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Action and entropy of extreme and nonextreme black holes
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The Hamiltonian actions for extreme and nonextreme black holes are compared and contrasted
and a simple derivation of the lack of entropy of extreme black holes is given. In the nonextreme
case the wave function of the black hole depends on horizon degrees of freedom which give rise to
the entropy. Those additional degrees of freedom are absent in the extreme case.
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It has been recently proposed [1,2] that extreme black
holes have zero entropy [3]. The purpose of this paper is
to adhere to this claim by providing an economical deriva-
tion of it. The derivation also helps to set the result in
perspective and to relate it to key issues in the quan-
tum theory of gravitation, such as the Wheeler-DeWit t
equation.

The argument is the application to the case of an ex-
treme black hole [4] of an approach to black hole entropy
based on the dimensional continuation of the Gauss-
Bonnet theorem. The approach in question had been
previously applied to nonextreme black holes only [5].

To put into evidence as clearly as possible the distinc-
tion between extreme and nonextreme holes, we first per-
form the analysis for the nonextreme case and then see
how it is modified in the extreme case.

We will deal with gravitation theory in a spacetime
of dixnension D with a positive-definite signature (Eu-
clidean formulation). To present the argument in what
we believe is its most transparent form for the purpose at
hand, we will start with the Hamiltonian action and will
only at the end discuss the connection with the Hilbert
action.

For nonextreme black holes the Euclidean spacetimes
admitted in the action principle have the topology lR x
S . It is useful to introduce a polar system of coordi-
nates jn the K factor of N, x S . The reason is that
the black hole will have a Killing vector field, the Killing
time, whose orbits are circles centered at the horizon. We
will take the polar angle in 1R as the time variable in a
Hamiltonian analysis. An initial surface of time ti and
a final surface of time t2 will meet at the origin. There
is nothing wrong with the two surfaces intersecting. The
Hamiltonian can handle that.

The canonical action

I, „= vr'~ g;~ —N'R —¹'R,.
without any surface terms added can be taken as the ac-
tion for the wedge between ti and t2 provided the follow-

ing quantities are held fixed: (i) the intrinsic geometries
x)gx, &~ x)gz of the slices t = ti, and t = t2, (ii)

the intrinsic geometry (D z)g of the S~ at the origin;
(iii) the mass at infinity, with an appropiate asymptotic
fallofF for the Geld.

The term "mass" here refers to the conserved quantity
associated with the time Killing vector at infinity. It is
thus more general than the P of the Poincare group,
which only exists when the spacetime is asymptotically
Hat. For example when there is a negative cosmological
constant this mass is the value of a generator of the anti-
de Sitter group.

Note that we have listed the intrinsic geometry of
the S as a variable independent from the three-
geometries of the slices t = ti and t = t2. This is because
in the variation of the action (1) there is a separate term
in the form of an integral over S,which contains the
variation of (D 2) g.

It should be observed that there will be no solution
of the equations of motion satisfying the given boundary
conditions if, for example, one fixes the mass at t2 to
be diferent Rom the mass at ti. However in the quan-
tum theory one can take Mi g M2, the path integral
will then yield a factor h(M2 —Mi) in the amplitude.
Similarly there will be no solution of the equations of
motion unless the geometry of the S at the origin as
approached &om the slice t = ti, coincides with the one
corresponding to t = t2, and unless that common value
also coincides with the one taken for the geometry of
the S at the origin. However these precautions need
not be taken in the path integral, which will automati-
cally enforce them by yielding appropiate b functionals.
This situation is the same as that arising with the action
of a &ee particle in the momentum representation, where
there is no clasical solution unless the initial and the final
momenta are equal, but yet, one can (and must) compute
the amplitude to go &om any initial momentum to any
Gnal momentum.

To the action (1) one may add any functional of the
quantities held fixed and obtain another action appropi-
ate for the same boundary conditions. In particular one
may replace (1) by

I = I..„+B['~ 'ig], (2)

'Electronic address: teitelocecs. cl where B[(D 2) g] is any functional of the (D—2)-geometry
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at the origin. If we only look at the wedge ti & t & t2
then the demand that the action have an extremum when
the equations of motion hold does not restrict B at all.
However, if we look at the complete spacetime, then that
same requirement fixes B uniquely. This is because when
one deals with the complete spacetime the slices t = ti
and t = t2 are identified and neither ~+ ilgi nor lD ilg2
nor ~ lg are held fixed. Now, unlike its Minkowskian
signature continuation, the Euclidean black hole obeys
Einstein's equations everywhere. Thus it should be an
extremum of the action with only the asymptotic data
(mass) held fixed. The demand that the actiori should
be such as to have the black hole as an extremum with
respect to variations of l lg fixes

8(x") = 2vr (complete spacetime, nonextreme case).

(7)

Equation (7) must hold because otherwise there would
be a conical singularity at r+ and Einstein s equations
would be violated in the form of a b-function source at
the origin.

Let us now turn to the extreme case. By definition of
an extreme black hole the square lapse N has a double
root at the origin. Thus one must replace (5) by

(t2 —ti)lV = O((r —r+) ) (extreme case).

This means that one must have

B = 2vrA(r+) (nonextreme case complete spacetime), 8(x") = 0 (extreme case), (9)
3

instead of (7). Et then follows that

where A(r+) is the area of the S at the origin.
Once one knows B for the complete spacetime one

can infer the corresponding B for the wedge. The ar-
gument is based on demanding that the trace of the
amplitude for the wedge should yield —in the semiclas-
sical approximation the exponential of the action for
the complete spacetime. This yields [6] that B for the
wedge is the negative of (3).

The way in which (3) arises is the following. First
one writes the metric near the origin in "Schwarzschild
coordinates" as

ds = N (r, x")dt + K (r, x")dr
+q „(r,x")dx dx",

with

(t, —t, )~' = 2O(* )(.—.,)+O((.—.,)")

(nonextreme case). (5)

Here r and t are coordinates in R. and x" are coordi-
nates in S . The parameter 0 is the total proper an-
gle (proper length divided by proper radius) of an arc of
very small radius and coordinate angular opening t2 —ti
in the N, at x". For this reason it is called the opening
angle. When the sides of the wedge are identified 2' —0
becomes the deficit angle of a conical singularity in 1R .

Next, one evaluates the variation of the canonical ac-
tion (1) to obtain

8(x")bp ~ (x")d x+PhM
(~-')

C.-+)

vr'~gg; 2i + (terms vanishing on shell). (6)

Here P is the Killing time separation at infinity.
Last, one observes that when the slices t = ti and

t = t2 are identified, the term J vr*~8g, ~ i cancels out.
Thus if M and J are kept fixed but p ~ (x") is allowed
to vary one must add (3) to (1) in order to obtain from
the action principle that at the extremum:

B = 0 (extreme case), (10)

—oo & 0 & +oo,

the topology of the t, r piece of the complete spacetime
is that of a disk with the boundary at infinity. When
0 g 2n the disk has a conical singularity in the curvature
at the origin with deficit angle 2' —H. When 0 = 2'
the singularity is absent.

However when 0 = 0 the topology is different. Indeed,
what would appear naively to be a source at the origin in
the form of a "fully closed cone, " as was misunderstood
in [5], is really the signal of a spacetime with different
topology. As the cone closes, its apex recedes to give rise
to the infinite throat of an extreme black hole. Thus the
origin is effectively removed from the manifold whose t, r
piece is no longer a disk, but rather, an annulus whose
inner boundary is at infinite distance.

Now, one wants to include in the action principle fields
of a given topology so that one can continuously vary
from one to another. Therefore for the complete space-
time of the nonextreme case all fields obeying (ll) are
allowed so that (7) only holds on shell. On the other
hand, for the extreme case—as already remarked in the
context of (8) we must have (9) to also hold off shell.
Topologically, this is so since if the origin is removed,
there is no place to put a conical singularity.

We reach therefore an important conclusion: we must
use a different action for extreme and nonextreme black
holes. This means that these two kinds of black holes are
to be regarded as drastically different physical objects,

so that the canonical action (1) is appropiate as is for
extreme black holes.

Note that Eq. (8) holds not only for the complete
spacetime but also for a wedge of the extreme black hole
geometry. This implies that (9) must hold also off shell
(for all configurations allowed in the action principle).
This is so because for the wedge there would be no way
to obtain 8 = 0 by extremizing the action since ~D 2lg
is held fixed.

The difference between nonextreme and extreme cases
has a topological origin. For all 0's in the interval
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much in the same way as a particle of however small but
finite mass is drastically different &om one of zero mass
[7]. The discontinuous jump in the action is just the
way that the geometrical theory at hand has to remind
us that extreme and non-extreme black holes fall into
difFerent topological classes.

The action for the complete spacetime may be rewrit-
ten as

I = 2~~A(r+) + I. „, (12)

and Eqs. (5) and (8) may be summarized as

(t —t, )% = 2y8(x")(r —r ) + O((r —r ) ), (13)

I, „(black hole) = 0, (i4)

because the black hole is stationary (g,~
= 0) and because

the constraint equations 'R = 'R, = 0 hold. Thus one has

I(black hole) = 2nyA(r+).

Now, the action (12) is appropiate for keeping M fixed.
In statistical thermodynamics this corresponds to the mi-
crocanonical ensemble. Hence, for the entropy S in the
classical approximation one finds

where y is the Euler characteristic of the t, r factor of the
complete black hole spacetime. For the nonextreme case
one has y = 1 (disk), and for the extreme case y = 0
(annulus). Expression (12) had been anticipated in [5],
where it emerged naturally from a study of the dimen-
sional continuation of the Gauss-Bonnet theorem, but
it was missed there that y = 0 corresponds to extreme
black holes.

If one evaluates the action on the black hole solution
one finds

I = IH —vr(2y + 1)A(r+) —B —sr A (19)

@[(D—i)g p] (20)

The dependence of @on the three geometry is governed
by the Wheeler-DeWitt equation

'R4' = 0, (21)

whereas the dependence on the asymptotic time P is gov-
erned by the Schrodinger equation

8 +M% =0, (22)

where M is the mass as defined by Arnowitt, Deser, and
Misner (see, for example, [8]). On the other hand, for
the nonextreme case the wave function has an extra ar-
gument which may be taken to be the opening angle 0:

@ —@[(D i)g P O]

and one has [9] the Schrodinger equation

For the reasons given above we adopt (19) and not (17)
as the action for the wedge.

The discontinuous change in the action between ex-
treme and nonextreme black holes has dramatic conse-
quences for the wave functional of the gravitational field
in the presence of a black hole, which one may call for
short the wave function of the black hole. Indeed, in the
extreme case, the wave function has the usual arguments;
namely, it may be taken to depend on the geometry of
the spatial section and on the asymptotic time separation

S = (87t-Gh) '2~yA(r+),

where we have restored the universal constants. Thus one
sees that extreme black holes (y = 0) have zero entropy.

A word is now in place about the relation of (12) with
the Hilbert action

(17)

I=I~ —B (18)

whereas, for the wedge,

As was shown in [5], the action (12) for the complete
spacetime (17) just difFer by a boundary term at infinity,
which automatically regulates the divergent functional
(17). This assertion is not valid for the wedge. In that
case, (2) and (17) differ not only by a boundary term at
infinity but also by a boundary term at the origin. For
the complete spacetime one has

whose role at the horizon is analogous to that of (22) at
infinity.

The additional horizon degree of freedom canonical
pair (p ~, 8) may be regarded as responsible for the
black hole entropy in the nonextreme case. Indeed there
is no entropy in the extreme case precisely because then
the origin is removed, and with it go away (p ~, 8) and
the entropy.
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