3f r 1 dW)'
2h iW dr)

f dhb 1 dW
h2 dr) 2W dr

(2 9)

with

Substitution of Eq. (2.8) into Eq. (2.7) shows that the
Wronskian condition is obeyed if C ~

——1. Substitution
into the mode equation, (2.6), gives the following equa-
tion for TV:

0 (r) =su +m f+~l+ —
~

1 df
2rh dr

f dh

2rh2 dr

1df
V2(r) =(&f = (f—1 (df) 1 df dh 2 df 2 dh 2 2

+ +
2f h (dr) 2fh2 dr dr rfh dr rh dr r2h (2.10)

Equation (2.9) can be solved iteratively. The zeroth-order solution is W = O. The second-order solution is

1 1 f dA fldf f dh) 1 dO

hO d hd h d 20 d

(dn)'
h

(2.11)

The Euclidean vacuum is the vacuum state that, in the Lorentzian sector, is de6ned with respect to the timelike Killing
vector.

The boundary conditions used here are, strictly speaking, correct only for an asymptotically Hat spacetime with an event
horizon. However, the ultraviolet divergences in (T~„)„„„areindependent of the boundary conditions and the WKB ap-
proximation to (T„„)will be both added and subtracted from (T„„)„„„„whencomputing a renormalized expression for (T„).
Thus there is no problem in using this version of the &KB approximation for the modes for any static spherically symmetric
spacetime.
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To compute an unrenormalized expression for (T„„) one simply substitutes Eq. (2.5) into (2.4) and takes the
derivatives. After the derivatives are taken the particular way in which the points are to be split can be decided. For
numerical computations it is easiest to choose a separation in time so that e = (7 —w'), r' = r, 0' = 0, gV = P.
With this point separation, the terms containing angular derivatives can be simplified substantially as shown in
Appendix A. However, as was first pointed out by Candelas and Howard [7,6] for the case of Schwarzschild spacetime,
the Euclidean Green's function and its derivatives have superficial divergences with this separation of points. As
discussed in paper I, these divergences can be removed by adding multiplies of b(7 —w') and its derivatives to G~(x, 2.")
and its derivatives. This is permissible because, so long as the points are split, h(w —w ) = 0.

The superficial divergences are all divergences which occur in the sums over 1 when w is held fixed. The multiples
of the delta function and its derivatives that must be subtracted from the modes to remove these divergences can be
most easily obtained using the WKB approximation. One erst substitutes the WKB approximation for the modes
into the expressions for G~(x, x ) and its derivatives. The resulting expressions are then expanded in the large I limit.
Terms which are divergent when the sum over l is computed with fixed ~ must be subtracted from the modes.

The resulting unrenormalized expressions for (P ) and (T„)are

(d'), . = Gr(T, v-, T, v') = f ddcos)~jv —v')]A& . (2.12a)

Pt ) unren d)Mcos[w(w —w )] l

——g + —+ (f(g ) + (h(g '
) l

cu Ai +
l 2( ——

l

g'" A2
)

+ ((g ) +
l

2( —— —. As —( A4+ —((g )
—((g" ) l

—+ —
l

A.5
.. .fh (» f' „.ff' .. . (2f f")

r' ( 2 r' 2fh 2h ( r 2)
( I, ) t I ) I ( I )+ ((r' )'th

I

—",+~*+(&
I

—
I
r( ——I, +

I
2( ——

I
(~'+(&)+D4' -di)4r' ) q 2) 4r' q 2)

+Z dp&sln& 7 —'T —g g Ai+ 2 —— g A4 1 ——g +2 g g A5
tt' t ' I ( 11 „t ( 1

E 2

(2.12b)

(T„")„„„„=dpcos[ud(r —w )] l
2&

I g + &(g" ) "+~(g" ) + ~ A1+ g A2
( II tt „t'2 '2h

2 f f
(( „„,, 1 5 ( (2 f') ( .. . , „„,(2h hf')

+
l

—[1 —(g"" )'h'] —
I
As+ —

l

—+ —
I
A4+ —(g" )'f'+((g"" )'

I

—+r 2r ) h (r 2f) 2 ), & 2f)

( 1 ) ( ll 1 ( I)
+ (I(r"" )'h'+ ~) I, —~' —M I

—
I
r( ——I, I

r( ——
I
(~*+(&)+(&." &i)(4r2 ) q 2) 4r2 E 2)

„, hf' 1 „, ( 1)+i dP~ is[~n(~ —7.')] (g" g"' Ag+ —g"' A4 —
l

2( ——
l

g" +2(g"" g
' h A5

(2.12c)

0(T8 )unren
( I ) „z ( 11, 2(

d jccos[w(w —r')] —
l

2( ——
l g w Ay +

l
2( ——

l

g' A2+ —2As ——A4 ——A5
2) g 2) r' rh rh

( ( ( Ii (+
l
2( ——

l
(rn +(R) +(Re

l
Ag + i dp, (csin[~(~ —~')]

l
2( ——

l

(g"' A4 —g'" A5),2r' I 2) 2)
(2.12(l)

where

These cannot be real divergences because the Green's function and its derivatives must be finite when the points are separated.
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„fi/2

OO
1

A, =) (2l+l)p iq i—
l=O

&2=) {2I+1)C., „„+~

&'+&+ —
~ „, , +

16f3/2hr 2f 1/2r 2f1/2r

1 h,
'

8f /2r3 Sf / hr
5f /2

32f3/2r

3f/2r f //r

32fs/ h 8f / h
f 'h'r m2r r

16f3/2h2 2f i/2 2f i/2

8f i/2h2

f'
2f i/2r2 4f3/2r 2f i/2r2

OO

A4 ——) {21+1)C i q i—
I,=O

3 =). ( + ) ~'&~'
d

+ -i/2 2+ 3/2 + (2.13)

Note that second derivatives of the mode functions with
respect to r have been eliminated from the above expres-
sions through use of the mode equation (2.6) and time
derivatives have been computed using 8/c/t = iO/Br.

III. A RENORMALIZED EXPRESSION FOR (T„„}

In this section a renormalized expression for (T„) is
derived. The method of point splitting is used. In
point splitting one subtracts renormalization countert-
erms from (T„„)„„„„andtakes the limit e —

& 0. Chris-
tensen [19,20] has used the DeWitt-Schwinger expansion
for the Feynman Green's function to obtain renormaliza-
tion counterterms for (P ) and (T„) for a scalar field
with arbitrary mass and curvature coupling in a general
spacetime. The renormalization counterterms for (P )
are given by

(4')Ds = GDs(~, ~')

m'+
I ( ——

ISvr2o 87r2 ( 6)

m2 o- o-~
B p167r 96sr o

(3 1)

Here o is equal to one half the square of the distance
between the points x and x' along the shortest geodesic
connecting them, C is Euler's constant, R p is the Ricci
tensor and o = o ' . The renormalization counterterms
for the stress-energy tensor will be denoted by (T„)Ds,
expressions for (T„„)Dsare displayed in Ref. [19].

The constant p is equal to the mass m of the Beld for a
massive scalar field. However, for a Inassless scalar Beld

it is an arbitrary parameter. This constant appears in
(T„)Ds as well [19,20]. For a massless field it represents
an ambiguity in the way in which the limit m ~ 0 is com-
puted for the renormalization counterterms. Its existence
is not a problem because its coefFicient is proportional to
the variation of the combination of a Weyl tensor squared
term and a scalar curvature squared term in the gravita-
tional Lagrangian. Thus a particular choice of the value
of p corresponds to a finite renormalization of the coef-
ficients of these terms in the gravitational Lagrangian.
This means that the value of p must ultimately be fixed
by experiment or observation.

In Appendix B, Christensen's method [20] of expand-
ing o and its derivatives in powers of e = t —t for static
spherically symmetric spacetimes is outlined. The results
are

A renormalized expression for (T„)can be obtained by
substituting these results into (T„)Ds, subtracting from
(T„)„„„„andtaking the real part of the limit e —+ 0.
Schematically one has

(T//v)ren = &e lim((T//v)nnren (T//v}Ds)e~O
(3.3)

For this to work, one must expand (T~„}„„„„in powers
of e. The unrenormalized expressions in Eqs. (2.12a)—

f/2 1 f f/4 3 f/3h/ 3 f/2f//)

24fh 120 8f2h 16 fh3 8 fh

+O{e ),
(3.2)

f/ 1 /' f/2h/ f/f//)
+

I
"+&(")

4h 24 q 8h' 4h' )
~' = ~& =0.
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(2.12d} were derived for the Euclidean sector .After the
mode sums and integrals are computed, these expres-
sions can be converted to the I orentzian sector using the
relationship w = it. The quantities g„ in Eqs. (2.12b)—
(2.12d) must also be expanded in powers of e. Howard [6]
has outlined a method of doing this. We use his method
to obtain the necessary expansion in Appendix C. The
results are

(T„„}„„,„which contains all of the ultraviolet diver-
gences found in this quantity. We shall call this approx-
imation (T„„)wKBd;„. It is to be subtracted and added
to the right-hand side of Eq. (3.3) with the result that

(T//v) ren = Re lim ((T//v) unren (T//v) WKBdiv)
e—+0

f /2 f/4 f/2f//

f 8f2h 384f3h2 96f2h2

+ ((T//v)WKBdiv (T//v)DS)

(Tp )vn uernric + ( T/v/) analytic (4.1)

f/3h/

192f2h3

I t

g = —g
f/ ( f/3 f/f//

2fh l96f'h' 48fh

l384f2h3h 8fh2

f /2 h/

96fh p

f/2f // f/sh/
4

96fh3 192fh4

(3.4)

If the mode equation could be solved analytically for
the modes and the sums and integrals over l and u could
be computed analytically then this would be all that was
required. . However, for most spacetimes the mode equa-
tion must be solved numerically. In these cases addi-
tional techniques are required for practical computations
of (T„)„„.A inethod of computing (T„)„„when the
mode equations must be solved. numerically is discussed
in the next section.

IV. USE OF THE WKB APPROXIMATION IN
EVALU'ATINC (T„„)

In this section we describe a method of computing the
renormalized expression for (T„„)given in Eq. (3.3) when
the mode equation must be solved numerically. Our ap-
proach is similar to that used by Howard and Candelas [6]
to compute (T„„)for conformally invariant scalar fields
in Schwarzschild spacetime.

A primary difticulty in evaluating the expressions in
Eq. (3.3) when the mode functions are computed nu-
merically is that a way must be found to take the limit

0. One way to do this is to use the WEB ap-
proximation to compute an analytical approximation for

I

The mode sums and integrals in (T~„) „ iyt;, can be com-
puted analytically. Those in (T„„)„„„;,must usually be
computed numerically.

The derivation of (T»)WKBd;v proceeds as follows:
First one substitutes the fourth-order WKB expansion
for the modes into (T„)„„„„.2 The Plana sum forinula
[21] is next used to compute the suins over l in the large
u limit. The results are then expanded in inverse powers
of cu and the expansion is truncated at order u . The
details of this procedure are given in Appendix D.

The sums or integrals over u include u = 0. Thus it
is necessary to impose an in&ared cutoff on those sums
or integrals containing terms which are proportional to

. Since (T„„)wKBd;„is both added and subtracted in
Eq. (4.1), it is clear that (T„„)„„is independent of the
value of this cutoff. For the zero-temperature case the
in&ared cutoff is made for the u terms by inserting
a lower limit cutoff A in the integral over u. For the
nonzero temperature case a cutoff is most easily made by
not including the n = 0 contributions from those terms
which are proportional to u

The quantity (T„„)„ iyt;, is computed by first evaluat-
ing the mode sums and integrals in (T„„)wKBd;„analyt-
ically with ~' g w. Then all factors w —w' are converted
to powers of e using the relationship w —~' = ie. Next

I
the bivectors of parallel transport, g ~, are expanded in
powers of e as are the terms in the point splitting coun-
terterm (T„„)Ds. The difFerence is computed and then
the limit e —+ 0 is taken. The details of this procedure are
discussed in Appendix E. A similar method has been used
in Schwarzschild spacetime by Candelas and Howard [7]
to derive analytic contributions to (P2) for massless fields,
and by Howard and Candelas [6] and Jensen and Ottewill
[10] to derive analytic contributions to (T„„)„„for the
conformally invariant scalar field and the electromagnetic
field, respectively. Defining K = 2+T, we find

m' 1, ( ll I fp'f& f'
f 8 ' ' 'f' f /h/ f // f/

192m2 fh2 96vr2 fh 48vr2r fh '+ +

(4.2)

A fourth-order expansion is necessary if (T„„)wKBd;„ is to contain all of the divergences of (T„„)„„„.For (/t/ )WKBd v

second-order WKB expansion is necessary.
In paper I, a mistake was made in the evaluation of the R pa /T /o term of Eq. (3.1). As a result the expressions in Eqs.

(3.3), (3.5), and (3.8) in that paper are correct for h = 1/f, hut incorrect for other values of h.
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(4.3)

where

(Tq)o ——[
—32f h —96r r f h +480r mr f h +32f h +360mr f h —960mr f h f'
+24r f h f' +360mrf , h f' —24r fh f' + 7r h f' —64rf h h'+ 80r f h f'h'
+240m2r4f3h3fth 40 3f2h2f/2hI —2r fh2f'3h' —56r2f hh 2 —48r3f3hf h 2

(4.4a)

—19r f hf' h' + 224r f h' —56r f f'h' —480m r f h f" + 4r fh f' f"—64r f h h'f"
+36r4f 2h2flhi fv + 76r4f3hhI2 fv 12r4f 2h3f n2 + 32r2 f4h2hir + 16r3f3h2 fihrl

+8r f h f' h" —208r f hh'h" + 52r f hf'h'h" —32r f h f"h" + 64r f h f"' —16r f h f'f"'
1

48 4f3h2hlf Ill + 32 3f4h2hlll 8 4f3h2f lhlll + 16 4fsh3flltl]
46080m r f h

(4.4b)

(T ) =[32f h —16m r f h —32f h —48mr f h +16r r f h +48mr f h

64~ r f2h f~ 192m2r3f h f' 12r f h f'2 + 40K r4fh f~ + 12r f h f' + 72m r f2h f'
+88r fh f' —63r h f' + 48rf h h'+ 16m. r f h h' —16rf h h'+ 48m r f h h'

—24r f h f'h'+ 16r r f h f'h'+ 8r f h f'h'+ 48m r f h f'h'+ 108r f h f' h' —66r fh f' h'

+32r f hh' + 152r f hf'h' —57r f hf' h' —112r f h' —56r f f'h' + 16r f h f"
32', r f—h f" —16r f h f" —96m. r f h f" —144r f h f'f" +132r fh f' f" —144r f h h'f"

+M8r4f 2h2f rhif v + 76r4f 3hhI2fn 36r4f 2h3f@2 16r2f4h2ho 64r3f 3h2 fthm + 24r4f2h2 fi2hii

+M4r3f4hhlhII + 52r4 f3hflgihu 32r4f 3h2 fohn + 64r3 f3h3 fbi 48r4 f2h3 fi flv 48r4f 3h2hi fvI

1—16r f h h"' —8r f h f'h"'+ 16r f h f""]
768~2r4f4h5 '

(4.4c)

(Tt, ')2 ——[16f h —32f h +16f h —8r f h f' +24r f h f' —64r fh f'
+2lr h f' —32rf hh'+ 32rf h h' —80r f hf'h'+ 16r f' h f'h' —32r f hf' h'+ 24r fhf' h'

+16r f h' +80r f f'h' +19r f f' h' +32r f h f" —32r f h f" +80r f h f'f"
48r fh2f —2f —32r~f~hh f —36r4f2hfihi fr&+ 12r4f 2h2f II2 32r f3hf h

1
8r f hf'—h" +16r f h f'f'"]

128~2r4f4h4 '

(T„')o ——(32r r f h —480K m r f h —1080m r f h + 64f h f' —120m r f h f' —16r fh f'
+r h f' + 16r f hf'h' —8r f hf' h'+ 2r fhf' h' —56r f f'h' + 7r f2f' h'

64r f3h2 fv + 64r2f2h2 fi fn 4 3fh2 f12 fv + 32r2 f3hhi fll 8r3f 2hf iht fn 4 3f2h2 fr&2

+32r2f3hflhll 4 3f2/ fr2hv 32r2f3h2fur + 8r3f2h2f full) 1
46080vr2r3f4h4 ' (4.4d)

(T„)q ——(16K rf h +48m rf h —16r rf h —48m rf h —48f h f' —16r, r f h f'
+16f h f' —48m r f h f' —44rf h f' —8r r fh f' —4rf h f' —24m. r f h f'
+24r fh f' +9r h f' —16rf hf'h'+6r fhf' h'+28r f f'h' +7r f f' h'

+32rf3h2fv 40 2f 2h2 fi fn 12r3fh2 fI2 fit 16r2f3hhif n 8r3f 2hf &htf n 4r3f 2h2f@2

116r2fShf rhit 4r3 f2hf/2hz + 16r2f3h2 fnt + 8r3f 2h2f I
fbi) 768vr2r3 f4h4 ' (4.4e)

(T„")2——(16f hf' —16f h f'+20rf hf' —4rf h f' —r hf' —16rf f'h'

8r f f' h' —r —ff' h'+ 8r f hf'f" + 2r fhf' f") (4.4f)
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(Ts )0 ——(32K r f h —480m m r f h —1080m r f h —32f h f'+ 120m r f h f' —16r fh f'
+17r h f' —48rf h f'h' —24r f h f' h'+ 26r fh f' h' —24r f hf'h' + 31r f hf' h'2

+56r f f'h' +32rf h f"+32r f h f'f" —52r fh f' f"+88r f h h'f" —64r f h f'h'f"
76r3f shh/2f II + 28 3f2h f 2 + 8 2f3h2f /hit 12 3f2h2f t2 hi/ 52 3fshf ththv + 32 3fsh2 f //hl/

48—r f h f '+24r'f h f'f"'+48r'f'h'h'f"'+8r'f'h'f'h"' —16r'f'h'f"")
46080m r f hs ' (4 4g)

(Ts )i ——(16f h f' —8/c r f h f' —24m r f h f'+ 12rf h f'2 + 20tc rs fh4f'2 —4r f2h4f'2

+12m r f h f' +48r fh f' —43r h f' —8K r f h h' —24m r f h h'+36rf h f'h'
+4K2r3 f2h3f tht

4r f 3h3 f /hi + 12m2 3f3h3f tht + 54 2f2h2 f/2ht 45 3fh2f /3ht

+30r f hf'h' —38r f hf' h' —28r f f'h' —24r f h f" —8K r f h f"
+8rf h f// —24m r fsh4 jtt 76r2f2h3 f/ f// + 90rsfh3f /2f v 48r2f3h2ht fv
+72r3 f2h2 f thl fv + 38r3f3hh/2 fv 24r3 f2h3 fv2 ] 2r2 f3h2 fthv + ] 6r3f2h2 ft2hv

+26r f hf'h'h" —16r f h f"h" + 24r f h f"' —32r f h f'f'"
1—24 3fshshl fvl —4 3fSh 2f th Ilt + 8 3f3h3 f lvt)

768vr2rs f4hs ' (4.4h)

(Te )2 ——( 24f h—f'+24f h f' —12rf h f' +4rf h f' —22r fh f' +9r h f'
12rfs—hf'h'+ 4r fsh2f'h' —18r2 f2h f'2h'+ 10rs fhf'sh'+ 36r2fs f'h'2+ 9rs f2f'2h'2

+8rf3h2fv 8rf3h3fv + 28r2f2h2ftftt 20rsfh2f/2ftt 8r2f3hhtfv ]6r3f2hfthtfv

+4 3f2h2 fi/2 16r2f 3hflht/ 4 sf 2hf t2hl/ + 8r3f 2h2fl fit/)
1

64vr2rs f4h4 ' (4.4i)

1 „1 „1 „1 1( Ii ( „1(R"),p~ — R.„"— R p~g" ——m g. + —
I ( ——

I
m

I

R" — Rg" I—
12O "' 36O " 720 ' " 8 " 2q 6)

I

—2R
I R: —-Rg„"

I
+ 2R; " —2R; 'g„ I

—»
I) 4 0" 4 ") ' ' ") 2 q4&') (44~)

The zero-temperature case is obtained by setting K = 0 in the above expressions. For the nonzero temperature case
A = K exp( —C) if the ur = 0 terms are the only ones omitted from the mode sum in (T„„)~KB&; . C is Euler's constant.

The quantity (T„„)„„„;,in Eq. (4.1) is explicitly finite in the limit c -+ 0. Thus this limit can be taken before the
mode sums are computed. We find that

(4' )nutneric = Ss

(T~')---. =
I
2(+ —

I

—si+
I

2( ——
I

—„s.+ I
2t,' ——

I
—,s, — s,I) 1 ( 11 1 ( 11 1 (f'

2) q 2)h q 2)r' 2h
11 (+

I

2g--
I I
—,+m'+gR I+gR, ' s, ,

r

1 1 1 ( (2 f' t ( 1 1 2 1
(T, )„„.„..= ——s, + —s, — s, + —

I

—+ —
I
s, +

I

——m' ——(R+ (R„"
I
s, ,2f 2h 2r2 h (r 2f) (8r2 2 2

111(1112((T//')„„.„.= I
2( ——

I

—s, +
I

2( ——
I

—s, + —,s, ——s, +
2) f

( +
I 2( ——

I
(m +JR)+(R& S, , (4.5)0

2r2 ( 2)

where
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1 3 1, ( 11
dP, ~24, + —~3+ — m'+

~ ( ——
I
R ~

4gf/4 29f/2f« f«2 ff f«l f /tv 2gft3ht ~f If//hi
5760f h2 1440f h 160fh2 120fh 360h 2880f h3 160fh3

lgf/2h/2 lgfffh/2 7ff/ /3 f/2/ II fff/ fl ] 3ff/ Ihtt f thill fl2m2

1920fh4 1440h4 720h5 240fh3 180h3 1440h4 720h3 48fh

f m f'h'm fm, f f fh' f'2 f'h'
24h 48h2 8 360r4 360h r 180h3r3 288fh r2 j.44h3T2

f If/ hl

120h3

7fh'2
1440h4r2

fhff 11f l3 13flf ll f III fl2hl

360h3r2 1440f2h2r 720fh2r 90h2r 120fh3r

13fh'h" fh"' f'm ( 1 jt f f' R+720h4r 360h'r 12hr q 6) I 48fh

f'R' fh'R' fR'

48I 2

13f"h' l3f 'h'2 7fh'3

720h3r 144064r 360h5r

f"R f'h'R fm R
24h 48h2

f'R
12hr

(4.6a)

5f/2 ff/

12f3 6f2

360h~r2

12hr

h f'h' hm' f ' h'

3f2 12f2h 2f 6f2r 6fhr 2 6

7f t4 f/2flt f«2 ftf ttt f/3h/ fIf Ifht 7f/2h/2

5760f4h 480f3h 1440f h 720f2h 960f3h2 720f h2 5760f h3

f/2h« f/2m2 fvm2 flhlm2 hm4 ] h f / f/2

144pf2h2 48f2 24f 48fh 8 360hr4 360r 180fhr3 1440f2hr
f" f'h' 7h' fl3 f If // f f/)

180fhr2 720fh2r2 1440h3r2 288f3hr 120f2hr 360fhr
f' h' f"h' 7f'h' f'h" h' ( 1) (f' R f"R f'h'R h R

360f2h2r 360fh2r 1440fh3r 360fh2r 12hr 6 48f2 24f 48fh 4

48f 16h 12r 8) 8 ( 6) (4.6b)

f/2 2 f/I 2

4f3h 6f2h

(4.6c)

( 2r2 3
t' 1 1 f'r h'r

3f ~ 12f 3fh 2f h 6fh
f/2 fv ffh/ m2 m2 1 1 f h f 3r 7f f/r

360f2h, 180fh, 120fh3 24 6h 180r 180h2T2 180fh2r 180h3r 240f3h, 720f h
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120fh 180f h3 720fh3 240fh 360h5 720fh3 720h 360h3 1.2fh
hfm2T 7f /4T2 13f /2f «T2 fv2T2 f/f «/ 2 f /v/ 2 ]3f /3h/ 2 5f/f //h/

+ + +12h 960f4h2 720f3h2 144f2h2 ]44f2h2 36Pfh2 + 144Pf3h3 288f2h3
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To actually compute (T„„)„„„;,as it stands would re-
quire numerical solutions of the mode equations for a very
large number of modes. The number of modes one needs
to numerically solve for can be reduced substantially by
once again adding and subtracting the WKB approxima-
tion for the modes. This time the large u1 limit is not
taken and the mode sums are not explicitly computed
ahead of time. Schematically the result is

(Tisv)numeric = iim[((Tpv)unren P'pv)WKB)
e~O

+( (Tgv )WKB (&gatv )WKBdiv)]

(Tpv)modes + (Tpv)WKBfin (4.7)

V. ANALYTICAL APPROXIMATIONS FOR (T„„)

In this section we discuss two difFerent analytical ap-
proximations for (T„„)for scalar fields in static spher-
ically symmetric spacetimes. One is obtained from

This is not true to arbitrarily high order because the WKB
approximation is an asymptotic expansion and thus breaks
down for given values of l and ~ when the order gets too
high.

The types of approximations discussed in this section can
also be used for the quantity (gP).

The mode sums and integrals in (T„„) d„can be ap-
proximately computed by truncating them for large val-
ues of l or u. This is equivalent to using the WKB ap-
proximation for the modes at large values of l and u. To
some extent, the cutoffs in l and ~ which must be used
to obtain a given accuracy for the sums get smaller if
larger orders in the WKB expansion are retained. We
have found it useful to use a sixth-order WKB expression
for (T„„) d„ in the case of a massive scalar field. For
a massless scalar Geld we have found a sixth-order ex-
pression works but the mode sums converge significantly
faster for an eighth-order expression.

To compute the sums over / and/or ur more accurately
in (T„„) d„, one can fit the terms by using a general
linear least squares fit [22]. For the sum over t, the fit is
an expansion in inverse powers of I. The fit is summed
analytically &om the upper limit cutofF in / to infinity.
Once the sum over / has been computed, a Gt for the sum
or integral over cu in inverse powers of u can be obtained.
This Gt is summed or integrated analytically &om the
upper limit cutofI' in u to infinity.

The quantity (T„„)wKBfi is too complicated to be
computed analytically. However, for a massless field at
zero temperature, the only numerical computations re-
quired are for a few integrals which do not depend on
the spacetime geometry and can thus be computed once
and for all. For the nonzero temperature case and/or
the massive Geld, the numerical computations must be
repeated for each value of r at which (T„)wKBfi„ is to
be computed. EfIicient ways to do these computations
are discussed in Appendix. F.

(T„) „ i„t,,' and the other is the DeWitt-Schwinger ap-
proximation for a massive scalar Geld.

The quantity (T„„)„ i„t;, can be used directly as an
approximation for (T„)„„because (T„„)„ i„t;, is con-
served and, for the conformally invariant field, has a
trace equal to the trace anomaly. The expression for
(T& ) „ i~t;, does not, however, yield a unique analytic
approximation due to the existence of the arbitrary pa-
rameter in the log term [see Eqs. (4.3) and (4.4j)] which is
due to the in&ared cutoff in (T„„)wKBd;„. For a massless
Geld this parameter can be absorbed into the definition
of the arbitrary constant p discussed in Sec. III. For a
massive field p = m so this is not possible. Instead some
arbitrary value must be assigned to the parameter.

For the case of a massless conformally coupled Geld

(T„) „ i~i;, is equivalent to the approximation of Frolov
and Zel'nikov [11] if the arbitrary constants q2(o) and
qi in their expression for (T„„)are set equal to zero.
Their arbitrary constant qi ~ ~ is related to the arbitrary
constant p discussed in Sec. III. The original deriva-
tion of Frolov and Zel'nikov was not based on quantum
field theory. Their expression for (T~ ) was derived by
constructing the most general expression &om the time-
like Killing vector field, the curvature tensor, and their
derivatives which was conserved and possessed a trace
given by the conformal anomaly. Our demonstration that
the Frolov-Zel nikov approximation is the conformally in-
variant limit of our more general analytic approximation
is the Grst justification of their approximation in terms
of quantum field theory.

Since our approximation reduces to that of Frolov and
Zel'nikov in the conformally invariant limit, it follows
that our approximate expression for (T„„) in this case
duplicates Huang's results [23] for the Frolov-Zel'nikov
approximation in Reissner-Nordstrom spacetimes. If we
restrict ourselves further to the case of a conformally in-
variant scalar field in a static spherically symmetric Ein-
stein (B„„=Ag„) spacetime, then our approximation
for (P ) and (T„) is also equivalent to Page's approxi-
mation [12] for these quantities.

Unfortunately, the use of our approximation (and
therefore the Frolov-Zel'nikov approximation) in black
hole spacetimes is severely limited. This is due in part to
logarithmic divergences which occur on the event hori-
zon in this approximation. Examination of Eq. (4.4j)
shows that for a massive field a logarithmic divergence
occurs on the event horizon of any static spherically sym-
metric black hole for all nonzero components of (T„„).
Numerical computations of (T„„) for massive fields in
Schwarzschild and Reissner-Nordstrom spacetimes give
no indication that such a divergence exists, as will be
shown in Sec. VI. For massless fields examination of Eq.
(4.4j) shows that the analytical approximation predicts
the possible existence of a logarithmic divergence on the
event horizon of a black hole unless B„=0. In

From Eq. (4.2) it can be seen that the analytical approxi-
mation for (P ) diverges on the event horizon of a black hole
unless m = 0 and either ( = 1/6 or R = 0.
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Reissner-Nordstrom spacetimes one component of (T„)
is predicted to have such a divergence. As in the
massive field case, numerical computations of (T„) in
Reissner-Nordstrom spacetimes give no indication that
this divergence exists. Thus in black hole spacetimes the
approximation appears to be trustworthy near the event
horizon only if R~ = 0 and the fields are massless.

Away from the event horizon our numerical compu-
tations in Schwarzschild and Reissner-Nordstrom space-
times show that the approximation is not valid for inter-
mediate or large mass fields. It is likely to be valid. for
very small mass fields, but we have not tested that case.
For massless fields, as discussed in Sec. VI, we Gnd that
the approximation gets progressively worse as the charge
to mass ratio of the black hole increases.

In contrast, the DeWitt-Schwinger approximation for
a massive scalar Geld is valid in virtually any spacetime
if the field has a large enough mass. This is because it
is really an asymptotic expansion in inverse powers of
the mass of the quantum field. It is also an expansion
in terms of derivatives of the spacetime metric. The ex-
pansion is general in that it allows one to compute an
approximate Green's function and stress-energy tensor
for a massive field in an arbitrary spacetime. It forms
the foundation of the renormalization method of point
splitting [15,19,20].

Here we discuss an alternative derivation of the
DeWitt-Schwinger approximation for (T~ ) for massive
scalar fields in static spherically symmetric spacetimes.
The derivation makes use of the WKB approximation for
the modes of the quantum Gelds. As mentioned above the
DeWitt-Schwinger expansion is an expansion in inverse
powers of the mass of the quantum field and in deriva-
tives of the metric. Therefore it is not surprising that
we Gnd a one-to-one correspondence between the order
of the WKB approximation used and the resulting order
of the DeWitt-Schwinger expansion in terms of powers
of I/m. For example, a fourth-order WKB expansion re-
sults in an O(mo) DeWitt-Schwinger approximation for
(T~„) while a sixth-order expansion results in an O(m 2)
approximation.

Christensen's point splitting counterterms [19,20] re-
sult from DeWitt-Schwinger expansions of (P ) and (T„)

(Tpv)ren ~ (Tpv)YKBBn + Pgsv)analytic (5.1)

The DeWitt-Schwinger approximation is obtained to a
given order by substituting the corresponding order of the
WKB expansion into (T~ )wKBfi„, evaluating the mode
sums and integrals in the large mass limit and substi-
tuting into Eq. (5.1). The computation of (T~„)wKBs„
in the large mass limit is described in Appendix G. The
resulting expressions for the DeWitt-Schwinger approxi-
mation for (T~„) in a general static spherical spacetime
are too long to be displayed here. However, explicit ex-
pressions for the Reissner-Nordstrom spacetime are given
in the following section. Comparisons with numerical
computations show that for a field with a large enough
mass, the DeWitt-Schwinger expansion always provides
a good approximation for (T~ ) in both Schwarzschild
and Reissner-Nordstrom spacetimes.

VI. (T„„)IN REISSNER-NORDSTROM
SPACETIMES

In this section we apply the method outlined in Secs.
II—IV to the computation of (T~„) for massless and mas-
sive scalar fields with arbitrary curvature couplings in
Schwarzschild and Reissner-Nordstrom spacetimes. We
assume the fields are in the Hartle-Hawking state which
is a thermal state at the black hole temperature r/27r,
where r is the surface gravity of the black hole. We com-
pare our numerical results with the predictions of the
analytic approximations discussed in Sec. V.

For a Reissner-Nordstrom spacetime the metric func-
tions f and 6 are

truncated at O(m ). We have reproduced these countert-
erms using second- and fourth-order WKB expansions,
respectively. We have also derived analytical approxi-
mations for ($2)„„and (T„)„„bycarrying out the ex-
pansions to O(m ) and O(m ), respectively. Our re-
sults for (P2) agree with those of Ref. [16]. For (T„) in
Schwarzschild spacetime our results agree with those of
Ref. [13,14].

Our derivation is based on the following approximation

(6.1)

In this case the component is proportional to ((T„")
(T, ))/f No such divergenc. e occurs for Schwarzschild space-
time since R„=0.

Numerical computations for massless fields in Reissner-
Nordstrom spacetimes, which are discussed in Sec. VI, show
that, for black holes with charge to mass ratios that are not
too close to one, the analytic approximation is a reasonable
approximation near the event horizon for the components
(T,'), (T„"),aud (T~).

For (P ) a second-order WKB expansion results in
an O(m ) DeWitt-Schwinger approximatiou, a fourth-order
WKB expansion gives au O(m ) DeWitt-Schwiuger approx-
imation, and so forth.

where M is the mass of the black hole and Q is its charge.
The inner and outer horizons are at

(6.2)

We compute (T„) in the region exterior to the outer
event horizon where the spacetime is static. Examina-
tion of the mode equation (2.6) shows that whenever the
scalar curvature R is identically zero, the mode equation
is independent of the value of the curvature coupling (.
This is the case for Reissner-Nordstrom spacetimes. If
R = 0, then (T~„)2 in Eq. (4.3) vanishes and it can be
seen from Eqs. (4.3)—(4.6) that (T„„),„can be written
in the form
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(6.3)

where C~ and D~ are tensors that are independent of
This greatly simplifies the study of the effects of the

curvature coupling constant (.

In Sec. V, we discussed an analytic approximation
which is useful for the massless field and is based on
(T„) „ i~t;, . The nonzero components of this analytic
approximation for a massless scalar field in a Reissner-
Nordstrom spacetime are

(Cg') = (2880~ r A ) [ 6v. —r +48Q r +60M r —472MQ r —216M r
+275Q r + 1348M Q r + 198M r —1372MQ r —1192M Q r + 370Q r

1 Ap, b
+1656M Q r —852MQ r + 149Q ] + C + —ln

~40vr2rs 2 q 4r2 )
(6.4a)

(Dg) =(16m r A ) ( rQ —r +2K Mr —2r MQ r +K Qr +4Q r —4M r —12MQr
+12M r +3Q r +7M Q r —10M r —6MQ r+6M Q r+Q —M Q ), (6.4b)

(C, ) = (28807r r A ) [2K r + 16Q r + 4M r —112MQ r —24M r
+59Q r + 292M Q r + 30M r —300MQ r —264M Q r + 82Q r

1 Apl+384M Q r —204MQ r+ 37Q ]+ C+ —ln
~120vr2rs 2 I, 4r

(6.4c)

(D„") =(487' r E) (—4KMr +3+ Qr +6KMr —6~MQr +~Qr —8Qr +8M r
+24MQ r —24M r —9Q r —9M Q r + 18M r + 14MQ r —14M Q r —3Q + 3M Q ), (6.4d)

(Cs ) = (2880vr r A ) [2K r —32Q r —8M r + 244MQ r + 24M r
—141Q r —580M Q r —18M r + 636MQ r + 440M Q r —174Q r

—700M Q r + 376MQ r —67Q ]
— C+ —ln

~

2 4 2 6 Q A 1 fop
607r2rs 2 q 4r2 )

(6.4e)

(Ds ) =(48m r A ) (2r Mr —3K Q r +r Q r +16Q r —16M r —54MQ r
+54M r +21Q r +27M Q r —48M r —40MQ r+40M Q r+9Q —9M Q ), (6.4f)

where A = r2 f and C is Euler's constant.
In Sec. V our derivation of the DeWitt-Schwinger approximation for (T„„)for a massive scalar field was discussed.

In a Reissner-Nordstrom spacetime, to leading order in m, the DeWitt-Schwinger approximation for (T~„) is

C~ = (302407r m r ) (1878M r —855M r + 810Q r —1152MQ r
—202Q r —2307M Q r + 3084MQ r —1248Q ), (6.5a)

Dt, ——(720vr m r ) (360M r —792M r —1008MQ r
+728Q r + 2604M Q r —2712MQ r + 819Q ), (6.5b)

C," = (30240m m r ) (315M r —462M r + 162Q r —1488MQ r
+842Q r + 2127M Q r —1932MQ r + 444Q ), (6.5c)

D, ' = (7207r m r ) (—144M r + 216M r + 336MQ r —208Q r
588M Q r + 504—MQ r —117Q ), (6.5d)

Here we have absorbed the factor of m in the log term. into the definition of p.
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Ce = (30240vr m r ) (—945M r + 2202M r —486Q r + 4884MQ r
—3044Q r —9909M Q r + 10356MQ r —3066Q ), (6.5e)

De = (720m m r ) (432M r —1008M r —1176MQ r + 832Q r
+3276M'Q'r' —3408MQ'r + 1053Q') . (6.5f)

For numerical computations of (T„)„„in Reissner-Nordstrom spacetimes it is useful to scale the mass M of the
black hole out of the mode equation. This can be accomplished by defining the scaled variables

s =1+(1—q ) /, q—: , ~=~M, m—:mM. (6.6)

The surface gravity of the black hole is then given by

8+ —1

M82+
(6.7)

In terms of these new variables the mode equation becomes

,d'S-) dS-)
s(s+ s+ —s ) + (2s+ s+ —s )(s+ s+ —s )

—(s ~ s+) + l(l+1)(s+ s+ —s ) + m (s+ s+) (s+ s+ —s ) (6.8)

As discussed in paper I, the p ~ modes are regular on
the event horizon, 8 = 0, and the q ~ modes are regular at
s = oo. Errors in the numerical integrations of the mode
equations are minimized by integrating p ~ from small to
large values of 8 and integrating q ~ from large to small
values of 8. This is because numerical errors result in
eR'ectively adding a small amount of the q ~ mode to the
p ~ mode and vice versa. As you integrate to larger values
of 8, the p ~ modes grow while the q ~ modes are damped.
The opposite happens as you integrate to smaller values
of s.

After the numerical integrations the modes are nor-
malized using Eq. (2.7). Power series solutions for p i
which can be used as starting values for the numerical
integrations were given in paper I. An asymptotic series
for q ~ valid at large 8 was also given in paper I. An al-
ternative way to obtain starting values for the q ~ modes
at large 8 is to use the WKB approximation to estimate
the ratio q' &/q ~. So long as the starting values have the
correct ratio, any starting value can be used for q ~ since
the normalization of the modes is done after the integra-
tion of the mode equation. Typically fairly large values
of 8 are necessary to obtain accurate starting values for
the q ~ modes.

Also shown in paper I was the fact that for massless
fields in Reissner-Nordstrom spacetimes the modes poi(s)
and qoi(s) are equal to the Legendre functions P&(x) and
Qi(x), respectively, where x—:2s(s+ —s ) i+1.is These

100

80

So

40

20

-20
0.0 0.5 1.0

(r-r )/M

1.5 2.0

modes occur in the n = 0 terms of (T„)„„„;,. Using
the identities derived by Howard [6] for the sums over l
of various combinations of Pj(x), Q~(x) and their deriva-
tives, one can easily show that the n = 0 contributions
to (T~ )„„„;,are identically zero.

We have computed (T„„)for both massless and mas-
sive scalar fields in spacetimes with various values of
q = ~Q~/M. Some of our results for massless fields are
shown in Figs. 1—6. At large values of 8 the analytic ap-
proximation predicts that the magnitude of a component

There is an error in the equation defining x in paper I. The
correct definition ~~ given here.

FIG. 1. The curves in this figure display the values of C&

for massless scalar fields around Reissner-Nordstrom black
holes with ~Q~/M = 0, 0.8, 0.99, 0.95 from top to bottom
at the event horizon, r = r+.
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FIG. 2. The curves in this figure display the values of D&'

for massless scalar 6elds around Reissner-Nordstrom black
holes with ~Q~/M = 0, 0.8, 0.99, 0.95 from top to bottom
at the event horizon, r = r+.

FIG. 5. The curves in this figure display the values of Cp
for massless scalar fields around Reissner-Nordstrom black
holes with ~Q~/M = 0, 0.8, 0.95, 0.99 from top to bottom
at r =- r+ + 2M.
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FIG. 3. The curves in this figure display the values of C„"
for massless scalar fields around Reissner-Nordstrom black
holes with ~Q~/M = 0, 0.8, 0.99, 0.95 from top to bottom
at the event horizon, r = r+.

FIG. 6. The curves in this 6gure display the values of Dg
for massless scalar fields around Reissner-Nordstrom black
holes with ~Q~/M = 0.99, 0.95, 0, 0.8 from top to bottom
at the event horizon, r = r+.

90 I I I I

-200 60

-400 30

-600

OO
-800

-1000

-60 I ~ I ~ I ~ I

-1200
0.0 0.5 1.0

(r-r )/M

1.5 2.0

FIG. 4. The curves in this 6gure display the values of D„"
for massless scalar 6elds around Reissner-Nordstrom black
holes with ~Q~/M = 0, 0.8, 0.99, 0.95 from top to bottom
at the event horizon, r = r+.
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FIG. 7. The curves in this figure illustrate the dependence
of Cg on the arbitrary parameter p for massless scalar 6elds
around a Reissner-Nordstrom black hole with ~Q~/M = 0.8.
From top to bottom the curves are for pM = 0.01, 0.1, 0, 10,
100.
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FIG. 8. The curves in this figure display the values of the
quantity (C„"—C&')/f for massless scalar fields around a
Reissner-Nordstrom black hole with ~Q~/M = 0.99. This
combination of components is related to the energy density
observed by a freely falling observer. The solid curve corre-
sponds to the numerically computed values and the dashed
curve to those from the analytical approximation. The ana-
lytical approximation diverges logarithmically as r ~ r+, but
the numerical computation shows no sign of such a divergence.

of the stress-energy tensor decreases with increasing q.
At intermediate values of 8 the opposite tendency holds
as can be seen in the plots. Near the event horizon many
of the components are rather complicated functions of
q. In this region the magnitude of a component may
first increase, then decrease and sometimes increase yet

FIG. 1G. The curves in this figure display the values of
Cg for massive scalar fields with m = 2/M around Reiss-
ner-Nordstrom black holes with ~Q~/M = 0, 0.95 from top to
bottom at the event horizon, r = r+. The solid lines corre-
spond to the numerical computations and the dashed lines to
the DeWitt-Schwinger approximation.

again as q increases. Or, the magnitude may first de-
crease and later increase with increasing values of q, and
so forth. The plots illustrate this behavior to some ex-
tent. However, we would need to provide two or three
times as many plots to illustrate the detailed behavior of
the components as functions of q.

From Eqs. (4.3) and (4.4j) it is seen that C„" is a func-
tion of the arbitrary constant p which is discussed in

500
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FIG. 9. The analytical approximation is compared with
the numerical computation of the quantity D&' for mass-
less scalar fields around Reissner-Nordstrom black holes with
~Q~/M = 0, 0.8, 0.95 from top to bottom at the event hori-
zon r = r+. The solid lines correspond to the numerical
computations and the dashed lines to the analytical approxi-
mation. Note that the analytical approximation gets progres-
sively worse as ~Q~/M increases.

FIG. 11. The curves in this figure display the values of
De for massive scalar fields with m = 2/M around Reiss-
ner-Nordstrom black holes with ~Q~/M = 0.95, 0 from top to
bottom at the event horizon, r = r+. The solid lines corre-
spond to the numerical computations and the dashed lines to
the DeWitt-Schwinger approximation.
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Sec. III. The value of this constant has a significant ef-
fect on the components of C„" for intermediate values of
s. This is illustrated in Fig. 7 which shows C& for various
values of p. In all other figures, the value p = 1/M has
been used to generate the data illustrated.

From Eqs. (6.4a) and (6.4c) it can be seen that the
analytical approximation predicts that a logarithmic di-
vergence exists at the event horizon for the combination
of components (C" —C&)/( —gqq), which is related to the
energy density measured by a &eely falling observer. This
divergence exists for any nonzero value of q. If such a di-
vergence actually existed in the physical stress-energy (as
opposed to the approximation) then this would be very
important because it would imply that quantum effects
are large near the event horizon of any charged black
hole, no matter how small its charge is. In fact when we
compute this quantity numerically we find no such loga-
rithmic divergence. An illustration is given in Fig. 8 for
the case q = 0.99. In this plot both the analytical ap-
proximation and the numerically computed component
are shown. The divergence in the analytical approxima-
tion can be clearly seen. However, no such divergence is
apparent for the numerically computed component in this
or any other case we have examined for q ( 1. Prom this
result we clearly see that the analytical approximation
is not valid for this component near the event horizon if
q&0.

For the other nonzero components of both C„and
D~„ the analytic approximation is fairly accurate both
near and away &om the event horizon for small values of
q. It becomes progressively worse as q increases. These
properties are illustrated in Fig. 9 where plots of the nu-
merically computed values and analytic approximations
for Dq for the cases q = 0, 0.8, 0.95 are shown.

Some of our results for massive fields are shown in
Figs. 10 and 11. For all components we find that for
m & 2/M, the DeWitt-Schwinger approximation is a
good approximation for small and intermediate values
of 8. Because, as discussed in Appendix G, the DeWitt-
Schwinger approximation i.s independent of the state of
the field, it is not a good approximation at large val-
ues of 8 where temperature-dependent terms dominate
all nonzero components of (T„„). Since the DeWitt-
Schwinger approximation is constructed from local geo-
metrical quantities, it will always be regular on the event
horizon. Our numerical computations also indicate that
all components of (T~„) are regular on the event hori-
zon for the case of massive fields in Reissner-Nordstrom
spacetimes.

Similar plots can be made for the nonzero components of
C~ . However in this case the value of p, in Eqs. (6.4a), (6.4c),
and (6.4e) need not be the same as the value of p, used for
the numerical computations. See, for example, the discussion
near the beginning of Sec. V. Thus one should use the value
of p, in the analytical approximation which gives the best fit
to the numerically computed curves.
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APPENDIX A: ANGULAR DERIVATIVES
OF Gg(x, x')

In this appendix we compute the Grst and second an-
gular derivatives of G@ which occur in Eq. (2.4). From
the exact expression for G~ in Eq. (2.5) one sees that the
only dependence on the angular variables occurs in the
factor Pi(cosy). Thus it suffices to consider derivatives
of PI(cosy).

The derivatives of G@ in Eq. (2.4) must be taken as-
suming a general point separation. After this is done the
point separation of interest may be chosen. We are using
the separation e = t —t', r = r', 0 = 0', and P = P'. With
this separation cosy = 1. From Eq. (2.4) it is seen that
all possible combinations of partial derivatives with re-
spect to 0 and O', P and qV occur to second order. In the
limit 0' + 0 and gV ~ P all of the first partial derivatives
of Pi(cosy) vanish. Thus we will only need the quantity
P& (1). It is easily obtained from the following integral
representation for Pi(z) [24]:

Pi(z) = — dP[z + (z —1)'~ cosP]' . (A1)

Taking the derivative with respect to z, expanding the
integrand about the point z = 1, computing the integral
and taking the limit z ~ 1 yields

P,'(1) = —l(l + 1) . (A2)

The second partial derivatives of P~(cosy) in the limit
0' —+ 0 and P' -+ P are then found to be

8 Pi(c st)
802

0 Pi(c spo)

A/2

8 Pi(cosy)
80'2

0 Pi(c st)
ggf2

8 Pi(cosy) 1
0000' 2

= ——I l+ I

(A3)
0 Pi(cosy)

BQBQ'

= ——l(l + 1)sin 0.
2

APPENDIX 8: EXPANSION OF cr

AND ITS DERIVATIVES IN POWERS OF e

[o ]
= lim o- (x, x'),

Ã' —+K
(B1)

In this appendix we outline Christensen's method [20]
of expanding the quantity of o (z, z') and its derivatives

I
in powers of e~ = x" —x~ . The procedure is to first
expand o (x, z') in powers of e" and then to compute a
using the relationship o = o a /2 This wor. ks for an
arbitrary separation of points. For the separation we are
interested in e" = ebq~, with e = t —t'. To renormalize
(T„) it is necessary to compute a to fifth order in e.

o (x, x') is a vector at x and a scalar at x'. This means
that it can be expanded in a Taylor series about the point

'x' = x. If we use the notation
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then we can write

~"(**')= tg"1 —[g",-]e + —,[~",- p]e ~P+"

The first step is to convert the partial derivatives to co-
variant derivatives by using the definition of the covariant
derivative. For example, for a scalar function A(2:):

A =A.

A p
——A. p

——A. p+ I'~ pA. p .
(B3)

As pointed out by Christensen, the conversion of higher-
order partial derivatives to covariant derivatives is greatly
simplified for the case at hand by the fact that partial
derivatives with respect to time of the connection I'

~
vanish. This is because the metric is independent of time.
The only derivatives of the connection that occur for our
choice of point splitting are with respect to time.

After changing the partial derivatives in (B2) to covari-
ant derivatives, one is left with a power series in ~ which
contains terms with coincidence limits of g (2:, x') and
its covariant derivatives at x'. The next step is to use
Synge's theorem [25,19,20] to convert covariant deriva-
tives at x' to covariant derivatives at x. The theorem
states that

APPENDIX C: EXPANSION OF g&„
IN POWERS OF ~

In this appendix we use Howard's method [6] to expand
the bivectors of parallel transport g~„ in powers of e =
t —t'. This method exploits the fact that g" parallel
transports vectors from x' to x, so that

IA" =g" A (C1)

A =(~ )„A (C2)

where (cu )„are the components of the basis one-form
in the coordinate system at x'. The components in

the coordinate frame at x are then

Another way to parallel transport a vector from x' to
x is to find its components in terms of an orthonormal
tetrad at x', defined by a set of orthonormal basis vectors
(e ) and a dual basis of orthonormal one-forms (w j.
The orthonormal tetrad components at x may then be
obtained by parallel transporting the tetrad from x' to
x. Thus the components of the vector in terms of a tetrad
with the same orientation at x are also known. Prom this
knowledge the components of the vector in a coordinate
basis at the point x can be determined. In mathematical
notation the components of a vector in the orthonormal
frame at x' are

A" = (e )"A = g (e )"(eb)„A (C3)

+Ã~c ~ P,' P']p. " (B4) where (e )p are the components of the orthonormal basis
vector e in the coordinate system at x. Thus we have

[g."] = 0,
[gp ]

—gp

[~";-]= o

1
[g vcrr ] = ~ vcr& (+ crvr + & r vcr)) 3

3
[+ jvcrr p] (~ vcrr jp + ~ vrpjcr + ~ vp jT)cr

(B5)

In general a coincidence term with five covariant deriva-
tives of o" occurs in the expansion at order e . However
for the point separation we use this term is equal to zero.

After a substantial amount of algebra one finds that in
a static spherically symmetric spacetime with the point
separation we have chosen,

The coincidence limits of g (x, z') and its covariant
derivatives at x must now be evaluated. These limits
have been computed by Christensen [19,20]. He finds

= ~'(e-)"(eb)" (c4)

In our case g& is in the (r, t) plane so, following Howard,
we choose two basis vectors of our tetrad along the two-
sphere coordinate directions, and the timelike basis vec-
tor to lie along the tangent to the connecting geodesic in
the r-t plane, i.e.,

e"=0

e"=
( g ger)1/2

gP
8
r

gP

r sin0

(c5)

The fourth leg of the tetrad is determined by orthonor-
mality; its nonzero components in the coordinate frame
are

——', rp„(ap„, +r „rp.,)"
[
—2r p.,r „a ...+ (r"„)'ap„,„120

-(r"„)'r'„,r .,]" . (B6)

gp(~, *)= g, ~ —-rp«. + —,rp«rp„. dr
(f) 1/2"'=
~(x)~

( g gn) 1/2

( g gem)1/2

(C6)

We define a similar tetrad at x' using 0 ~ . In Appendix B
an expression for g P (x, x') was derived as an expansion in
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powers of ~ = t —t'. One can define an identical expansion
I

for o." (z, x') in powers of e'—:t' t —= —e. Note that since
r' = r in our point separation scheme the coefficients of
these expansions are identical. Examination of Eq. (3.2)
shows that the following relationships hold:

0 P)6 = —0 T)6

0 P) 6 = 0 P) 6

[-o. (r, e')cr (r, e')]'/' = [ o-(-r, s)o (r, e)]'/'

Spherical symmetry and the uniqueness of the geodesic
in the r-t plane connecting x and x' guarantee that the
tetrad at z' is simply the tetrad at x parallel transported
to x'.

Using the relationships in (C7) we find that

h,g" = — (~')'+ —(o")' (-~-o )
'

way to do this is to use the Plana sum formula [21] which
says that for a function g(k)

1 DO) g(j) = —g(k) + g(r)dr

dt+i, [g(k + it) —g(k —it)] . (D2)
0

For sums of the form (Dl) it is possible to compute the
first two terms on the right-hand side in (D2) exactly.
After doing so one expands them in inverse powers of ~.
It is not, in general, possible to compute the last term in
Eq. (D2) exactly. However, it can be computed approx-
imately in the large ~ limit by expanding the integrand
in inverse powers of w. The integrals for each term in the
expansion can then be computed analytically [24].

For example, consider the sum

g'"' = —g" = 2o'o'( —o. o )

(~~) +h( ) ( )
I

~~

I
~ 2 ~ ~ ~

I

~ a
I

(C9) Llo = )
1=0

2 (t+ —,')
f - i/2

(u'+ m'f + (t + -', )
'

—,

2r

f1/2

Using Eq. (3.2) we can expand these expressions in pow-
ers of e. The results are given in Eq. (3.4).

APPENDIX D: DERIVATION OF (Tp»)wKBdi»

In this appendix we describe the derivation of the
quantity (T„„)wKBd;„. To account for all of the diver-
gences in (T~„)„„„„afourth-order WKB expansion must
be used. A simple way to keep track of the order of the
WKB expansion is to multiply various terms of Eq. (2.9)
by a dimensionless parameter o, so that the 02 term is
O(n ), the Vi term is O(n) and the other terms on the
right-hand side are O(n ). Then Eq. (2.9) is solved by
iteration to a given order in o. and the results are sub-
stituted into the quantities Ai through As in Eq. (2.13).
Terms up to the given order in o. are retained. At the
end of the calculation o. is set equal to one.

To compute (T»)wKBd;„one first substitutes the
WKB expansion for the modes into Eq. (2.13) and re-
tains terms up to fourth order. When this has been done,
the sums over l in A~ though A5 are all of the general
form

(D3)
Substituting (D3) into (D2), computing the first two
terms on the right in (D2) analytically and expanding
the third in inverse powers of ~ gives

I 1
1//2

2 u2+m2 +

I

'+ 'f+
4r2 )

OO

dt +
0

—1

2r /1'2 2l 1 —3~+~ ——mr
~

—+O((u ).f (12 ) ~ (D4)

In this way each of the mode sums in the WEB expan-
sions for Aq through A5 can be expressed as a series in in-
verse powers of u. These approximations for Aq through
As are then substituted into Eqs. (2.12a)—(2.12d), and
only terms of order u or lower are retained. Terms of
order ~ and higher are not ultraviolet divergent.

2 (t+ -', )'+"
f - k/2'=' -"-f.(.—,') —,

—subtraction terms ~,

where j is a nonnegative integer and A: is an odd integer.
There is a simple way to determine which subtraction
terms go with which sum. Simply expand the function
to be summed in inverse powers of l and truncate the
expansion at O(P). These are the terms which must be
subtracted to make the sum finite.

The sums are next computed in the large cu limit. One

An approximation to (T„„)„„;,i can be obtained by car-
rying the series out to higher inverse powers of u and substi-
tuting the result into (T„„)„„„„in Eq. (4.1). The same is
true for (P ). This has been done by Howard and Candelas
[6,7] for the conformally invariant scalar field in Schwarzschild
spacetime. For that case the approximation worked well at
large values of r but rather poorly near the event horizon.
One problem with this procedure is that the approximation
depends on an arbitrary lower limit cutoff that must be placed
on the sum over n or the integral over u. It is important to
note that for the approximation to be consistent, higher or-
ders in the WKB expansion must be used. For example to
go fo O(cd ) a fourth-order WKB expansion for (P ) and a
sixth-order WKB expansion for (T~ ) are necessary.
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APPENDIX E: COMPUTATION OF THE MODE
SUMS IN (T„„)WKBs;„

d40
cos(Q/E'~) = c—z(AE»)

To calculate (T»)a„al„t;, it is necessary to compute
the various sums or integrals over w in (T»)wKBg;» and
then to expand them in inverse powers of e. The re-
sults depend on whether the scalar field is in a zero- or a
nonzero-temperature state. For the nonzero-temperature
state Howard [6] has computed all of the relevant sums
except the first one displayed below. It can be found in
Ref. [24]. Here r—:2vrT and s—:r —r'. Note that the
final answer in each expression is in terms of e = t —t'.

cos(neo ) 1 ( 1
K = —ln

nK 2
~

2[1 —cos(re )] ~

= ——ln( —K's') + O(c'),
2

= ——ln( —A e ) —C+ O(e ),2
(E2)

(
d~ sin(ue ) = lim —i

Amo ( dE'~

l
eos(we~)

r
(E3)

~.cos(s A) l 1= lim i

The results for the other integrals are

where C is Euler's constant.
The rest of the integrals do not appear to be well de-

6.ned. However they can be evaluated. by taking deriva-
tives of Eq. (E2) with respect to e . For example,

. K KEr
iK ) sin(nits ) = i —cot

2 2n=1
1= —+ O(e),

OO 1
d(d ld cos(Los~)

0
OO 2

dM Cd Sln(ME7-) (E4)

K nKcos nKF~
n=1

K Sln nKE
dc~ n=l

K———+ O(")
12

CKO 6
d(d (d cos((de~) =

4

APPENDIX F: COMPUTATION OF (Tpv)wKBfin

iK n K sin nKe = —i K nKcos nKe
n=1 n=1

2= —+ O(e),

K n K cos nKF~
n=l

K n K sin nK6~2 2 ~

dE~ n=1

+O(c ) .
~4 120 (E1)

As mentioned in Sec. IV, we need to impose an infrared
cutoff on the terms of order I/tu. This has been implicitly
done in Eq. (El) by dropping the n = 0 term. In the
other sums in Eq. (El) the n = 0 term vanishes so it
makes no difference whether or not we include it.

For the zero-temperature case we impose an arbitrary
lower limit cutofF A on the integral whose integrand is
proportional to I/w. The other integrals do not require
such a cutoff as their integrands vanish at u = 0. For the
1/w integral we Bnd

There is an imaginary contribution from the log terms in
the following expressions. This is a reQection of the fact that
when the Euclidean Green s function is analytically contin-
ued back to the Lorentzian sector it is proportional to the
Feynman Green's function which has both real and imagi-
nary parts. Recall that in Eq. (2.2) we took the real part of
the Euclidean Green's function and its derivatives. Thus, for
the purposes of point splitting, one can simply replace the
log( —s ) terms by log(s ) in the following equations.

In this appendix. eKcient methods to compute
(T„)wKl3fi are described. This quantity is obtained by
substituting the WEB expansion into the expressions S1
through Ss in Eqs. (4.6a)—(4.6e) and substituting the re-
sulting expressions into Eq. (4.5). A WKB expansion of
fourth order or higher is necessary for (T~„)wK]3fi to be
finite.

The mode sums and integrals in (T„„)wKBfi are of the
form

oo (
dp, (d ),

l=o

2 (l + —,
')'+"

- k/2
(u'+ m'f + (1+ —,')' —,

—subtraction terms —subtraction terms

(FI)

Here i = 0 or 1, j is a non-negative integer and k is an
odd integer.

The subtraction terms for the sum over l come &om the
quantities A1 through A5 and those for the integral over
w or sum over n come &om (T»)wKBg;». For a given
sum S;~k the subtraction terms for the sum over l can
be obtained by expanding the function being summed in
inverse powers of l and truncating at O(l ). The sub-
traction terms for the integral over w or sum over n can
be obtained by using the Plana sum formula to compute
the sum over l in the large u limit in exactly the way
described. in Appendix D. For many values of i, j, and A:

there are no subtraction terms.
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(k —2i —x)/2

i+ (i+,') —,

(F2)

For a massless Geld this sum can be computed exactly
using the relation

).I
t+ —, I

= (2" —I)&( ) (»)ll
)

The result is
k —2i —1

422'I k (f' ')
2

x(2" ' ' —1)((k —2i —2j —2) . (F4)
For a massive field one can compute the sums in (F2)

numerically up to a large value l = I such that L )) mr.
For / ) I the terms to be summed can be expanded in
inverse powers of (I + 2). The relation (F3) is then used
to compute these terms.

If subtraction terms are present in the zero-
temperature case, then the Grst step is to use the Plana
sum formula to compute the sum over /. The Grst two
terms on the right-hand side of (D2) are computed an-
alytically while the third term is left as an integral over
t. Next the integrals over cu are computed for each of
these terms using an upper limit cutoK A. A lower limit
cutoK A is used for all subtraction terms proportional to

. Each term is then expanded in inverse powers of A
truncating at order A .

The series for the third term in (D2) will contain some
terms for which the integral over t can be computed an-

I

The computation of the quantities S,~I, proceeds difFer-
ently depending on whether the field is at zero or nonzero
temperature. For the zero-temperature case when no
subtraction terms are present, the integral over u is com-
puted Grst with the result that

7r
k —2i —1

2

4' 22'I."

alytically. There will also be other terms which must
be computed numerically. For a massive Geld the latter
must be computed at all the radial points of interest since
the r dependence does not factor out of the integral. For
a massless Geld the r dependence does factor out and the
integrals can be computed numerically once and for all.

For the nonzero temperature case the evaluation of
sums of the forxn (Fl) must be done numerically. It is
easiest in this case to break the problem up into the cases
n(Nandn&%with% )) [m f+f/(4r )]/e . Re-
call that w = nK with K = 2mT if the temperature is
greater than zero. For n ( % the sum over l in (Fl) is
computed numerically up to some large value / = I such
that L )) n r r /f+m r For. l ) Lthetermstobe
summed can be expanded in inverse powers of (l + 1/2).
The relation (F3) is then used to compute these terms.

For n ) N the sum over l can be computed in the
large u limit using the method described in Appendix D.
However, in this case, higher-order terms of the expan-
sion in inverse powers of u are kept. The resulting sums
over n can then be computed analytically for these terms
between N + 1 and infinity.

APPENDIX G: COMPUTATION OF (T„)vvKxxxx„
IN THE LARGE MASS LIMIT

In this appendix the coxnputation of (T„)wKBs„ in
the large mass limit is discussed. The computation in-
volves evaluating sums of the form (Fl) in the large mass
limit. This is most easily done by Grst using the Plana
suxn formula (D2) to compute the sum over / and then
expanding the results in inverse powers of the quantity
[w + m f + f/(4r )] / The fir. st two terms on the
right-hand side of (D2) can be computed exactly. The
third term must first be expanded in inverse powers of
[w + m f + f/(4r )] /, then the integral over t can be
computed analytically for each term.

For the zero-temperature case, the resulting integrals
over u can easily be computed and then expanded in
inverse powers of m. As an example consider Sooq. Com-
puting the sum over 1 using the Plana sum formula as
described above yields

1
~oo~ =

47r2 1/2
2 w +m +

+m f+

~2mt 1
(2it + 1)

- x/2
w2 +m~f + (it+ l)

(—2it+ 1)

Ld +m f + Zt+ ——1 f
2 r2

cu —
/

——m rf q12 ) ~

f i"'
/cu +m f+ + 1/2

3 (d +m +

f2 (1
+ ~ ~ ~ + —m r

5/2 f $12 ) (d
105r4 u2 + m2 + 4r

3/2
30r2 ~2 + m2 + 4r
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Computing the integrals over u and taking the large mass limit yields the following asymptotic expression

(~'f l
goop m r —1 + ln

8 z (4A
31

ln + + +Om '
96vr 2 4%2 3840vr 2m2r 2 64512vr 2m4r 4

For the nonzero-temperature case, the sum over / is computed as in the zero-temperature case. The resulting n = 0
term is expanded in inverse powers of m. The sum over n, beginning with n = 1, is evaluated using the Plana sum
formula. As usual, the first two terms in (D2) can be evaluated exactly and then expanded in inverse powers of m.
The third term must first be expanded in inverse powers of m and then the integral over t can be computed for each
term. Note that for large t the third term in (D2) is exponentially damped. This means that the procedure we are
following introduces errors which are exponentially damped functions of m. The result for S,~I, is somewhat di8'erent
from that of the zero-temperature case because w is summed over rather than integrated over. However, when the
calculation of the DeWitt-Schwinger approximation for (T~„) is completed, the answer turns out to be exactly the
same as that found for the zero-temperature case. This is not surprising since the De&itt-Schwinger approximation
is a local approximation and should not depend on the state of the quantum field.
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