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Entropy, area, and black hole pairs
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We clarify the relation between gravitational entropy and the area of horizons. We erst show that
the entropy of an extreme Reissner-Nordstrom black hole is zero, despite the fact that its horizon
has nonzero area. Next, we consider the pair creation of extremal and nonextremal black holes. It
is shown that the action which governs the rate of this pair creation is directly related to the area
of the acceleration horizon and (in the nonextremal case) the area of the black hole event horizon.
This provides a simple explanation of the result that the rate of pair creation of nonextreme black
holes is enhanced by precisely the black hole entropy. Finally, we discuss black hole annihilation,
and argue that Planck scale remnants are not suKcient to preserve unitarity in quantum gravity.

PACS number(s): 04.70.Dy, 04.50.+h

I. INTRODUCTION

The discovery of black hole radiation [1] confirmed ear-
lier indications [2] of a close link between thermodynam-
ics and black hole physics. Various arguments were given
that a black hole has an entropy which is one quarter of
the area of its event horizon in Planck units. However,
despite extensive discussion, a proper understanding of
this entropy is still lacking. In particular, there is no di-
rect connection between this entropy and the "number of
internal states" of a black hole.

We will reexamine the connection between gravita-
tional entropy and horizon area in two diferent contexts.
We first consider charged black holes and show that while
nonextreme configurations satisfy the usual relation S =
AnH/4, extreme Reissner-Nordstrom black holes do not.
They always have zero entropy even though their event
horizon has nonzero area. The entropy changes discon-
tinuously when the extremal limit is reached. We will
see that this is a result of the fact that the horizon is
infinitely far away for extremal holes which results in a
change in the topology of the Euclidean solution.

The second context is quantum pair creation of black
holes. It has been known for some time that one can
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create pairs of oppositely charged monopoles arising in
grand unification theories (GUT's) in a strong back-
ground magnetic field [3]. The rate for this process can
be calculated in an instanton approximation and is given
by e where I is the Euclidean action of the instan-
ton. For monopoles with mass m and charge q, in a
background field B one finds (to leading order in qB)
that I = vrm2/qB It has .recently been argued that
charged black holes can similarly be pair created in a
strong magnetic field [4—6]. An appropriate instanton
has been found and its action computed. The instanton
is obtained by starting with a solution to the Einstein-
Maxwell equations found by Ernst [7], which describes
oppositely charged black holes uniformly accelerated in
a background magnetic field. This solution has a boost
symmetry which becomes null on an acceleration horizon
as well as the black hole event horizon, but is timelike in
between. One can thus analytically continue to obtain
the Euclidean instanton. It turns out that regularity of
the instanton requires that the black holes are either ex-
tremal or slightly nonextremal. In the nonextremal case,
the two black hole event horizons are identified to form
a wormhole in space. It was shown in [6] that the action
for the instanton creating extremal black holes is identi-
cal to that creating gravitating monopoles [8] (for small
qB) while the action for nonextreme black holes is less
by precisely the entropy of one black hole ABH/4. This
implies that the pair creation rate for nonextremal black
holes is enhanced over that of extremal black holes by
a factor of e+~"/, which may be interpreted as saying
that nonextreme black holes have e+ "/ internal states
and are produced in correlated pairs, while the extreme
black holes have a unique internal state. This was not
understood at the time, but is in perfect agreement with
our result that the entropy of extreme black holes is zero.

To better understand the rate of pair creation, we re-
late the instanton action to an energy associated with
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boosts, and surface terms at the horizons. While the
usual energy is unchanged in the pair creation process,
the boost energy need not be. In fact, we will see that
it is changed in the pair creation of nongravitating GUT
monopoles. Remarkably, it turns out that it is unchanged
when gravity is included. This allows us to derive a sim-
ple formula for the instanton action. For the pair creation
of nonextremal black holes we find

1I = ——(AA+ AnH),4

where AA is the difference between the area of the ac-
celeration horizon when the black holes are present and
when they are absent, and AnH is the area of the black
hole horizon. For the pair creation of extremal black
holes (or gravitating monopoles) the second term is ab-
sent so the rate is entirely determined by the area of the
acceleration horizon,

I = ——DA.
1

(2)

This clearly shows the origin of the fact that nonextremal
black holes are pair created at a higher rate given by the
entropy of one black hole.

The calculation of each side of (2) is rather subtle.
The area of the acceleration horizon is infinite in both
the background magnetic field and the Ernst solution.
To compute the finite change in area we first compute
the area in the Ernst solution out to a large circle. We
then subtract off the area in the background magnetic
field solution out to a circle which is chosen to have the
same proper length and the saine value of $ A (where A
is the vector potential). Similarly, the instanton action
is finite only after we subtract off the infinite contribu-
tion coming &om the background magnetic 6eld. In [5],
the calculation was done by computing the finite change
in the action when the black hole charge is varied, and
then integrating from zero charge to the desired q. In [6],
the action was calculated inside a large sphere and the
background contribution was subtracted using a coordi-
nate matching condition. Both methods yield the same
result. But given the importance of the action for the
pair creation rate, one would like to have a direct cal-
culation of it by matching the intrinsic geometry on a
boundary near infinity as has been done for other black
hole instantons. We will present such a derivation here
and show that the result is in agreement with the earlier
approaches. Combining this with our calculation of AA,
we explicitly confirm the relations (1) and (2).

Perhaps the most important application of gravita-
tional entropy is to the "black hole information puzzle. "
Following the discovery of black hole radiation, it was ar-
gued that information and quantum coherence can be lost
in quantum gravity. This seemed to be an inevitable con-
sequence of the semiclassical calculations which showed
that black holes emit thermal radiation and slowly evapo-
rate. However, many people find it difFicult to accept the
idea of nonunitary evolution. They have suggested that
either the information thrown into a black hole comes out
in detailed correlations not seen in the semiclassical ap-

proximation, or that the end point of the evaporation is
a Planck scale remnant which stores the missing informa-
tion. In the latter case, the curvature outside the horizon
would be so large that semiclassical arguments would no
longer be valid. . However, consideration of black hole pair
creation suggests another quantum gravitational process
involving black holes, in which information seems to be
lost yet the curvature outside the horizons always remains
small.

The basic observation is that if black holes can be pair
created, then it must be possible for them to annihilate.
In fact, the same instanton which describes black hole
pair creation can also be interpreted as describing black
hole annihilation. Once one accepts the idea that black
holes can annihilate (and assumes that information is not
recovered in the black hole radiation), one can construct
an argument for information loss as follows. Imagine pair
creating two magnetically charged (nonextremal) black
holes which move far apart into regions of space without
a background. magnetic field. One could then treat each
black hole independently and throw an arbitrarily large
amount of matter and information into them. The holes
would then radiate and return to their original mass. One
could then bring the two holes back together again and
try to annihilate them. Of course, there is always the pos-
sibility that they will collide and form a black hole with
no magnetic charge and about double the horizon area.
This black hole could evaporate in the usual way down
to Planck scale curvatures. However, there is a proba-
bility of about e +~"~ times the monopole annihilation
probability that the black holes will simply annihilate,
their energy being given off as electromagnetic or grav-
itational radiation. One can choose the magnetic field
and the value of the magnetic charge in such a way that
the curvature is everywhere small. Thus the semiclas-
sical approximation should remain valid. This implies
that even if small black hole remnants exist, they are not
sufBcient to preserve unitarity. This discussion applies to
nonextremal black holes. Since extremal black holes have
zero entropy, they behave differently, as we will explain.

In the next section we discuss the entropy of a sin-

gle static black hole and show that an extreme Reissner-
Nordstrom black hole has zero entropy. Section III con-
tains a review of the Ernst instanton which describes pair
creation of extremal and nonextremal black holes. In Sec.
IV we discuss the boost energy and show that while it
is changed for pair creation in Bat. space, it is unchanged
for pair creation in general relativity. Section V con-
tains a derivation of the relations (1) and (2) and the
detailed calculations of the acceleration horizon area and
instanton action which confirm them. Finally, Sec. VI
contains further discussion of black hole annihilation and
some concluding remarks.

In the appendix we consider the generalization of the
Ernst instanton which includes an arbitrary coupling to
a dilaton [9]. We will extend the development of the
preceding sections to this case, showing that the boost
energy is still unchanged in this case, and calculating the
difference in area and the instanton action using appro-
priate boundary conditions. The result for the instanton
action is in complete agreement with [6].
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II. EXTREME BLACK HOI ES HAVE ZERO
ENTROPY

In this section we consider the entropy of a single static
black hole. The reason that gravitational configurations
can have nonzero entropy is that the Euclidean solutions
can have nontrivial topology [10]. In other words, if
we start with a static spacetime and identify imaginary
time with period P, the manifold need not have topol-
ogy S x Z where Z is some three manifold. In fact, for
nonextreme black holes, the topology is S x R . This
means that the foliation one introduces to rewrite the
action in Hamiltonian form must meet at a two-sphere
Sh. The Euclidean Einstein-Maxwell action includes a
surface term,

1I= 16' ( R+E—' ) —— K,
t9M

1I = pH ——ABH. (4)

The usual thermodynamic formula for the entropy is

S= —
~ P —1 ~lnZ,
( 8

)
where the partition function Z is given (formally) by the
integral of e over all Euclidean configurations which are
periodic in imaginary time with period P at infinity. The
action for the solution describing a nonextremal black
hole is (4) so if we approximate ln Z I, we obtain the—

The surface terms in the Hamiltonian can be obtained di-
rectly from the surface terms in the action. For a detailed
discussion which includes spacetimes which are not asymp-
totically flat (e.g. , the Ernst solution) and horizons which are
not compact (e.g. , acceleration horizons) see [13j.

where B is the scalar curvature, E~ is the Maxwell field,
and K is the trace of the extrinsic curvature of the bound-
ary. In fact, if the spacetime is noncompact, the ac-
tion is defined only relative to some background solution
(go, Eo). This background is usually taken to be Hat space
with zero field, but we shall consider more general asymp-
totic behavior. When one rewrites the action in Hamilto-
nian form, there is an extra contribution from the surface
Sh. This arises since the surfaces of constant time meet
at Sh and the resulting corner gives a delta-function con-
tribution to K [10]. Alternatively, one can calculate the
contribution from Si, as follows [11] (see [12] for another
approach). The total action can be written as the sum
of the action of a small tubular neighborhood of Sh and
everything outside. The action for the region outside re-
duces to the standard Hamiltonian form, which for a
static configuration yields the familiar result l3H. The
action for the small neighborhood of Sh yields —ABH/4
where ABH is the area of Sh. Thus the total Euclidean
action is

usual result

1S = —ABH
4

Recall that the Reissner-Nordstrom metric is given by

ds = —
~

1 — ~dt

+
~

1 — +,
~

dr2+r'dO.2M Qi
r r2j

For nonextreme black holes Q ( M, the above discus-
sion applies. But the extreme Reissner-Nordstrom so-
lution is qualitatively difFerent. When Q2 = M2, the
horizon r = M is infinitely far away along spacelike di-
rections. In the Euclidean solution, the horizon is in-
finitely far away along all directions. This means that
the Euclidean solution can be identified with any period
P. So the action must be proportional to the period
I oc P. It follows Rom (5) that in the usual approxima-
tion ln Z —I, the entropy is zero,

Sextreme —0.

This is consistent with the fact that gravitational en-
tropy should be associated with nontrivial topology. The
Euclidean extreme Reissner-Nordstrom solution (with r
periodically identified) is topologically S x R x S . Since
there is an S factor, the surfaces introduced to rewrite
the action in canonical form do not intersect. Thus there
is no extra contribution &om the horizon and the entropy
is zero. Since the area of the event horizon of an extreme
Reissner-Nordstrom black hole is nonzero, we conclude
that the entropy of a black hole is not always equal to
ABH/4; (6) holds only for nonextremal black holes.

The fact that the entropy changes discontinuously in
the extremal limit implies that one should regard non-
extreme and extreme black holes as qualitatively difFer-
ent objects. One is already used to the idea that a non-
extreme black hole cannot turn into an extreme hole: the
nearer the mass gets to the charge the lower the temper-
ature is and so the lower the rate of radiation of mass
is. Thus the mass will never exactly equal the charge.
However, the idea that extreme and nonextreme black
holes are distinct presumably also implies that extreme
black holes cannot become nonextreme. At first sight this
seems contrary to common sense. If one throws matter
or radiation into an extreme black hole, one would expect
to increase the mass and so make the hole nonextreme.
However, the fact that one can identify extreme black
holes with any period implies that extreme black holes
can be in equilibrium with thermal radiation at; any tem-
perature. Thus they must be able to radiate at any rate,
unlike nonextreme black holes, which can radiate only at
the rate corresponding to their temperature. It would
therefore be consistent to suppose that extreme black
holes always radiate in such a way as to keep themselves
extreme when matter or radiation is sent into them.

From all this it might seem that extreme and nearly
extreme black holes would appear very difFerent to out-
side observers. But this need not be the case. If one
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throws matter or radiation into a nearly extreme black
hole, one will eventually get all the energy back in ther-
mal radiation and the hole will return to its original state.
Admittedly, it will take a very long time, but there is
no canonical relationship between the advanced and re-
tarded time coordinates in a black hole. This means that
if one sends energy into an extreme black hole there is
no obviously preferred time at which one might expect
it back. It might therefore take as long as the radiation
&om nearly extreme black holes. If this were the case, a
spacelike surface would intersect either the infalling mat-
ter or the outgoing radiation just outside the horizon of
an extreme black hole. This would make its mass seem
greater than its charge and so an outside observer would
think it was nonextreme.

If extreme black holes behave just like nearly extreme
ones is there any way in which we can distinguish them' ?

A possible way would be in black hole annihilation, which
will be discussed in Sec. VI.

Two-dimensional calculations [14] have indicated that
the expectation value of the energy momentum tensor
tends to blow up on the horizon of an extreme black hole.
However, this may not be the case in a supersymmetric
theory. Thus it may be possible to have extreme black
holes only in supergravity theories in which the fermionic
and bosonic energy momentum tensors can cancel each
other. Because they have no entropy such supersymmet-
ric black holes might be the particles of a dual theory of
gravity.

There is a problem in calculating the pair creation of
extreme black holes even in supergravity. As Gibbons
and Kallosh [15] have pointed out, one would expect
cancellation between the fermionic and bosonic energy
momentum tensors only if the fermions are identified pe-
riodically. In the Ernst solution, however, the presence of
the acceleration horizon means that the fermions have to
be antiperiodic. Thus it may be that the pair creation of
extreme black holes will be modified by strong quantum
effects near the horizon.

III. THE ERNST SOLUT/ON

A~= — 11+ B—qx I+i,(
BAi 2 )

where the functions A = A(x, y), and G(() are

B'
A =

~

1+ Bq—
~ +, ,G(x),

2 ) 4A2x —y2

G(() = (1+r A()(1 —(' —r+A('), (14)

and q = r+r . This solution represents two oppositely
charged black holes uniformly accelerating in a back-
ground magnetic field.

It is convenient to set (i ———1/(r A) and let (2
(3 ( (4 be the three roots of the cubic factor in G. The
function G(() may then be written as

G(&) = —(&+A)(r-A)(& —(i)(( —&2) 4 —&s)(& —&4).

(15)

G'(&s) A(&4)
' = —G'((4) A(&s)

' (16)

where A((;) = A(x = (;). For later convenience, we
define L = A(x = (s). When (16) is satisfied, the spheres
are regular as long as p has period

We restrict (s ( x ( (4 in order for the metric to have
I orentz signature. Because of the conformal factor (x-
y) in the metric, spatial infinity is reached when x, y -+
(3 while y -+ x for x g (s corresponds to null or timelike
inGnity. The range of y is therefore —oo ( y ( x. The
axis x = (s points towards spatial infinity, and the axis
x = (4 points towards the other black hole. The surface
y = (i is the inner black hole horizon, y = (2 is the black
hole event horizon, and y = (s the acceleration horizon.
We can choose (i ( (2, in which case the black holes are
nonextreme, or (i ——(2, in which case the black holes are
extreme.

As discussed in [9], to ensure that the metric is free of
conical singularities at both poles, x = (s, (4, we must
impose the condition

The solution describing a background magnetic Geld in
general relativity is Melvin's magnetic universe [16],

4vr12

G'(&s)
(17)

ds =A (—dt +dz +dp )+A p dIp,

2A~=, A=1+ —BMp
2A

(1O)

ds = (x —y) A A G(y)dt —G (y)dy

+ G (x)dx + (x —y) A A G(x)dip,

The Maxwell field is I'2 = 2BM2/A4, which is a maximum
on the axis p = 0 and decreases to zero at inGnity. The
parameter B'~ gives the value of the magnetic field on
the axis.

The Ernst solution is given by

We choose the constant A: in (12) to be k = 2/BLi~2
so as to confine the Dirac string of the magnetic field
to the axis x = (4. We define a physical magnetic field
parameter B@ = BG'((s)/2L ~, which is the value of
the magnetic Geld on the axis at infinity. The physical
charge of the black hole i.s deGned by

L' ((4 —6)
4~ G'(6) (1+ —,'qB(4)

If we also define m = (r+ + r )/2, we can see that the
solution (11,12) depends on four parameters: the physical
magnetic Geld B~, the physical magnetic charge q, and
A and m, which may be loosely interpreted as measures
of the acceleration and the mass of the black hole.
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If we set the black hole parameters m and q (or equiv-
alently, r+, r ) to zero in (11) we obtain

representing the pair creation of two extremal black holes
with infinitely long throats.

dg

(1 —y')
ds = (1 —y2)dt

A2 z —y z

dx 1 —x
+ + dp,

(1 —z2) A2 (z —y) zAz

with

B@2 1 —x
A =1+

4 A2(z —y)2
(20)

This is just the Melvin metric (9) expressed in accelerated
coordinates, as can be seen by the coordinate transfor-
mations [6]

1 x 2 g —12 2

(z —y)'A' '
(z —y)'A' ' (21)

47t

G'(&s)
(22)

and require

&'(6) = —G'(&s) (23)

which gives

4 2 — 4 3
3 1

(24)

Note that now the acceleration parameter A is no longer
physical, but represents a choice of coordinates. The
gauge Geld also reduces to the Melvin form A~
B@p2/2A. One can show [9,6] that the Ernst solution
reduces to the Melvin solution at large spatial distances,
that is, as z, y ~ (s.

We now turn to the consideration of the Euclidean sec-
tion of the Ernst solution, which will form the instanton.
We Euclideanize (ll) by setting r = it. In the non-
extremal case, (i & (2, the range of y is taken to be

y & (s to obtain a positive definite metric (we
assume (2 g (s). To avoid conical singularities at the
acceleration and black hole horizons, we take the period
ofw tobe

IV. BOOST ENERGY

Consider the pair creation of (nongravitating) GUT
monopoles in Hat spacetime. In this process the usual
energy is unchanged. If the background magnetic field
extends to infinity, this energy will, of course, be in-
finite. But even if it is cut ofF at a large distance,
the energy is conserved since in the Euclidean solution,
9'"(T„ t") = 0, where T„ is the energy momentum ten-
sor and t is a time translation Killing vector. Thus
the initial energy, which is the integral of T„t t over
a surface in the distant past, must equal the energy af-
ter the monopoles are created. However, now consider
the energy associated with a boost Killing vector in the
Lorentzian solution. This corresponds to a rotation (" in
the Euclidean instanton. So the associated energy is

E~ —— T„"dE,

where the integral is over a surface Z which starts at the
acceleration horizon where (i" = 0 and extends to infinity.
While the vector T„„( is still conserved, which implies
that E~ is unchanged under continuous deformations of
Z that preserve the boundary conditions, this is not suf-
Gcient to prove that E~ is unchanged in the pair creation
process. This is because every surface which starts at the
acceleration horizon in the instanton always intersects
the monopole, and cannot be deformed into a surface ly-
ing entirely in the background magnetic field. In fact, it
is easy to show that E~ is changed. Since the analytic
continuation of the boost parameter is periodic with pe-
riod 2m, the Euclidean action is just I = 2mE~. So the
fact that the instanton describing the pair creation of
monopoles has a difFerent action from the uniform mag-
netic field means that the boost energy is difFerent.

We now turn to the case of pair creation of gravitating
monopoles, or black holes. The gravitational Hamilto-
nian is only defined with respect to a background space-
time, and can be expressed [13] (this form of the surface
term at infinity is also discussed in [12])

This condition can be simplified to

(2 - t!i = (4 —6. (25)

The resulting instanton has topology S x S —(pt),
where the point removed is z = y = (s. This instanton
is interpreted as representing the pair creation of two
oppositely charged black holes connected by a wormhole.

If the black holes are extremal, (i ——(2, the black
hole event horizon lies at inGnite spatial distance from
the acceleration horizon, and gives no restriction on the
period of r. The range of y is then (z & y & (s, and
the period of w is taken to be (22). The topology of this
instanton is R2 x Sz —(pt), where the removed point
is again z = y = (s. This instanton is interpreted as

N'R —— K( K — Kp),8' s
where N is the lapse, Q is the Hamiltonian constraint,
K is the trace of the two-dimensional extrinsic curvature

of the boundary near infinity, and Ko is the analogous
quantity for the background spacetime. Since the volume
term is proportional to the constraint, which vanishes,
the energy is just given by a surface term at inGnity. The
Hamiltonian for Melvin is zero since we are using it as the
background in which Ko is evaluated. We now calculate
the Hamiltonian for the Ernst solution and show that it
is also zero. Thus the boost energy is unchanged by pair
creation in the gravitational case.

Since the spacetime is noncompact, we have to take a
boundary "near infinity, " and eventually take the limit
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as it tends to infinity. The surface E in the Ernst solution
is a surface of constant t in the Ernst metric (11), run-
ning &om the acceleration horizon to a boundary at large
distance. As a general principle, we want the boundary
to obey the Killing symmetries of the metric, and in this
case, we choose it to be given by x —y = e@, as in [6].
The result in the limit as the boundary tends to infinity
should be independent of this choice.

The first part of the surface term is computed in the
Ernst metric, and the second part in the Melvin met-
ric. We need to ensure that the boundaries that we use
in computing these two contributions are identical; that
is, we must require that the intrinsic geometry and the
Maxwell field on the boundary are the same. Because
the Ernst solution reduces to the Melvin solution at large
distances, it is possible to find coordinates in which the
induced metric and gauge field on the boundary agree
explicitly.

The analogue of the surface E for the Melvin solution
is a surface of constant boost time t of the Melvin metric
in the accelerated form (19). We want to find a boundary
lying' in this surface with the same intrinsic geometry as
the above. We will require that the boundary obey the
Killing symmetries, but there is still a family of possible
embeddings. We assume the boundary lies at x —y = e~.
It is not clear that the results will be independent of this
assumption, but this is the simplest form the embedding
in Melvin can take, so let us proceed on this basis.

If we make coordinate transformations

where

— x +&.
2A2e~ 4A2 (34)

2A G'((s)&@ 2A G'((s)&@
/@3@/2/2 gy L,2/

(35)

while for Melvin it is

4A2e~ 4A2e~ )
Bhx )

(36)

If we fix the remaining coordinate freedom by choosing

G'(( )'
21 2G"((s)

and write e~ and B~ as

G"(&s)
eNI = — 6@(1+ eke'@), B~ = B~(1+ Pe~) l (38)

3

Recall that A represents a choice of coordinates in the
Melvin metric.

We also want to match the magnetic fields. For the
Ernst solution, the electromagnetic field at the boundary
is given by

and

G'(6) '
G'(&s)

(28)

x = (s + &~X, y = (s + e~(X —1) (29)

then we can easily see that the induced metrics (30) and
(33) and the gauge fields (35) and (36) of the boundary
may be matched by taking n = P = 0.

Note that, for the Ernst metric, the lapse (with respect
to the time coordinate t') is

in the Ernst metric (note that Arp' = 2', 0 & X ( 1, and
the analytic continuation of t' has period 27r), then the
metric on the boundary is

(2) 2 21 A dy
A2e@G'((s) 2x(x —1)

+ A 2x+ e'@x
—2 .G"Rs)

3

(3o)

2(1-x) "
A 1 ——e~(X —1) (4o)

where A is given by (31). For the Melvin metric, the lapse
[with respect to the boost time t appearing in (19)] is

where

A2G'((s)e@ 2A2G'((s) 2 (31)

and everything is evaluated only up to second nontrivial
order in r~, as higher-order terms will not contribute to
the Hamiltonian in the limit e~ —+ 0.

Using j ~*Jr=
A2eEG'((s) 4 G'((s) (41)

where A is given by (34). We therefore see that the lapse
functions are also matched by taking o.' = p = 0.

We may now calculate the extrinsic curvature K of
the boundary embedded in the Ernst solution, which
gives

~ = —1+ e~X, y = —1+~~(X —1),

the metric of the boundary in Melvin is

(32)
Calculating the extrinsic curvature Ko of the boundary
embedded in the Melvin solution gives

( )ds
&M

A2d +~ (2X —e~X ) "I'
2x(x —1)

(33)

N Ko —— — ~1+ —e~ ~.
s A eM ( 4

(42)

Using (37) and (38) we see that these two surface terms
are equal. Thus, taking the limit e~ —+ 0, the surface
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The fact that the boost energy is unchanged in the
pair creation of gravitating objects implies a simple re-
lation between the Euclidean action I and the area of
the horizons. The Euclidean action is defined only with
respect to a choice of background spacetime. If both the
background spacetime and original spacetime have accel-
eration horizons, it is shown in [13] that (4) is modified
to

1I = pH ——(AA+ ABH),
4

where AA is the difference in the area of the acceleration
horizon in the physical spacetime and the background.
Thus, for the case of pair creation of nonextremal black
holes, we have

1
IE,„„=pH~ ——(ax+ AB„),

4
(44)

where AA is the difFerence between the area of the ac-
celeration horizon in the Ernst metric and in the Melvin
metric. In the extreme case, as shown in Sec. II, the
area of the black hole horizon does not appear in the ac-
tion since the horizon is infinitely far away. Therefore
the action is given by

term in the Hamiltonian vanishes. Since the volume term
vanishes by virtue of the equations of motion, this implies
that the Hamiltonian vanishes for the Ernst solution, and
thus the boost energy is unchanged.

V. ACTION AND AREA

A. The basic relations

boundary, as we did in calculating the Hamiltonian. If we
introduce a boundary in the Ernst solution at x = (s+e~,
the area of the region inside it is

(49)

L(PE ' dX
A' ~,+, (x —(s)'

APE+A2 (« —(s) A2e~

4vrI, '
A'G'(&s) (« —6)

where we have used L = A((s) and (17), and defined
p& ——4I /[A G'((s)e~]. The acceleration horizon in the
Melvin solution is the surface z = 0, t = 0 in (9) (this
can be seen by introducing the Rindler-type coordinates
t = g sinh t, z = rI cosh t). Its area inside a boundary at
p = pM may similarly be calculated to be

Qgppg~(plpdp: 27r
=0

(50)

Note that there is no ambiguity in the choice of boundary
in the Melvin solution here; p = pM is the only choice
which obeys the Killing symmetry.

We must now match the intrinsic features of the
boundary; we require that the proper length of the
boundary and the integral of the gauge potential A~
around the bound. ary be the same. For the Ernst so-
lution, the proper length of the boundary is

1
IE,„., = ——(zA+ ABH)

4
(46)

1
IF,„„=pH~ ——aA.

4

We have shown that HE ——0 in the previous section. The
Ernst action is thus

lE ——

4

BEpE

L2GII (g
G'((s)2A2 p2@

for the nonextreme case, and

(47)

As in Sec. IV, we expand to second nontrivial order
in p@, higher-order terms do not afFect AA in the limit

pE ~ oo. For the Melvin solution, the proper length of
the boundary is

&BH = &v a(« —6)

(48)

in the extreme case. We will now show that these rela-
tions in fact hold.

The area of the black hole event horizon in the Ernst
solution can be easily shown to be

8~ (
lM =

&MpM)
(52)

The integral of the gauge potential around the boundary
is, in the Ernst solution,

2 2A2e~G'((s) 2 8

2~ BE BE31-2 BE BE3 p2E

where A&p~ is given in (17). We now turn to the calcu-
lation of the other two terms in (46). while in the Melvin solution it is

B. Change in area of the acceleration horizon

Since the acceleration horizon is noncompact, its area
is infinite; to calculate the difference, we must introduce a If we write

1 2 8
A(pd(P =2' BM B3 p2

(54)
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Pl n)
BM = B@

(
1+ 2 ~

and pM = p@ (
1+ 2 [, (55)4) 4)

L 2G//(( )
Gf(( )2A2 (56)

Substituting this into (50) gives

27rl G"((2)AM = 7rp~ + 27I ci:7rp~ +
(G' 2 2A2 (57)

We can now evaluate the difFerence in area, letting
PE M OG)

then setting the integral of the gauge fields equal gives
P = 0, as before, and setting l~ = lM perturbatively
gives

that in [6] suggests that the answer is unchanged, as we
shall see.

To evaluate the action directly, we introduce a bound-
ary three-surface at large radius. We will take the surface
to lie at x—y = eE in the Ernst solution and at x —y = eM
in the accelerated coordinate system in the Melvin solu-
tion, as in Sec. IV. The volume integral of B is zero by
the field equations. The volume integral of the Maxwell
Lagrangian E is not zero, but it can be converted to a
surface term and combined with the extrinsic curvature
term, as shown in [6]. Thus the action of the region of the
Ernst solution inside the surface is made up of two parts:
boundary contributions from the three-surface embedded
in the Ernst solution, and a subtracted contribution from
the three-surface embedded in the Melvin solution.

The contribution to the action from this surface in the
Ernst solution is [6]

dA=A~ —,AM =— G"((,)
G (~2)A (~4 —~s) 2G (~2)

(58)
47rL2 1 1+G'(6) A' (6 —

&2) (6 —&i)

d Tv h,e V'„(e n")

(&2 —&i)

1
IE ———

87r

7rL 3
A2G'((2)

(61)

Now for the extreme case, (2 ——(i, and so

2vrL'

G'((, )A'((, —(,)
' (59)

where e = A ~" ~&'~, and h, is the induced metric on the
three-surface. The contribution from the surface in the
Melvin solutian may be obtained by setting r+ ——r = 0
in (61); it is

which agrees with the expression for the action found in
[6]. For the nonextreme case,

7r 3
IM = — + O(~M).

2A2 ~M
(62)

1——(AA+ ABH) =
4

7rL2 2

G'((2) A2 ((2 —(i)
(6 —(i)

3 2 3 1

(4 —6)
4 2 3 2

27rL2

G'(&2) A'(&2 —&i)
' (60)

where we have used (48) in the first step and the no-strut
condition (25) in the second. Notice that the final expres-
sion is the same as in (59). So relations (1) and (2) are
confirmed provided the formula for the instanton action
given in [6] is valid for both the extreme and nonextreme
black holes. We now verify that this is indeed the case.

C. Direct calculation of the action

In [6] it was assumed that the divergent part of the
action could simply be subtracted, using a coordinate
matching condition, without afFecting the correct finite
contribution to the action. As we have seen above, this
is not necessarily the case; we need to evaluate the action
for a bounded region, impose same geometric matching
conditions at the boundary to ensure that the boundaries
are the same, and then let the boundary tend to infinity.
Despite all this, the fact that our result above agrees with

IErnst = IE —I
7rL2 3

A2G'((2)
2+L2

A'G'(6) (&2 —&i)

3G"((2) +G'(6) ~M (6 —6)

(63)

This applies to both extremal and nonextremal instan-
tons and agrees with the previous expressions in the lit-
erature. One can understand why the naive coordinate
subtraction of divergences [6] yielded the correct answer
since the boundary geometry is matched when o. = 0.
Since (63) agrees with (59) and (60), we see that the
relations (1) and (2) have been verified.

The matching conditions on the boundary follow im-
mediately from the conditions used to compute the
Hamiltonian in Sec. IV. If we make the change of coordi-
nates (28) and (29) in the Ernst solution, and analytically
continue ~' = it', then the induced metric on the three-
urface jn the Ernst solution is ~3~d82 ~2d+I2 + t2~d82

where K is the lapse (39) and l2lds2 is given by (30).
Similarly, if we use (32) in the Melvin solution (19)
and analytically continue 7 = i t, the induced met-
ric on the three-surface in the Melvin solution will be
~ ~ds = N dw + ~ ~d8, where N is the lapse, given by
(40), and ~ lds is given by (33). The Maxwell field on
the three-surface will be the same as in Sec. IV. There-
fore, we see that the intrinsic features of the three-surface
inay be matched by taking (37) and (38) with n = P = 0.
The action may now be evaluated,
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VI. BLACK HOLE ANNIHILATION

As discussed in the Introduction, since black holes can
be pair created, it must be possible for them to annihi-
late. This provides a new way for black holes to disap-
pear which does not involve Planck scale curvature. The
closest analogue of the pair creation process is black hole
annihilation in the presence of a background magnetic
field. To reproduce the time reverse of pair creation ex-
actly one would have to arrange that the black holes had
exactly the right velocities to come to rest in a magnetic
field at a critical separation. They could then tunnel
quantum mechanically and annihilate each other. If the
black holes came to rest too far apart their total energy
would be negative and they would not be able to anni-
hilate. If they were too near together it would still be
possible for them to annihilate but now there would be
energy left over which would be given off as electromag-
netic or gravitational radiation. It is y,iso possible for
black holes to annihilate in the absence of a magnetic
Beld, with all of their energy converted to radiation.

One might ask whether the generalized second law of
thermodynamics is violated in this process. The answer
is no. Even though the total entropy is decreased by
the elimination of the black hole horizons, this is allowed
since it is a rare process. The rate can be estimated as
follows. Nonextremal black holes behave in pair creation
as if they had e internal states. Since two nonextremal
black holes can presumably annihilate only if they are
in the same internal state, if one throws two randomly
chosen black holes together the probability of direct an-
nihilation is of order e

We argued in Sec. II that extreme black holes are fun-
damentally different from nonextreme holes since they
have zero entropy. This presumably implies that two op-
positely charged extreme black holes cannot form a neu-
tral black hole. Instead, they always directly annihilate.
This is consistent with the idea that extreme black holes
cannot be formed in gravitational collapse, but can only
arise through pair creation.

The process of black hole annihilation also seems to
violate the idea that "black holes have no hair. " It would
appear that one could determine something about the
internal state of a black hole, i.e. , whether two black holes
are in the same state or different states, by bringing them
together and seeing if they annihilate. However, it is not
clear how robust the internal state is. It is possible that
simply the act of bringing the black holes together will
change their state.

The fact that the pair creation of nonextremal black
holes creates a wormhole in space could be taken as a ge-
ometric manifestation of their correlated state. However,
we do not believe that black holes need to be connected
by wormholes in order to annihilate. Imagine two pairs
of black holes being created. If each pair annihilates sep-
arately, the instanton will contain two black hole loops,
and one expects the action will be smaller than that of
extremal black holes (or gravitating monopoles) by twice
the black hole entropy. However, there should be another
instanton in which the two pairs are created and then the
black holes from one pair annihilate with those from the

other. This instanton will contain one black hole loop and
will presumably have an action which is smaller by one
factor of the black hole entropy. This can be interpreted
as arising from a contribution of minus twice the black
hole entropy from the pair creation of the two pairs, and
a contribution of plus the black hole entropy from the
annihilation of one pair. (After one pair annihilates, the
other pair must be correlated, and does not contribute
another factor of the black hole entropy. )

It should be pointed out that even though the nonex-
tremal black holes are created with their horizons identi-
Bed, it is still possible for them to evolve independently.
In particular, their horizon areas need not remain equal.
This is because the identiBcation only requires that the
interior of the two black holes be the same. On a non-
static slice which crosses the future event horizon in
Ernst, there are two separate horizons. If one throws
matter into one but not the other, the areas of the two
horizon components will not be equal at later times. The
fact that the horizon components share a common in-
terior region of spacetime suggests that the "internal"
states of a black hole should be associated with the re-
gion near the horizon. Presumably, throwing matter into
the holes will tend to decorrelate their "internal" states,
but it is not clear whether just one particle is enough to
decorrelate them completely, or whether that requires a
large number.
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APPENDIX: GENERALIZATION TO INCLUDE
A DILATON

1. The dilaton Ernst solution

The above investigations of the Ernst solution can be
readily extended to include a dilaton, as we now show.
We consider the general action

1I= 16' d x[ R+ 2(V'P) + e— ~F ]
—— K,

1

8'

2 2ds' = A ~+-' (
—dt' + dz' + dp') + A ~+-' p'dp', (A2)

B ~1+ a2~—
2A ' 4

(A3)

(A1)

which has a parameter a governing the strength of the
dilaton coupling. The Melvin and Ernst solutions are
extrema of (Al) with a = 0 and P constant. The gener-
alization of the Melvin solution to a g 0, first found by
Gibbons and Maeda [17], is
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ds' = (z —y) 'A 'Ai+-' (F(z) G(y)dt'

—G '(y)dy' + F(y)G '(z)dz'j

+(z —y) A A i+o' F(y)G(z)d&p',

(A4)

The generalization of the Ernst solution to this case is [9]

with

A1+-'
(1 —y )dt

22 1 —X+P 1+a2
(z —y)'A'

dg dx

(1 —y') (1 —z2)

(A14)

—2ag —2a@PP 1+
E(y3
F(z) '

2eG~' (1 + a )1+ Bqz +k,

(As)

(A6)

- 2

1+ Bqz + G(z)F(z),(1+a') (1+a2)B'
2 4A3 z —y 3

where the functions A = A(z, y), F((), and G(() are now
given by

(1+a3)B~~ 1 —z
4 A'(z —y)' ' (A1s)

which is the dilaton Melvin solution (A2) written in ac-
celerated coordinates. The dilaton Ernst solution (A4)
reduces to the dilaton Melvin solution (A2) at large spa-
tial distances, z, y +(3. -

We obtain the Euclidean section by setting w = it. In
the nonextremal case, (i & (2, we are forced to restrict
(2 & y & (3, and we find that to eliminate the conical
singularities, we have to choose the period of r to be (22)
and impose the condition (23), which gives

(A7) 1 —a 2
1+u2

4 2 — 4— (A16)
2&2

F(() = (1+r A()(+-'), (A8)

(1—a2)

G(() = (1 —(' —r+A(')(1+ r A()(+-'), (A9)

and q3 = r+r /(1+a ). Here it is useful to define another
function,

for this metric. In the extremal case, the black hole hori-
zon y = (2 is at an infinite distance, so the range of y
is (3 & y & (3, and we only need to choose the period
of r to be (22) to eliminate the conical singularity. The
nonextremal instanton still has topology S x S —(pt),
while the extrernal one has topology B x S —(pt), and
they have the same interpretation as before.

H(&) = G(&)F(&) (A10) 2. Boost energy
= —(r+ A) (r- A) (&

—&i) (& —&2) (&
—&3) (&

—«)
where (i = 1/(r A), an—d (3, (3,«are the roots of the
cubic factor in G((). These roots have the same inter-
pretation as in the Ernst solution.

1
We now define I = A &+o' ((3), and set k

2e &'/BL ~ (1 + az). We then find that the physical
magnetic field and charge are [6] z = —1+ eMy[l+ e@f(y)], (A17a)

We now show that the boost energy is unchanged by
pair creation in this case. The Hamiltonian is still given
by (27), and the volume term vanishes, so it is just given
by the surface term. We choose the boundary in the
Ernst solution to be given by x —y = c~, and make the
coordinate transformations (28) and (29). In the Melvin
solution, we assume that the boundary has the form

BG'((3)
2I.

(A11)
y = —1+ eM(y —1)[1+sag(y)], (A17b)

and

e ~'L ~ (« —(3)
G'(&3)(1+ '+2 qB«)

(A12)

in the coordinates of the accelerated form (A14). In this
case, we need to match the value of the dilaton on the
boundary, as well as the induced metric and gauge field
on the boundary. For the Ernst metric, the induced met-
ric on the boundary is

We restrict z to the range (3 & z & « to get the right
signature. We have to impose the condition

G'(6)A(«) '+" = —G'(«)A(&3) '+" (A13)

to ensure that the conical singularities at both poles are
eliminated by choosing the period of rp to be (17). Setting
the black hole parameters r+, r to zero in the dilaton
Ernst metric (A4) yields

(2) 2 2L F((3) A~+-' diazds
A'e@G'($3) ( 2y(y —1)

x 1+ e@(2y —1)
3

+2A I+ g 1+ e~g
II"(&3)

, F'(&3)
F(6) .

(A18)
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where

(1 + a') B~2E((s)L'x H" ((s)
A'G'((s) «2H'((s)

(A19)

and the dilaton at the boundary is

~ ~=e ~'L
+(6) (A21)

The electromagnetic Geld on the boundary for the Ernst
solution is

2L2F((s)B~ e 4" H" ((s)-'= ~" Gg, )~ I '+' xH(g. )

In the Melvin solution, the induced metric on the
boundary is

2

~'les' =, (1 —~E(X 1)f (X) + «X~(X) —2«X(X —1)[f'(X) —e'(X)]
2X(X —1)& eM

2A '+~ 2—2«[xf (x) —(x —1)g(x)])dx' + — 1 ——&~x + «f (x) —2«[xf (x) —(x

(A22)

where

x = 1 y 1 — e~ + xf(«[ —x2 [ «f(xx) —[x —1)9[x)[).(1+a )BMx 1

2A2eM 2
(A23)

The gauge field on the boundary in Melvin is

+ye =2 (1 eMX + «[Xf'(X) + f (X)] —2«[Xf (X) —(X —1)a(X)]

-2«x[f (x) + xf'(x) —g(x) —(x —1)~'(x)]) (A24)

and the dilaton at the boundary is

2Q

~
—2cLQ (A25)

We should note that the lapse function is also matched
by these conditions. For the Ernst metric (A4), the lapse
function is

We Gx the remaining coordinate freedom by taking

and write

G'(&s) H'(&s) Z2
2L2Eg's) H" ((s)

(A26)

e ' = L (1 peE), BM = B@(1+P«). (A27)

H" ((s)
H'((s)

(A28a)

and

+'(&s) +'(&s)
4

3 3

(A28b)

We then Gnd that the intrinsic metric, gauge field, and
dilaton on the boundary can all be matched by taking

1

4L2E((s) (1 —X)
A2«G'((s)

x 1 + eE (X —1)—, + —«, (A30)
H" ((,) 1 I"((.)

while the lapse function for the Melvin metric (A14) is

1

2(1 —x) A x+o' 1 ——eM (X —1)
AeM 4

1
+ -«g(x) —~zfxf(x) —[x —&)g(x)I)

(A31)

H'(4)

We see that (A28) and (A29) make (A30) and (A31)
equal as well.

The extrinsic curvature of the boundary embedded in
the Ernst solution is

1 E'((,)
2 E((s)

(A29)
P'((, ) (4x —3)
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2Kp ——
AeM'~2

1 ——eM (4y —3)
4

1 F'((2) (24' —13)

(A33)

Using the matching conditions (A26) and (A28), we may
now evaluate

while the extrinsic curvature of the boundary embedded
in the Melvin solution is

Melvin solution is

2

47t 2 1+~ p

[(1 + (22)B2 ] i+a~
. (A39)

4

MPM( ++ )

It is interesting to note that the proper length behaves
quite difFerently for a & 1 and a & 1. The integral of
the gauge potential around the boundary curve is, in the
dilaton Ernst solution

5AE'E G ((s) E ((s)
) ( )

LF(g.) & ~'- F(~)

Therefore, taking the limit e~ —+ 0, the Hamiltonian is

47t;e &'
A~dp =

(1+a2)La'Bz
1— 4

BzpE(1+ a )

(A40)

1

Hz = —— dy&~h( K — KP)
4

5L F'(( )
~2GI(( )

X( X ) —o,

(A35)

3. Horizon area and instanton action

We begin by calculating the di8'erence in area. The
area of the black hole is now given by

F((2)&yz(4 —6)
&'(( —()N —

& )
4vr F((2)L2 ((4 —(2)
&'G'(( ) (( —( ) (& —

& )
'

(A36)

where h is the determinant of the metric [(A18) or (A22)].
Thus, (1) and (2) still hold, which we will now confirm
by direct calculation.

while for the dilaton Melvin solution it is

—2a4) —2apaA ~+ g (6)
F((s + ez)

(1+~') Bzpz
4

2~2

(A42)

4a2 F((s)L H" ((2) 1
o,2 G'((s)A2H'(( ) p2

8a 1

(1 + (22) 2 B2 p2

4F'(( )L 1

G'((s)A2 pz2

while for dilaton Melvin it is

4'
A d(p = 1 — . (A41)

(1+ a2)BM BM2p2M(1+ a2)

Finally, the dilaton field at the boundary is, for the dila-
ton Ernst solution

F((2)4(pz ~' dx
A2 g+, (x —(s)2

4~F((,)L'
A2G'((2) ((4 —(2)

(A37)

and the area of the acceleration horizon in the Ernst so-
lution, inside a boundary at x = (2 + ez, is (1+0 )B pe

4

We now write

2a2

8a 11+
(1 + O2)2 B2 p2

(A43)

where pz ——4F((s)L /[G'((s)A ez] now. Also, AM is
still given by (50). The boundary conditions in this case
are that the proper length of the boundary, the integral of
the gauge potential around the boundary, and the value
of the dilaton at the boundary are the same.

The proper length of the boundary in the dilaton Ernst
solution is

2 a —12

4m2 &+~' p
+

1+
~

'F((s)L2 1
(A38)

[(1 + o2)B2 ],+'.~ G'((3)24 pz

a —1 H" ((2) 2F'((2) 4

1 + 2 EI'(( )P(('2)2+2 P2 (f + 22)2 )
and the proper length of the boundary in the dilaton

e ~'=L ~1—
PE)

(A45)

We may solve for n, P, and p by setting the various quan-
tities equal perturbatively. This gives

F((s)L H" ((2) 2F'((2)
G'(Q) A2 H'(( ) 2F((s) (A46)

2F'((2) L2

G'((2) A2 (A47)

Pi f'

BM=BE~ 1+ 2 ~ PM —PE~ 1+, I, (A44)
Pzf

and
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4~L'F ((.)
A'G'(&s) R4 —&s)

+4~L'F((, ) I H" ((&)
A G'((, ) ((4 —(,) 2II'((, )

+
4vrL F((s) ((2 —(i)
A'G'(6) (6 —(i)(6 —|!2)

F'(&s)
F(&s)

F'(&s)
a2F ((s)

For the extreme case, (2 ——(i, and so,

1 7rI F'((s)
4 a A G'((s) ' (A49)

We may now calculate the di8'erence in area: 1
I+

87t ~ y

+
7rL' 3F((.) F'((,)

A2G'((s) e@ a2

d'~V he ~l' V„(e«n~) (A51)

As the solution is independent of 7, the metric on this
boundary is just ( )d8 = ( ~ds + N d7, where ( )ds
is given by (A18), and the gauge field and dilaton on
the boundary are (A20) and (A21). Thus, if we assume
the boundary in the Melvin solution has the form (A17),
then we may see that (A28) and (A29) will match the
metric, gauge field, and dilaton on the boundary. The
contribution to the action from the boundary embedded
in the Melvin solution is then

which agrees with the expression for the instanton action
in [6]. For the nonextreme case,

8A2~M
dX —12+ 5e~(2X —1)

IM— d'~v%e «V-„(e~~.n~)8' (A52)

A G(g)

+ F(6)(6 —&i)

3 2 3 1

F((2)((4 —6)
4 2 3 2

7rL2F'((s)
a2A2GI(( )

'

(A50)

where we have used (A16) to cancel the last two terms.
Now we turn to the direct calculation of the action.

The contribution to the action from a boundary at x—y =
eE embedded in the Ernst solution is [6]

e~ (2y —1)
103F'((s)

Thus, using (A26), we may evaluate the action,

srL'F'((, )
El'list E M Az GI (( )

(A53)

which is in perfect agreement with [6]. As (A53) agrees
with (A49) and (A50), we have explicitly shown that (1)
and (2) hold for general a.
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