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Calculation of gravitational waveforms from black hole collisions and disk collapse:
Applying perturbation theory to numerical spacetimes
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Many simulations of gravitational collapse to black holes become inaccurate before the total
emitted gravitational radiation can be determined. The main diKculty is that a significant compo-
nent of the radiation is still in the near-zone, strong-Geld region at the time the simulation breaks
down. We show how to calculate the emitted waveform by matching the numerical simulation to a
perturbation solution when the final state of the system approaches a Schwarzschild black hole. We
apply the technique to two scenarios: the head-on collision of two black holes and the collapse of
a disk to a black hole. This is the first reasonably accurate calculation of the radiation generated
from colliding black holes that form from matter collapse.

PACS number(s): 04.70.—s, 04.25.Dm, 04.25.Nx, 04.30.—w

I. INTRODUCTION

One of the most significant goals of numerical relativity
is to calculate the gravitational waveforms from realistic,
astrophysically interesting systems. Until now, obtaining
a good estimate of the asymptotic waveform has required
long numerical evolutions so that the emitted waves can
be propagated far from the source. There, either radi-
ation extraction techniques can be used, or the solution
can be matched onto a null-cone integration. Unfortu-
nately, long evolutions are difFicult for a number of rea-
sons. These include throat stretching when black holes
form, numerical instabilities associated with curvilinear
coordinate systems, and the effects of approximate outer
boundary conditions. Even if the simulation does not
terminate prematurely, these problems usually lead to se-
vere mass nonconservation, which makes the waveforms
extracted at late times invalid. Moreover, certain time-
slicing conditions and boundary conditions do not allow
all collision simulations to progress far enough for the
black holes to merge completely; rather they asymptote
to a finite separation. (For examples see Ref. [1].) Even
when the time slicing allows the black holes to merge,
one must integrate long past coalescence in order to ex-
tract the complete waveform. At this time, no numerical
algorithm is known that deals efFectively with all these
problems in the context of multidimensional, radiating
spacetimes.

Recently, however, an important idea introduced by
Price and Pullin [2] provides a possible way to circum-
vent some of these problems in certain circumstances.
Price and Pullin considered Misner initial data repre-
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senting two black holes at a moment of time symme-
try. They realized that when the two holes were suf-
ficiently close, the system could be treated as a single
perturbed black hole. By applying gauge-invariant per-
turbation theory, they calculated this perturbation and
evolved it using the Zerilli equation. This allowed them
to compute asymptotic waveforms and emitted energies.
Remarkably, for fairly small separations, the energies and
waveforms agreed well with the results of fully relativistic
numerical simulations [3]. In a subsequent study, Abra-
hams and Cook [4] extended this technique and applied
it to initial data representing boosted black holes with a
common apparent horizon. The radiated energies com-
puted from these initial data sets agreed quite well with
those from the fully relativistic simulations for cases in
which the initial separations were large.

In this paper, we apply the same technique to numer-
ically evolved spacetirries that at late times can be ap-
proximated as a single perturbed black hole. The per-
turbation of the black hole is computed on a spatial slice
from the numerical metric and extrinsic curvature using
gauge-invariant perturbation theory. Waveforms are de-
termined by evolving this perturbation to infinity using
the Zerilli equation.

The important difFerence between this method and
standard finite-radius radiation extraction techniques (cf.
[5]) is the use of the horizon as an inner boundary at
which radiation is purely ingoing. Once the horizon forms
and the spacetime settles down to a quasistatic state,
data from the numerical simulation are no longer re-
quired. The simulation can be terminated at a relatively
early epoch; it is not necessary to propagate the radiation
pulse out to the weak-field. regime. Another advantage of
the perturbation method is that the efFects of backscat-
ter of the waves off the black hole curvature are auto-
matically taken into account via the Zerilli equation in-
tegration of the perturbation to large radii. These effects
can only be incorporated approximately with standard
extraction methods in which an integration over a time-
like cylinder is used to separate off near-zone effects. It
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should be emphasized that the perturbation approach re-
quires the formation of a black hole during the numerical
simulation. The black hole horizon cuts ofF the evolution
inside the black hole from influencing the waves outside.
The method would be inadequate for, say, an oscillating
neutron star spacetime, where there is no horizon.

In Sec. II we briefly describe the numerical relativ-
ity code and detail the implementation of the gauge-
invariant black hole perturbation method used to com-
pute waveforms. In Sec. III we demonstrate the applica-
tion of this method to calculations of black hole collisions
and disk collapse.

II. METHODOLOGY

The numerical spacetimes representing colliding black
holes and collapsing disks are generated using a code that
solves the Beld equations of general relativity coupled to
a collisionless-particle matter source. Full details of the
equations solved and the numerical method can be found
in Refs. [1,6]. The code employs the maximal time-slicing
condition and the quasi-isotropic spatial gauge, and ap-
plies to nonrotating spacetimes in axisymmetry. The
metric, expressed in spherical polar coordinates, takes
the form

ds = ndt —+p e" (dr+p"dt) +p e" r (dg+p dt) +p e " r sin 0dp .

The code solves the Hamiltonian constraint to compute
Pe "/, solves the momentum constraints for the compo-
nents K„" and K@ of the extrinsic curvature, and evolves
the variables g and K&. The kinematical variables o. and
P' are determined from the maximal slicing condition
and spatial gauge conditions, respectively. In Ref. [1] the
code was used to study head-on collisions and in Ref. [6]
it was used to study disk collapse.

A thorough discussion of the perturbed black hole ap-
proximation will be published elsewhere [7]. Here we
sketch the general idea and list the equations relevant to
the current application. The theory of gauge-invariant
perturbations of Schwarzschild was Brst developed by
Moncrief [8]. Moncrief showed how to use the Regge-
Wheeler multipole amplitudes and their radial deriva-
tives to construct unconstrained even- and odd-parity
functions that are invariant under inBnitesimal coor-
dinate transformations about the Schwarzschild back-
ground. These functions satisfy the Zerilli or Regge-
Wheeler equation for the appropriate E mode. For our
approach, which involves extraction of the perturbation
data on a spatial slice, the background Schwarzschild
time derivative of the gauge-invariant function is also re-
quired in order to pose initial data for integration of the
second-order Zerilli equation (see [4,7,8]).

From the viewpoint of our approximation, the non-
spherical part of the three-metric, the shift, and. the
extrinsic curvature are treated as perturbations about
a static Schwarzschild black hole in the (approximate)

d Y, P (2)

6', =0,
'&~oa' = —2~

" dx/1 —x' "y'(e'"/' —e
—'"/'),

B~
~ Oz~

(4)

( ) Gt d Y y4( 2g/3 + —4q/3)g(g+ y~

2 ~B~ & eo

where x = cos 0. Note that we have specialized to
axisymmetry, and so the azimuthal quantum number
m = 0. We also compute the normal Lie derivatives
of the multipole amplitudes:

exterior region r & M/2, where M is the Arnowitt-
Deser-Misner (ADM) mass of the slice. In quasi-isotropic
gauge, the static Schwarzschild metric takes the standard
isotropic-coordinate form (P; = 0, rI = 0, P = 1 + M/2r,
K,~

= 0). To compute the perturbation using standard
gauge-invariant formalism, first we make the background
coordinate transformation of the numerically computed
metric and extrinsic curvature on a given spatial slice
from isotropic to Schwarzschild radial coordinates r —+ R,
where B = r(1+ M/2r) . Then we compute the follow-
ing Regge-Wheeler multipole amplitudes by integrating
over coordinate two-spheres at constant B:

r2
II~e Y y4 2q/3K' (6)

lO y4 2q/3K~ (7)

r2
Z„G' = 4~ +eox2 &0 y4 2vy/3(Kv + KP) 4g/3KP—

r (8)

Z„K E(E+ 1) ~
r'

C„G +2~
2

dxYgog [ e "/ (K„"+K~~)—+ e " K~~]

From these we form the gauge-invariant function Qg [8],
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—2 (10)

where N—:1 2—M/r and A = (/ —1)(1+2)+6M/R W. e also compute its Schwarzschild time derivative Qg = NL Qg,
where ZaQg is constructed by replacing the amplitudes appearing in Eq. (10) with their normal Lie derivatives. Note
that the normal Lie derivative does not commute with the radial derivative, and so there are additional terms in Qg
involving the radial derivative of N. The two functions Qr and Qg provide initial data for integration of the Zerilli
equation,

8 0
Qg — Qg + Vg(R)Qg = 0,

where r, —:R + 2M in(R/2M —1) is the tortoise coordinate and the Zerilli potential is given by

72M'
Vg(R) = N (12)

rh, +/ sin 0 = 15
64 Q2(t r).

III. NUMERICAL RESULTS

Numerically, the initial data (Qg(R), Qg(R)) are inter-
polated onto a fine mesh ranging from r, = —500 to
r, = 1000 and the Zerilli equation is integrated using a
second-order accurate leapfrog scheme until the pertur-
bation has all been propagated far away from the peak
of the potential, ~r,

~

~ oo. At large radius the function
approaches the even-parity gravitational wave amplitude

I

zons form earlier, at t/M 4.0. The efficiency the total
radiated energy divided by the total mass of the space-
time —is shown in Fig 1. This also levels off to a nearly
constant value once the black holes are encompassed by
a common horizon. This effect is to be expected if the
calculation is at all meaningful: The Anal waveforms and
energy emission should not depend on when the numer-
ical data are extracted for the perturbation equations
once the 6nal black hole has formed and settled down.
Eventually, the effects of throat stretching cause the nu-
merical solution to become inaccurate and the radiated
energy begins to diverge rapidly. In all cases where the
horizon settles down to being nearly spherical while the
full numerical solution is still accurate (judged by the

Applying the above equations to numerically generated
spacetimes is straightforward. However, it is important
to have criteria for when we expect the method to give
reliable results. Typically, we wait until an apparent hori-
zon has formed and the distortions of this horizon have
become fairly small. In the case of collisions, we wait un-
til a common apparent horizon, encompassing both ob-
jects, has formed. We quantify the requirement of small
distortions by requiring that the proper polar and equato-
rial circumferences of the apparent horizon be within 10%
of their Schwarzschild values, i.e. , 0.9 & C~ ~/4vrM & 1.1
and 0.9 & C,q/4m. M & 1.1. We also require that the area
of the apparent horizon be within 5% of its Schwarzschild
value: 0.95 & gA /16~M 1.05. Our experience is
that the first-order perturbation technique becomes in-
accurate when the horizon distortion is much larger than
the value adopted here.

Consider a concrete example that illustrates our ap-
proach. In Fig. 1 we show the radiated energy extracted
when using the perturbation method at different times
during a numerical simulation. The black hole collision
shown, case b1, is discussed below. Figure 2 shows the
particle positions and apparent horizon structure at four
times during the course of the evolution. The waveform
extracted using the perturbation method at each of those
times is also shown. After the common apparent horizon
forms at a time of about t/M 5.0, the waveform shape
and amplitude become fairly constant. The disjoint hori-
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FIG. 1. The radiated energy as a fraction of the total mass
energy, determined with the perturbation method, as a func-
tion of coordinate time during a simulation of colliding clus-
ters (case bl). The curve changes from dashed to solid at the
time an apparent horizon encompasses both clusters. Note
that once this common horizon forms, the amount of radia-
tion emitted does not depend on when the perturbation cal-
culation is performed.
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FIG. 2. The perturbation method applied at difFerent
times during a numerical simulation. Tire lower four frames
show the particle positions for a collision of initially boosted
star clusters (case bl). The dashed lines indicate disjoint
marginally outer-trapped surfaces, while the solid line shows
the common apparent horizon. The upper four frames (corre-
sponding to the same times) show the asymptotic waveform
computed using the perturbation method as a function of re-
tarded time in units of M. Radial coordinates are also in
units of M.

constancy of the Brill mass [1]), the radiated energy re-
mains constant as a function of time as required.

We did encounter some cases where it was impossible
to determine radiated energy to better than a factor of
2. Generally this was because the numerical solution be-
carne inaccurate before the horizon settled down. These
situations are exacerbated by the fact that the quasi-
isotropic spatial gauge conditions and the Hamiltonian
and momentum constraints solved in our algorithm are
elliptic equations. Hence, they instantaneously propa-
gate numerical errors to the entire solution, even those
occurring inside the black hole horizon. For this reason,
even in the relatively accurate cases, we focus on the
quadrupole, S = 2 radiation. At present we do not have
confidence in the lower-amplitude E = 4 waveforms as the
signals are comparable in size to the numerical errors.

Table I lists the 14 cases of colliding clusters and disk
collapses that were carefully studied using the perturba-
tion technique. For each case we give the parameters of
the initial data including proper separations where appli-
cable. The radiation efficiency is computed for each case.
In general, we were able to determine the radiated energy
to better than 20'%%uo accuracy, and in many instances to
better than ( 5'%%uo. In the remainder of this section we de-
tail these simulations and discuss the emitted waveforms
and radiated energies.

An alternative to the vacuum, topological black hole
approach to simulating black hole collisions is the col-
lision of black holes that form from collapsing matter.
Here we consider nonequilibrium spheroids of collision-
less matter that separately undergo collapse before hit-
ting each other head on. An advantage of such an ap-
proach is that the topology is Euclidean so that simple
coordinate systems can be employed. It is also possible
to study different scenarios including those in which the
clusters of matter do not individually have marginally
outer-trapped surfaces surrounding them until after they
are both inside a common event (and possibly apparent)
horizon. The major disadvantage of this approach is that
the matter source must be accurately tracked for the en-
tire simulation, even when it is inside the black hole. This
can be very computationally intensive. Of course, hori-
zon boundary conditions that would allow one to excise
the black hole interiors from the numerical simulation
would solve this problem.

In Sec. II we have briefly described the fully general rel-
ativistic collisionless matter evolution code used in these
simulations. Full details of this mean-Beld, particle simu-
lation code, as well as initial data and typical simulations
of colliding clusters can be found in Ref. [1]. All simu-
lations discussed here were performed on a 200 radial
by 32 angular zone grid with the matter source sampled
with 3000 particles. As mentioned above, we monitor the
constancy of quasilocal mass indicators such as the Brill
mass for a check on accuracy. For the cases shown these
resources were sufBcient to keep the Brill mass constant
within a few percent. This constancy is crucial for the
perturbation approach to give consistent results.

First we consider initial data representing two clusters
of collisionless matter initially at rest. Since these ini-
tial data are conformally flat and at a moment of time
symmetry, it is only necessary to specify the cluster radii
and separation and solve the Hamiltonian constraint to
obtain consistent data. The analytic solution for the con-
formal factor P is given in Ref. [1]. Interestingly, in the
vacuum exterior it agrees with the solution given by Mis-
ner and Wheeler [9] for two black holes in vacuum. This
black hole solution can be thought of as having a three-
sheeted topology with two Einstein-Rosen bridges, each
joining a separate asymptotically flat sheet to a single
upper asymptotically Hat sheet. For cases in which each
cluster initially resides inside its own apparent horizon
one would expect identical evolutions to result from the
cluster initial data and the three-sheeted data.

Since most numerical studies (cf. Ref. [3]) of two black
hole spacetimes have used two-sheeted Misner data where
an isometry is imposed between the upper sheet and the
single lower sheet, it would be interesting to compare the
radiation expected from evolution of two-sheeted initial
data with the cluster data to determine the importance
of topology. Since both types of data represent the same
physical situation colliding black holes it would be
disturbing if the differences were large. In a future study
we will examine this issue in more detail both for time-
symmetric and boosted initial data, which is diKcult to
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TABLE I. Radiated energy efBciencies from cluster collisions and cold disk collapse.

Case
cO

cl
c2
c3
c4
c5
c6
bl
b2
b3
b4
dl
d2
d3

Description
collision
collision
collision
collision
collision
collision
collision

boosted collision
boosted collision
boosted collision
boosted collision

disk
disk
disk

zo/M
0.20
0.40
0.40
0.475
0.50
0.55
0.65
1.0
1.4

0.75
0.75

Ro/M
0.15
0.3
0.1
0.3
0.1
0.3
0.3
0.5
0.5
0.5
0.5
1.00
1.50
2.00

I/M '
6.97
5.1
9.6
5.7
10.2
6.1
6.4
6.2
6.5
5.3
5.1

L I, /M

3.1

3.6

v/c
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.05
0.15
0.05
0.10

15x10
1.5 x 10
1.4 x 10
5.5 x 10
3.0 x 10
75x10
9.0 x 10
1.2 x 10
5.0 x 10
7.0 x 10
4.0 x 10
15x10
3.3xlo '
53x10

Coordinate displacement up the axis of the cluster center.
Coordinate radius of cluster or disk.

'Proper separation of cluster centers.
Proper separation of disjoint apparent horizons.
Boost velocity of cluster as measured by a normal observer.
The radiation efBciency.

implement numerically in the three-sheeted vacuum pic-
ture.

We have studied cluster collisions with a range of sep-
arations and compactness. In case c0 the cluster cen-
ters have an initial coordinate separation of only 0.40M
and there is a common apparent horizon on the initial
slice. Not surprisingly, this case behaves like a single
perturbed black hole. In the top frame of Fig. 3 we show
the waveform Rom this case computed with the perturba-
tion method at an early time during the simulation. The
waveform is very reminiscent of that found by Price and
Pullin [2] for Misner data in the small separation limit.
After a fairly short transient, the waveform is dominated
by the lowest order 8 = 2 quasi-normal-mode oscillations
with characteristic wavelength A = 16.8M.

For comparison, in the same figure we show the wave-
form from case c5 in which the clusters initially have a
coordinate separation of 1.1M. Here there are initially
no common or disjoint apparent horizons. The common
horizon forms at a coordinate time of about 2.0M. The
horizon is initially very distorted, C ~ 0.62, Cp
1.16. The perturbation calculation of the waveform and
radiated energy is not carried out until t 5.3M, at.
which time the horizon has become nearly spherical. Not
surprisingly, the wave amplitude is much larger in this
case since the initial separation is considerably larger.
The waveform shapes are similar but not identical be-
cause the cluster infall and collapse are entirely hidden
inside the black hole in case c0.

We have also studied initial data, cases c2 and c4, for
which there are disjoint apparent horizons surrounding
each cluster. Since the clusters are more compact, the
wave amplitudes in these cases are considerably larger
than those 6.om cases with the same coordinate separa-
tion but larger cluster radii. For these cases it is possible
to compute the initial proper separation of the disjoint
apparent horizons. It turns out that the proper separa-

tion is indeed larger for these compact cases. For these
two cases the radiated energy eKciencies we obtain seem
to be compatible with the results from head-on collisions
of time-symmetric topological black holes [3]. Unfortu-
nately, the throat stretching is very severe in these cases
and it is dificult to have confidence in the energies and
waveforms except for cases with very small initial coor-
dinate separations. The simulations lose accuracy (mass
error greater than 5%) within a short time t 5M, and
so the perturbation technique is essential for computing
waveforms from these cases.
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FlQ. 3. Waveforms from case c0 (upper frame) and case
c5 (lower frame) are compared. The asymptotic gravitational
wave amplitude computed with the perturbation method is
plotted as a function of retarded time in units of M.
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tion goes bad. The a
d before the simula-

up to this time i
e agreement between

e is reasonable, conside '
een the two methods

care has been take
onsi ering that no special

a en in separatin out
for the infall art f

g u the near-zone field
par of the waveform.

matter requirin s ec'
his is a delicate

g special determination
e ex raction techni uesth 1'k t

11 ken care of in the ert
e waveform is read oK

gration at a sufficientl 1

o the Zerilli inte-
cien y large radius.

IV. DISCUSSION

In summar ry, we have found that the
proach to calculati

a t e perturbation ap-
a ing asymptotic wave.energies is effect

veforms and radiated
ec ive not only in anal zin i

~ ~ ~

e use in conjunction wit
1 to . Fo y

c o es ong enough to corn ute
f d db h' g douce y their formation

simu ation can be rolon
h f 1 h 1 bl

fied, the perturbation h
erica ack hole horizonn can be identi-

reliable results. The h
a ion method presented

e method holds reat r
n e ere should give

1 hs, since it should be
h d bur a ions of a rotating black hole
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