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Nonsingular four-dimensional black holes and the Jackiw-Teitelboim theory
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A four-dimensional dilaton-gravity action whose spherical reduction to two dimensions leads
to the Jackiw-Teitelboim theory is presented. A nonsingular black hole solution of the theory is
obtained and its physical interpretation is discussed. The classical and semiclassical properties of
the solution and of its two-dimensional counterpart are analyzed. The two-dimensional theory is
also used to model the evaporation process of the near-extremal four-dimensional black hole. We
describe in detail the' peculiarities of the black hole solutions, in particular, the purely topological
nature of the Hawking radiation, in the context of the 3ackiw-Teitelboim theory.
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I. INTRODUCTION

In the last years dilaton-gravity theories have been
widely investigated both in two and four spacetime di-
mensions [1—6]. In particular the model proposed by
Callan, Giddings, Harvey, and Strominger (CGHS) [1]
has generated new interest and activity on black hole
physics. It was recognized that two-dimensional dilaton-
gravity models represent a theoretical laboratory for in-
vestigating the fundamental issue of information loss in
the black hole evaporation process. Moreover the CGHS
model can be viewed as the low-energy effective the-
ory that describes the S-wave sector in the evaporation
process of the near-extreme magnetically charged dila-
ton black hole in four dimensions. The four-dimensional
black hole is also of interest because it is a classical solu-
tion of low-energy effective string field theory [3,4].

In a previous paper [5] we found four-dimensional (4D)
dilaton black hole solutions which can be considered
as a generalization of the Garfinkle-Horowitz-Strominger
(GHS) solutions [3,4]. They are also classical solutions of
a Beld theory that arises as a low-energy approximation
to string theory. The corresponding two-dimensional ef-
fective theory that describes a magnetically charged four-
dimensional black hole near its extremality represents a
generalization of the CGHS model [6]. In this paper we
will study in detail another special case of these models,
namely, the one whose dimensional reduction to two di-
rnensions leads to the Jackiw-Teitelboim (JT) theory [7].
The relevance of this model is twofold. From a purely
four-dimensional point of view the corresponding mag-
netically charged black hole solutions manifest proper-
ties which are in some sense intermediate between the
Reissner-Nordstrom (RN) and the GHS black holes and
in addition enjoy the peculiar property of being free from
curvature singularities. On the other hand, the spheri-

cal reduction to two dimensions leads to the JT theory.
The latter can therefore be used to model the S-wave
scattering of the 4D black hole near extremality. In this
context the dynamics of the JT theory is very peculiar.
In fact the black hole solutions of the 3T theory present
features which have no correspondence in other theories.
Their existence in the context of the theory is related to
the choice of the boundary conditions for the spacetime;
they have in some sense a purely topological origin. As a
consequence the Hawking evaporation process is a purely
topological efFect. Our results are also interesting with
respect to the black hole solutions in three dimensions.
In fact, it has been demonstrated [8] that the JT the-
ory arises from dimensional reduction of the black hole
solutions of Banados, Teitelboim, and Zanelli (BTZ) [9].
Thus our results about black hole physics in the JT the-
ory can be used as well to model the evaporation process
of a three-dimensional black hole.

The structure of the paper is as follows. In Se-. II
we study the four-dimensional model. In particular we
derive the magnetically charged black hole solutions; we
study their local and global properties and their behavior
in the extremal limit. In Sec. III we consider the two-
dimensional theory obtained by spherical reduction of the
four-dimensional one. The classical properties of the cor-
responding black hole solutions are analyzed at length in
particular in connection with the four-dimensional ones.
In Sec. IV we study the semiclassical behavior of the two-
dimensional theory, in particular the evaporation process
of the black hole including the back reaction. The main
results of our investigation are summarized in Sec. V.

II. THE FOUR-DIMENSIONAL MODEL

Let us consider the 4D action

~gd xe ~(R —Il ), (2.1)
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where E„„descri ebs a Maxwell field and P a scalar (dila-
ton).
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The relevance of this action resides in the fact that
its dimensional reduction to two dimensions leads, as we
shall see in the following, to the Jackiw-Teitelboim the-
ory. Moreover, it is a special case (k = 0) of the low-

energy efFective string actions discussed in [5,6]. A con-
formal transformation of the metric field. g„„=e 2@g~

leads to the minimally coupled action

~gd x[R —6(V'P) —e ~I"'
] . (2 2)

1 ~ 1 2B„——g„R = 2I„pI'~ ——g„E
2 2

+e ~[(V'„V' —g„V' )e ~],

(2.3)

V'„(e ~I'" ) = 0 .

A spherically symmetric black hole solution of the 6.eld
equation is given [6] by a magnetic monopole

ME,~ =
T2

with the metric

However, we prefer to discuss the action in the form
(2.1). One of the reasons is that the solutions of (2.1) de-
scribe nonsingular black holes similar to those discussed
in [8,10] for the JT theory.

The field equations stemming from (2.1) are

(2.8)

The change of variables u = t —r„v = t + r, takes the
metric in the form

2= r+
ds = — 1 ——dudv,r (2.9)

of the low-energy effective action of string theory [3,4].
Owing to the difference in the gpp component, however,
the three metrics possess quite different physical proper-
ties.

The metric (2.4) is asymptotically fiat and the curva-
ture is regular everywhere except at r = O. This point,
however, is not part of the manifold, since the range of
the radial coordinate is given by r & r . In fact, , even
if the manifold is regular at r = r (a coordinate singu-
larity is placed at this point, but the curvature tensor is
regular), for r ( r the metric becomes Euclidean and
the dilaton imaginary, so that one is forced to cut the
manifold at r = r . Furthermore, a horizon is present
at r = r+. Hence, the solution (2.4) describes a non-
singular four-dimensional black hole. This is reminiscent
of the regular two-dimensional black hole discussed in
[8,10]. For negative values of r+ and r, instead, one has
negative mass and a naked singularity.

A better understanding of the causal structure of the
spacetime can be obtained by discussing its maximal ex-
tension and the Penrose diagram. I.et us thus consider
only the two-dimensional r —t sections of the metric and
introduce the "Regge-Wheeler tortoise" coordinate, de-
fined by

ds = — 1 ——dt

+ 1 —— (2.4)

with r defined implicitly in terms of u and v by (2.8).
In these coordinates the metric is clearly regular at r =
r . One can now perform another change of coordinates
which eliminates the singularity at r = r+.

and the dilaton field

—X/2
(2.5)

The two parameters r+ and r (r+ & r ) are related to
the charge Q~ and to the mass M of the black hole by
the relations

U = —exp( —Pu), V = exp(Pv),

ds )
—(i+~/2)

2 exp[ —2Py r(r —r )](Qr —r +~i)~

where P =
2 (r+ —r )/r+s The final re. sult is the met-

ric expressed in the Kruskal form:

(2.6)
3 2 3

2M = r++ r, Q~ = r+r— —
2

' 4
x [fr+(r —r ) + Qr(r+ —r )] dUdV

with

(2.10)

The temperature of the solution is given by [6]

) i/2

4~r+ ( r+)
(2 7)

2p(2r+ + r ), U—V = exp(2pr. ), —
V—= —exp(2Pt) .
U

The temperature vanishes in the extremal limit r+ ——r
which should therefore be considered as the ground state
for the Hawking evaporation process of a black hole of
given charge.

The spatial sections of the metric coincide with those
of the Reissner-Nordstrom solution of general relativity
and those of the Garfinkle-Horowitz-Strominger solution

This form of the metric is regular both at r+ and r
In a standard way one can deduce from it the form of
the Penrose diagram (Fig. 1), which is analogous to that
of the Schwarzschild solution. The only difference is that
the singularity is now replaced by an inner horizon, which
represents the boundary of the manifold.

In the extremal case one can proceed in a similar way.
However, we have not been able to find an explicit form
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zo

z+

z'
~&(4 —40)

= —4Q sinh ddt + Q (4drl~+ dg~),
(2.12)

cosh'

z

for the Kruskal metric. The Penrose diagram is given in
Fig. 2 and is identical to that of the GHS solution.

In the following, we shall be especially interested in
the properties of the extremal limit r+ ——r . For this
purpose it is useful to define a new coordinate g, such
that rl =arcsinhg(r —r+)/(r+ —r ). In terms of rI, the
metric and the dilaton filed (2.4) and (2.5) take the form

ds = —4
Asinh q dt

r+ + Asinh g

+(r++ b.sinh ii) (4dg + dO~),

~&{4—40)
1/2r++ Asinh g

Acosh q

(2.11)

FIG. 1. Penrose diagram of the four-dimensional black hole

solution. The bold lines at r = r represent the boundary of
the spacetime.

ds~ = —4Q cosh ddt + Q (4drI + dO ),
(2.13)

,~(e-e.)
sinhg

It appears that in the extremal limit also the negative
mass solution becomes regular; the metric (2.13), in fact,
is the direct product of a 2D spacetime of constant nega-
tive curvature and a two-sphere. We shall discuss in more
detail the properties of this solution in the following.

Both solutions (2.12) and (2.13) tend, for rI —+ oo, to
the metric

ds~ = 4Q e "dt —+Q (4dq +dA ), (2.i4)

In this limit the metric is the direct product of a 2D
spacetime of constant negative curvature and a two-
sphere of radius Q. It describes a four-dimensional
Bertotti-Robinson spacetime [11]. This spacetime so-
lution can also be obtained by tensoring two two-
dimensional conformal field theories [12].

The extremal limit of the negative mass solution, with
negative r+ and r and naked singularity, is given instead
by

where A = r+ —r and Q = (2/v 3)QM.
In the limit 4 ~ 0, the spatial sections of our solu-

tion can be described as an asymptotically Hat region
attached to an infinitely long tube (the "throat"), in

analogy with the RN and GHS cases. It is not possi-
ble, however, to describe the extremal limit by a unique
metric: rather, there are several regimes under which the
limit can be approached, which correspond to different
solutions of the action (2.1).

The region of the throat near the horizon is described,
for positive r+ and r, by the solution

points
infi

with linear dilaton

—1

ds = —4Q I
1+

I

dt
y)

+I i+ —
I

(dy +y dO),( Ql'

( ~) 1/2
e'~ ~'=

I
i+ —

I

(2.i5)

which is a direct product of 2D anti —de Sitter spacetime
and a two-sphere and corresponds to the throat region.

Finally, the asymptotically Hat region and the throat
can be described by the solution

z0

and y = r + Q ) 0. This metric is everywhere regular
and describes the transition between an asymptotically
Hat spacetime for y ~ oo and one with topology H x S
for y ~ 0, H being 2D anti —de Sitter spacetime.

An unpleasant property of the solution (2.4) is that,
contrary for example to the GHS solution, it is not
geodesically complete even in the extremal limit. This
is easily seen by considering the geodesic equation for
the radial motion

FIG. 2. Penrose diagram of the extremal four-dimensional
black hole.

(2.i6)
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where e = 0, 1, —1 for lightlike, timelike, spacelike
geodesics, respectively, E is the energy of the orbit and A

is the one parameter. The boundary at r = r is in gen-
eral at finite distance, but becomes in the extremal case
infinitely far away along timelike and spacelike geodesics.
In spite of this, lightlike geodesics have finite length also
in the extremal limit. In fact, for e = 0, the geodesic
length is given by

1
[gr—(r —r )+r ln(gr —r + ~r)], (2.17)

which is always finite for r & r . The length of timelike
geodesics, instead, is finite for r+ & r, but tends to
infinity in the extremal limit.

This should be compared with the RN and GHS so-
lutions, which, as already remarked, have the same spa-
tial sections as our solution. In the extremal RN metric,
the horizon is at finite distance both along timelike and
lightlike paths, while in the extremal GHS metric the dis-
tance is infinite in both cases. Spacelike geodesics have
instead infinite length for RN and GHS extremal black
holes. Our solution is therefore in some sense intermedi-
ate between the two. The lack of geodesic completeness
of our solution can be remedied, however, if one glues to
the boundary of the spacetime at r = r another copy of
the same manifold. This is possible because the extrinsic
curvature vanishes there.

III. THE TWO-DIMENSIONAL MODEL

r m aAtr,

2aAt p2g2 p —2 —2
(3.4)

brings the metric with a & 0 into the metric with a = 0,
whereas

ar —i (A r ——A rt —r),
2

1
tan(nAt) -+ —(At —A r t —A t ),

(3 5)

value of the parameter a the solution (3.2) describes
a spacetime of constant negative curvature B = —2A2,
i.e., two-dimensional anti —de Sitter space. The solu-
tions (3.2) with a positive, negative, or zero describe
in Schwarzschild coordinates the two-dimensional section
of the extremal four-dimensional solutions (2.12), (2.13),
and (2.14), respectively [6]. For a ) 0 the spacetime
(3.2) has a horizon at r = a/A indicating that it can.
be interpreted as a two-dimensional black hole, whereas
for a ( 0 the solution has negative ADM mass. How-
ever the metrics with different values of the parameter
a represent different parametrizations of the same man-
ifold, namely anti —de Sitter spacetime, with coordinate
patches covering different regions of the space. This fact
was first demonstrated, for' the metrics with a & 0, in
[8] (see also [6]). Indeed one can easily find the coordi-
nate transformations relating the different metrics. The
transformation

The two-dimensional action of the 3T theory can be
obtained by spherical reduction of the four-dimensional
action (2.1) for a near-extreme magnetically charged
black hole solution. This dimensional reduction has
been described in [6] in the context of a general four-
dimensional dilaton gravity theory of which the action
(2.1) represents just a special case. From (2.1), taking
the angular coordinates to span a two-sphere of constant
radius Q, we get the dimensionally reduced action

S = — ~gd xe ~[B+2A ],1
27r

(3.1)

where A is related to the four-dimensional magnetic
charge by A = (2Q) . The action (3.1) describes the
JT theory [7].

The general time-independent solution of the corre-
sponding field equations is by now well known and has
been discussed at length in the literature [13,6,8,10]. In
Schwarzschild coordinates it has the form

ds = —(A r —a )dt + (A r —a ) dr

"~4' ~ l = (A.)-' (3 2)

where a is an integration constant which can assume
both positive and negative values and is related to the
Arnowitt-Deser-Misner (ADM) mass of the solution by

M= —e ~'a A.1 -2 (3.3)
2

The ADM mass is calculated with respect to the asymp-
totical solution with a = 0. Independently of the

relates the metric with a ( 0 to the metric with a = 0.
Notice that even though the solutions (3.2) locally de-
scribe the same spacetime independently of the value
of a, the expression for the dilaton becomes different
for the three cases after using (3.4) and (3.5). To dis-
tinguish diferent solutions in (3.2) we will denote with
AdS+, AdS, and AdS the spacetimes corresponding to
positive, zero, and negative a, respectively.

The equivalence of the metric part of the solutions (3.2)
with different values of a up to a coordinate transforma-
tion makes it dificult to interpret AdS+ as a black hole.
In fact the spacetime can be extended beyond r = 0, and
the maximally extended spacetime is the whole of two-
dimensional anti —de Sitter spacetime which of course has
no horizons and is geodesically complete [8]. However
AdS+ can represent a black hole if we cut the spacetime
off at r = 0. The reason why one has to cut off the
spacetime at this point is clear if one takes into account
the expression (3.2) for the dilaton. By analytically con-
tinuing the spacetime beyond r = 0 one would enter in
a region where exp( —2P) becomes negative. The two-

The negative mass is related to the choice of the ground
state which we have identi6ed with the solution with a
0. The reason for this choice will be explained later in this
section.
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dimensional action (3.1) has been obtained by spherical
reduction of the four-dimensional action (2.1). When this
reduction is carried out, the area of the transverse sphere
of constant radius in four dimensions becomes the factor
exp( —2P) multiplying the Ricci scalar in (3.1) and there-
fore has to be positive. Thus if one wants to model a
four-dimensional near-extremal magnetic black hole by
means of a two-dimensional solution of the action (3.1)
one has to cut the spacetime ofF at r = 0. The Penrose
diagrams for AdS+ and AdS are shown in Figs. 3 and 4.
Notice the very peculiar role played by the dilaton in the
context of the 3T theory: it sets the boundary conditions
on the spacetime, making solutions which have the same
local properties topologically not equivalent.

Once one has recognized AdS+ as a black hole one can
use it to model the S-wave sector of the evaporation pro-
cess of a four-dimensional black hole near its extremality.
In particular one can associate with it thermodynamical
parameters. Using standard formulas we have, for the
temperature and entropy of the hole,

= —e~ (2MA)'~'
2~ 2~'

S = 4vre ~'(M/2A) ~ = 27re

(3.6)

where Pg is the value of the dilaton at the horizon. The
specific heat of the hole is positive indicating that losing
mass through the Hawking radiation the hole will set
down to its ground state which we have identified with
AdSO.

At this stage a careful analysis of the mass spectrum
of the solutions (3.2) is necessary particularly in view of
the discussion of the Hawking evaporation process which
will be the subject of the next section. The mass spec-
trum is labeled by a continuous parameter M, which in
principle can be an arbitrary real number. From a two-
dimensional point of view there is no reason to exclude
the states with M & 0. In fact, difFerently from, e.g. ,
Schwarzschild black hole in 4D, the states with M & 0
do not correspond to naked singularities of the spacetime.
The metrics (3.2) describe spacetime with constant cur-
vature for every value of a . The separation of the spec-
trum in states with positive and negative mass is a con-
sequence of the choice of AdS as the ground. state. This
choice is from a two-dimensional point of view again arbi-
trary, since the mass spectrum is in principle unbounded
and the system has no ground state.

It is interesting to compare this situation with that of
the three-dimensional BTZ black holes [8,9]. The three-
dimensional black holes (with angular momentum J =
0) have a continuous mass spectrum for M ) 0, and
the vacuum is regarded as the empty space obtained by
letting the horizon size go to zero:

r=0

r=0

FIG. 3. The Penrose diagram of the AdS+ spacetime. The
diagonal lines represent event horizons, the bold lines at r = 0
the boundary of the spacetime.

= —[(Ar) + 1]dt + [(Ar)2+1] 'dr2+ r2d02 .

(3.8)

One sees that the three-dimensional anti —de Sitter space
emerges as bound state, separated from the continuous
black hole spectrum by a mass gap of one unit, i.e., by a
sequence of naked singularities which of course cannot be
included in the configuration space. The dimensional re-
duction from three to two dimensions not only makes all
spacetimes of constant negative curvature locally equiv-
alent up to a coordinate transformation, but also elimi-
nates the mass gap in the spectrum making it continuous
and unbounded.

Let us now explain how one can single out AdS as
the physical ground state for the two-dimensional the-
ory. The point is again the relationship between the
two-dimensional theory and the four-dimensional one
described in the previous section. In fact the two-
dimensional black hole mass M is related to the pa-
rameter 4 in Eq. (2.11) which measures the deviation
from extremality of the four-dimensional black hole. For
M & 0 we have 6 & 0 with negative r and r+, the
singularity at r = 0 becomes visible and the solutions
(2.4) describe naked singularities. Therefore if we want

ds, = (Ar) dt + (Ar) —dr + r do (3.7)

For M & 0 one has solutions which describe naked singu-
larities, unless M = —1. In this case the metric describes
the three-dimensional anti —de Sitter space:

FIG. 4. The Penrose diagram of the AdS spacetime. The
bald lines represent the boundary af the spacetime.



4324 MARIANO CADONI AND SALVATORE MIGNEMI

our two-dimensional theory to describe nearly extreme
four-dimensional black holes, we have to consider only
the M & 0 range as the physical mass spectrum for our
two-dimensional black hole.

Let us now study the response of our tmo-dimensional
dilaton-gravity system to the introduction of matter.
Consider K massless field f; conformally coupled to the
2D-gravity model defined by the action (3.1). The clas-
sical action is

d2x~g e 2~(R + 2A) ——) (V' f, )

In the conformal gauge

d8 = —e ~dx+dx

the equation of motion and the constraints are

0+0 J', =0,
A2

p= — e ~,
4

A ,2(~—e)
2

1 ".
O+e '~ —2O+pO+e '~ = ——) O+f, a+f;,

(3.10)

1a' e
—'& —2O pO e '4' = ——) a+ f;0+f; .

The peculiarity of this system of differential equations
is that the equation which determines the metric (the
conformal factor p) is independent of both the dilaton
and the matter fields. As a consequence one can solve
independently the equation for p, the dilaton being de-
termined afterwards by the expression for the metric and,
through the constraints, by the stress energy tensor of the
matter. This analysis has been carried out in [6], where
it was demonstrated that the vacuum solutions (f, = 0)
of (3.10) can be written, using the residual coordinate
invariance within the conformal gauge, as

4
e ~= (x —x+) (3.14)

(3.15)

1 (Ar)r, = — arccoth~ ~, cr+=t+r, , a =t —r, .
aA Ea)

The constant o; is related to the ADM mass of the solu-
tion by M = e 2&OA in2/4.

The effect of the shock wave on the vacuum solution
(3.11) and (3.12) is therefore encoded in the modification
(3.15) of the dilaton, the metric part (3.14) of the solution
being insensitive to the presence of matter. However this
is true only if one chooses to take a maximal extension of
the spacetime (3.14) i.e. , if one continues analytically the
solution beyond the line 1 —n2(x+ —xo )(x —xo ) = 0
(the point r = 0 in Schwarzschild coordinates), where
exp( —2P) becomes negative. As we have seen previously
the interpretation of AdS+ as a black hole can be es-
tablished only if one cuts off the spacetime at this line.
Therefore even though the local properties of the metric
(3.14) are insensitive to the presence of matter, the global
ones (the topology) are not; the effect of the shock wave
on the vacuum (3.11) and (3.12) is to create a boundary
of the spacetime along the line where exp( —2P) becomes
negative.

The analysis of the dynamical evolution of our tmo-
dimensional system in this general setting could be im-
plemented by imposing some appropriate boundary con-
ditions for the fields and then by considering the dynam-
ics of the boundary. In this paper we are mainly inter-
ested in the semiclassical properties of the black hole so-
lution such as the Hawking evaporation process: it turns
out that for the study of such process an exact knowl-
edge of the dynamics of the boundary is quite unneces-
sary. In fact, since the Hawking evaporation is a process
which takes place outside the event horizon, to study it
is enough to consider a coordinate system in which the
boundary at r = 0 is not visible. This can be done in
a standard way starting from Eq. (3.2), defining the
"Regge-%'heeler tortoise" coordinate r, and light-cone
coordinates o+, o as follows:

x —x+ —2

A2

e2(4 —4o) (x
— x+)

2

(3.11)

(3.12)

(3.16)

In these coordinates, the solution (3.2) with a ) 0 be-
comes

+ aA
ds = —a sinh (cr —a.+) dcr+dcr

2

T++ = 2n'A 'e —'~'b(x+ —*+) (3.13)

are instead

which represents AdS in the conformal gauge. Here and
in the following we mill consider only the region x & x+
of the spacetime which corresponds to the r & 0 region
in Schwarzschild coordinates. The solutions generated by
an f shock w-ave with the stress tensor

(3.17)

which represents AdS+ in the conformal gauge. The new
coordinate system covers only the region r & rh of the
spacetime defined by (3.2). The metric part of the so-
lution (3.17) can be brought into the form (3.14) by the
transformation
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2
tanh(aA(r+ /2),aA

2
x = tanh(aAO /2) .

aA

(3.i8)

IV. SEMICLASSICAL PROPERTIES

As discussed before, the difference between the ground
state and the black hole spacetime is essentially of topo-
logical nature. As is well known, diferent topologies of
spacetimes with the same geometrical background give
rise to different vacuum states for quantum fields and by
consequence the vacuum in one spacetime will be per-
ceived as a thermal bath of radiation by an observer in

From the previous equations one easily sees that the co-
ordinates cr+, a cover only the region (—2/aA ( x+ (
2/aA, —2/aA ( x ( 2/aA) of the spacetime defined by
(3.11) which represent AdSo in the conformal gauge.

The coordinate transformation (3.18) gives the rela-
tionship between the coordinate system "free-falling" on
the horizon of the black hole and the "anti —de Sitter"
asymptotic coordinate system. This relationship is simi-
lar to that between a Rindler and a Minkowski coordinate
system in two-dimensional Bat spacetime even though in
our case the coordinate transformation does not corre-
spond to the motion of any physical observer. Moreover
in our case the presence of the boundary at r = 0, which
makes AdS+ and AdS topologically not equivalent, has
a dynamical interpretation in terms of the matter distri-
bution in the spacetime. In this sense the 3T theory has
a very interesting and particular status in the context of
the gravity theories in arbitrary spacetime dimensions.
In fact the distribution of matter does not determine the
local geometry of the space, as usually happens for grav-
ity theories, but its global properties, i.e. , its topology.
At first sight this conclusion seems to hold only for the
conformal matter-gravity coupling defined by the action
(3.9). A more general coupling, for example a dilaton-
dependent coupling of the matter, could spoil this prop-
erty. In fact as a result of such a coupling a direct rela-
tionship between the local geometry and the distribution
of matter would be at hand. However such a coupling
cannot have any impact on the feature which seems to
be responsible for the particular behavior of the theory,
namely the fact that the solutions of the field equation
in the absence of matter describe diferent parametriza-
tions of the same space and can therefore be physically
distinguished only through boundary conditions.

The features of our model are in some sense shared
by all the two-dimensional dilaton gravity models. In
fact it has been demonstrated that all the models of this
type are physically equivalent to a model of free matter
fields reflecting ofF ~ dynamical moving mirror [14]. In
this context the JT theory represents the extreme case:
the formulation of the model in terms of a dynamical
boundary is compulsory because the dynamics in terms
of the gravitational and dilaton Geld is in some sense
trivial.

ax++6 ax +bx+ -+
) xcx++ d' cx +d (4.i)

with ad —bc g 0, is the isometry group of the metric
(3.11), so that one can define difFerent coordinates which
lead to the same metric form; GL(2, B) should therefore
be considered as the invariance group of the AdS vac-
uum. Thus, we define 0. such that

the other system.
A typical example of this is the quantization of scalar

fields in a Rindler spacetime. This spacetime describes
Oat space as seen by a uniformly accelerated observer.
A transformation of coordinates exists which puts the
Rindler line element into the Minkowski form; how-
ever, the coordinates so defined do not cover the whole
Minkowski spacetime (physically, an accelerated observer
cannot see the whole spacetime, but a horizon hides
part of it to his view). It follows that two difFerent
Hilbert spaces are necessary for the quantization of fields
in Rindler and Minkowski spaces; the vacuum state in
one spacetime will be perceived as a thermal state in the
other.

Our case is analogous: the AdS+ black hole is related
by a coordinate transformation to the AdS ground state,
but its image does not cover the whole AdS; for this
reason it is not possible to define the same vacuum state
for the two spacetimes and a thermal radiation will be
observed.

Two main differences are however present in our case:
Grst of all, the coordinate transformation between AdS+
and AdS does not correspond to the motion of any phys-
ical observer, so that the two spacetimes should be con-
sidered as physically distinct, and not as the same space-
time seen from diferent observers. Second, the anti —de
Sitter spacetime has a large group of symmetries, so that
the coordinate transformation (3.18) between (3.11) and
(3.17) is not uniquely defined, as we shall see in the fol-
lowing. Of course, this fact has no consequence on the
physical results, which are independent of the choice of
the transformation.

Finally, we recall that, when defining quantum field
theory on anti —de Sitter spacetime, some caution should
be taken with the boundary conditions at infinity, since
such spacetime is not globally hyperbolic [15]. In the fol-
lowing, as explained in detail in [6], we shall use "trans-
parent" boundary conditions, since they are more suit-
able for the physical process at hand.

In Ref. [6] we considered this case already, but we ne-
glected the difference in the global properties of AdS
and AdS+; the answer we obtained was of course that no
Hawking radiation at all can be detected. This confirms
the purely topological nature of the Hawking radiation
in this model.

The ground state for the Hawking radiation is given,
if one excludes from the theory the negative mass states,
by the AdSo spacetime with metric (3.11), while the pos-
itive mass black hole is described by a metric of the form
(3.17). In the following discussion, however, we shall de-
6ne the o'+ coordinates in a different way from (3.18).
This is possible because the GL(2, R) group of transfor-
mation,
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in F and

aAo-1

aA
+ aAcr1 +

aA

1 — 1 +aAo. + aAo.

aA ' aA

(4.2a)

(4.2b)

coordinates instead of the more intuitive ones defined by
(3.IS).

Let us consider the quantization of a single massless
scalar field f in the fixed background defined by AdSo
and AdS+. In AdS, f can be expanded in terms of the
basis

in P, where the F and P regions, respectively, correspond
to positive or negative x+ and are displayed in Fig. 5;
AdS+ covers the x+x & 0 region of AdS, and the black
hole horizon corresponds to x+x = 0.

The physical meaning of the coordinate transforma-
tion (4.2) looks clearer if one uses the standard space-
time coordinates x = (x —x+)/2, t = (x + x+)/2, o =
(a —0+)/2, w = (o + o'+)/2. In these coordinates,
AdS is given by

ikx —i~te (4.6)

while A: & 0 corresponds to right-moving waves,

with cu = ]k~ and —oo & k & oo. The k & 0 modes are
left-moving waves,

ds' =, , (-dt' + dx'), (4 3)
—'G4) Xe

a 2
ds' =, ( dT'+ dc—r'),

sinh (aAo. )
(4.4)

with —oo & t & oo, 0 & x & oo and the AdS+ black hole
has the line element

These two sets are positive frequency with respect to the
Killing vector Bt.

Analogously, one can define a basis in the black hole
regions P and F:

with —oo & w & oo, 0 & a & oo. The two metrics are
related by the change of variable

alld

1F„„= —e'" ' in F, 0 in P,
i/47Bd

(4.7a)

aA~x = 6 e sinh(aAo),
aA

(4.5)
P~a e'" +' inP, 0 inF,

i/47Bd
(4.7b)

aAv.e cosh(aAo) .
aA

The change of variable (4.5), as already noticed, does
not correspond to the motion of a physical observer, since
its trajectory would be spacelike. By consequence, the
causal structure is different from that encountered in the
Rindler problem. However, the mathematical structure
is identical, and for this reason we prefer to adopt these

with ur = ~k~, which are positive frequency with respect
to 0 .

This basis can be continued to the whole x —t plane.
However, because of the change of sign at x+ = x = 0,
it is not analytic at that point. Consequently, it defines
an alternative Fock space, which corresponds to a vac-
uum state diff'erent from that defined by the basis (4.6).
By a standard argument [16], the AdS+ vacuum state
will therefore appear to an observer in the AdS vacuum
as filled of thermal radiation. The actual content can be
obtained by calculating the Bogoliubov coeKcients be-
tween the two vacua. To this end, it is useful to define
some linear combinations of the AdS+ basis:

—vr(u/aAP e
~I (4.Sa)

x+ = x
(r=~)

and

F~ + m(u/aA p~k (4.sb)

Contrary to (4.7), this basis is analytic for all real values
of x+ and x, and hence shares the same vacuum state
with the AdS basis (4.6). In fact (4.8a) is proportional
to

(x+)—'~A fork&0, (x )
'~ «»&0,

FIG. 5. Diagram in light-cone coordinate showing AdS
with the P and I' regions of AdS+ in the coordinate system
defined by Eqs. (4.2).

while (4.8b) is proportional to

( )' ~ + f k&0 (x+) ~ fork&0.
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Comparing the expansion of f in the two bases

1 (d( )( /2 A~ + — /2 A~* )k ~a
aA

+d(2) (
—a~/2aAFe + ~~/2aA~

) + H c ] (4 9)

b(1)
[

~~/2aAd(2) —a(u/2aAd(1) t]1

Qslnh

b(2)
(

a~/2aAd(I) + —a~/2aAd(2) t]1
e +e kgsinh A

&om which one can read off the Bogoliubov coefBcients.
In particular, an observer in the AdS vacuum detects

a thermal Aux of particles with the spectrum

e2~~/aA (4.10)

where the operators d&' annihilate the AdS vacuum

state 0), while the bz~' annihilate the black hole vacuum
state 0+), one gets

ical process the mass, and hence the radiation rate, will
decrease as the black hole radiates until the total evap-
oration. This means that in this approximation, losing
mass through the radiation the black hole will settle down
to its ground state M = 0 which is represented by AdS
vacuum. It is interesting to note that the stress tensor of
the Hawking radiation has the same invariance group of
the Schwarzian derivative, i.e. , the GL(2, B) group real-
ized as the fractional transformation (4.1), which is also
the invariance group of AdS, as discussed before.

Let us now discuss the inclusion in our calculations
of the back reaction of the radiation on the gravitational
background. We can guess in view of the general features
of our model that this effect is not related to a change
of the geometry of the spacetime but to a change of the
boundary conditions. In fact the classical solutions of our
theory are distinguishable only by means of global prop-
erties, and the Hawking radiation is a purely topological
effect. The back reaction of the radiation on the metric
can be studied in a standard way by considering, in the
quantization of the scalar fields f, the contribution of the
trace anomaly to the effective action. This contribution
is the well-known Polyakov-Liouville action which in the
conformal gauge is a local term. The semiclassical action
in the conformal gauge is

When integrated, it gives, for the total flux of f-particle
energy,

(S= — do l28+c) p+ elle
)

a~A~

48
(4.11)

1 . N+—) c)+f'~ f, ——~-+pc)- p
2 - ' ' 12

(4.13)

The Aux corresponds to a Planck spectrum at tempera-
ture To ——aA/2m, the Hawking temperature (3.6) of the
black hole. The local temperature at a given point is,
instead,

T = (goo)
' To ———sinh(aAo),

27r

1 F"'
olT--lo)

where the primes indicate derivation with respect to o
With I" given by (3.18) and making use of (3.3) we get

122 1
(olT lo) = —a A = —e ~'MA,

24
(4.12)

in accordance with Eq. (4.11). The stress-energy ten-
sor for the Hawking radiation has therefore the constant
(thermal) value which one would naively expect in view
of the specific heat expression (3.6) and coincides with
the k = 0 limit of the result obtained in [6]. Of course,
we are not considering the back reaction of the metric,
so that the Bux is independent of time. In the real phys-

which goes to zero at spatial infinity. As a check of the
previous result we can compute the outgoing stress tensor
for the Hawking radiation in terms of the relationship
(3.18) between the coordinates o' and x. In general it is
proportional to the Schwarzian derivative of the function
x = E(cr ):

c)+c) f~ = 0,
A

0+8 p = — e
4

A~
(4.14)

&24 )
O+O e '&=

N

c)~2e 24' —2c)+pc)+e 2~ = ——) a+J', O+J';
i=1

+—[(8+p)' —0+p+ t+)
N

c) e ~ —28 pB pe &= ——) 8+f 0+f;
2 i=1

+—[(0 p)' —o' p+ t
12

where the functions t+, t must be determined using
boundary conditions. The semiclassical equations of mo-

where the first three terms come &om the classical ac-
tion (3.9) whereas the fourth describes the trace anomaly.
The determinant of the kinetic energies in the (p, P) space
is proportional to exp( —4P) so that there is no degener-
ation of the kinetic energies in the physical field space
[exp( —2P) ) 0]. This behavior is to be compared with
the CGHS dilaton gravity theory where the kinetic en-
ergies become degenerate at the point of the field space
where exp( —2P) = N/12 [17]. The ensuing equation of
motion and constraint are
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tion difFer from the classical ones just in the shift

exp( —2P) ~ exp( —2P) + N/24 (4.15)

of the dilaton and for the presence in the constraint equa-
tion of the term stemming from the conformal anomaly.
This result can be achieved directly Rom the action
(4.13) by noting that the term describing the confor-
mal anomaly can be reabsorbed in the classical action
by means of the former redefinition of the dilaton. This
means that the solutions of the semiclassical equations of
motion are locally the same as the classical ones and dif-
ferent from those only throu, gh the boundary conditions.

If one ignores the presence of the boundary on the
spacetime along the line where exp( —2P) becomes nega-
tive, i.e., if one takes maximally extended solutions, there
is, as seen previously, no Hawking radiation and therefore
no back reaction. On the other hand when the boundary
is present and supported by appropriate boundary con-
ditions, the problem of the back reaction can in principle
be analyzed by studying, together with Eq. (4.14), the
dynamical evolution of the boundary in the context of
the semiclassical theory. We will not address the prob-
lem in this general setting, but will study it in a static
approximation which is however consistent with our pre-
vious treatment of the Hawking radiation process. Let us
consider the process in which the black hole radiates as
a succession of static states with decreasing mass. The
solutions, being static, will depend only on the variable
o =o —o+.

The equations of motion and the constraint (4.14),
vrith f, = 0, become novr

2A
p = e ~,

A

2 I 24)
(4.16)

2

e ~ = sinh (ccr),
4c

(, , N
e ~ =

~

e ~' ~ —ccr
~

coth(ccr),
24

(4.17)

and

4
P

A2o2 '

e
—2&0

e
—'& = N+ —.

24

(4.18)

In Eq. (4.17) c is an integration constant, for c = aA/2
the metric part of the solution coincides with the clas-
sical solution (3.17); it describes therefore AdS+. The

where g = exp( —2p) and the primes represent deriva-
tives with respect to o.. Integration of the equations of
motion (4.16) gives two classes of solution (we do not
consider the solutions which correspond to AdS ):

AD30
X+

( y. =oo)

FIG. 6. Diagram in light-cone coordinates showing the
evaporation process of a 2D black hole. Initially the spacetime
covers only the region AdS+ enclosed by the dashed lines at
x = 2/aA and z+ = —2/aA. As the black hole evaporates
the dashed lines move to infinity and at the end point of the
evaporation process AdS+ coincides with AdS .

solution (4.18) can be considered the ground state of the
semiclassical theory and coincides with the ground state
of the classical theory (AdS ) after the shift (4.15) of the
dilaton. Let us now discuss the semiclassical solutions
(4.17) and (4.18). First we note that for e2~ && 24/N
the semiclassical solutions (4.17) and (4.18) behave as
the classical ones (3.11) and (3.17). Hence in the weak
coupling regime we can safely ignore the back reaction.
Moreover, one can easily realize that the back reaction
afI'ects only the dilaton but not the metric. This is again
a feature which is connected with the purely topologi-
cal nature of the Hawking radiation. The states with
decreasing values of c or equivalently of the black hole
mass, in Eq. (4.17), describe the evolution of the black
hole when the evaporation process takes place if we think
of it as a succession of static states. In particular, the
limit c ~ 0(M -+ 0) vrill tell us what is the end of the
evaporation process. Performing the limit c ~ 0 in the
solution (4.17) we get the vacuum solution (4.18). Thus
the end point of the evaporation process is exactly the
AdS . In a pictorial description of the process we see
that the region of the AdS spacetime covered by the
coordinate cr increases (equivalently the horizon of the
black hole recedes) as the black hole loses mass through
the radiation and, at the end point, this region coincides
with the whole AdS space (see Fig. 6).

V. SUMMARY AND OUTLOOK

We have studied the four-dimensional analogue of the
scalar-gravity JT theory and shown that it admits reg-
ular, asymptotically fIat magnetically charged solutions
which can be interpreted as nonsingular black holes.

The final state of the evaporation process of these black
holes is given, as usual, by the extremal limit of the met-




