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Stationarity of inflation and predictions of quantum cosmology
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We describe several diBerent regimes which are possible in inQationary cosmology. The simplest
one is inQation without self-reproduction of the Universe. In this scenario the universe is not station-
ary. The second regime, which exists in a broad class of inQationary models, is eternal inQation with
the self-reproduction of inQationary domains. In this regime local properties of domains with a given
density and given values of 6elds do not depend on the time when these domains were produced.
The probability distribution to find a domain with given properties in a self-reproducing universe
may or may not be stationary, depending on the choice of an inQationary model. We give examples
of models where each of these possibilities can be realized, and discuss some implications of our
results for quantum cosmology. In particular, we propose a new mechanism which may help solve
the cosmological constant problem.

PACS number(s): 98.80.Cq, 98.80.Bp, 98.80.Hw

I. INTRODUCTION

According to the first versions of inflationary theory,
inflation was an important but extremely short interme-
diate stage of the evolution of the Universe. Later it was
discovered that in many versions of this theory inflation
never ends because of the process of self-reproduction
of inflationary domains. This realization dramatically
changed our point of view on the fate of the Universe
and on its global structure [1].

Self-reproduction of the inflationary universe is possi-
ble both in the old inflationary scenario [2] and in the new
inflationary scenario [3, 4]. However, the significance of
the existence of this regime was not fully realized until it
was shown to occur in the chaotic in8ation scenario [5].
In the simplest versions of this scenario inflationary do-
mains may jump for an indefinitely long time at densities
close to the Planck density [6]. Quantum fluctuations of
all physical fields and metric are extremely large in such
domains. As a result, the Universe becomes divided into
exponentially large domains filled with matter with all
possible types of symmetry breaking [1],and maybe even
with difFerent types of compacti6cation of space-time [7].
Variations in the laws of low-energy physics in differ-
ent domains are typically discrete, such as the change of
symmetry breaking from SU(5) to SU(3) x SU(2) x U(1).
However, continuous changes are also possible, such as
the change of an effective gravitational constant in the
inflationary Brans-Dicke cosmology [8, 9].

This gave us a possibility to justify the weak anthropic
principle in the context of inflationary cosmology, and
even to speculate about the Darwinian approach to par-
ticle physics and cosmology [10] and about some kind of
natural selection of the "constants" of particle physics
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which lead to a greater physical volume of those domains
which can be occupied by observers of our type [1,6, 8].

The next step toward a justification of the anthropic
principle in quantum cosmology was made in [11],after
the appearance of the baby Universe theory [12]. This
theory was based on two basic assumptions. The first
assumption is that the coupling constants may take dif-
ferent values in different quantum states of the universe.
This idea is very intriguing and it may have a good chance
of being correct. The second (and quite independent) as-
sumption was a particular choice of measure on the space
of all quantum states of the universe. The choice advo-
cated in [12] efFectively was based on the exponentiation
of the square of the Hartle-Hawking wave function of the

4

Universe 4 exp &6vP, where V is the vacuum en-

ergy (or the effective potential of the scalar field P) [13,
14]. This gave the probability to live in the Universe
with the non-negative cosmological constant A = M, V:

P
2

P(A) sxp(sxp a . This probability distribution is

peaked at A = 0. However, this result is a consequence
of the "wrong" (negative) sign of the gravitational ac-
tion, which makes calculations unreliable. Moreover, an
extended version of this approach suggests that the prob-
ability to obtain negative cosmological constant is even
higher [15].

Another possibility would be to exponentiate the
4

square of the wave function 4 exp —z&&P, which

was first suggested by one of the present authors [16], see
also [17]. However, as was argued in [5], both wave func-
tions are related to the probability P for some events
to happen at a given point [18], without taking into ac-
count that different parts of the Universe with different
values of V grow at a different rate. It may be natural
therefore to use the measure of probability P„introduced
in [5], which is proportional to the physical volume of
those parts of the Universe where such events may hap-
pen. This, combined with the first assumption of the
baby Universe theory, may give us a possibility to justify
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not only the weak anthropic principle, but the strong an-
thropic principle as well [1,11]. Moreover, the use of the
probability distribution P„canmake anthropic consider-
ations much more precise and quantitative.

Various properties of the probability distribution
Pz(g, t) to find a given field P in a unit physical vol-
ume have been investigated in [5, 6, 19]. It was found
that this distribution has an important advantage over
other probability distributions. In a suSciently big uni-
verse the normalized probability distribution P„(g,t) in
many realistic theories very rapidly approaches a station-
ary regime P„(P),which does not depend at all on the
unsettled issues related to the probability of quantum
creation of the universe and on the choice between the

3MHartle-Hawking wave function 4 exp z&&~ and the
3Mtunneling wave function 4 exp —
&~&~ 6, 20 .

This encouraging result indicates that the stationary
distribution Pz(P, t) plays a very important role in quan-
tum cosmology. However, this approach has its own prob-
lems. For example, as was shown in [6, 8], the shape of
the probability distribution P„may depend on the choice
of the time parametrization. The reason can be under-
stood as follows. Let us consider two infinite boxes, one
with apples, another with oranges. One can pick up one
apple and one orange, then again one apple and one or-
ange, etc. This may give an idea that the number of
apples is equal to the number of oranges. But one can
equally well take each time one apple and two oranges,
and conclude that the number of oranges is twice as large
as the number of apples. The main problem here is that
we are making an attempt to compare two infinities, and
this gives an ambiguous result. Similarly, the total vol-
ume of a self-reproducing inflationary universe diverges
in the future. When we make slices of the Universe by
hypersurfaces of constant time t, we are choosing one
particular way of sorting out this infinite volume. If one
makes the slicing in a different way, the results will be
different. This forces us to be very cautious when using
various probability distributions in quantum cosmology
[8]

Nevertheless, it is very tempting to consider various
cosmological problems using the probability distribution
Pz as a guide. In many cases one can get simple and un-
ambiguous results. In some other cases, especially when
one investigates speculative possibilities related to the
baby Universe theory and the choice between different
coupling constants, one should not take the correspond-
ing results too seriously. This being said, it would be
most interesting to see whether this approach is capable,
at least in principle, to give us any new insight into such
profound problems as the cosmological constant problem.

The first attempts to study this question were not very
enlightening. The best result which one could obtain was
to reduce the interval of possible values of the vacuum
energy Vp &om —10 gcm & Vp & 10 gcm to
—10 gcm & Vo & 10 gcm s [ll). This was
achieved by justifying anthropic bounds in the context of
inflationary cosmology. Note that the constraint —10
gem & Vp follows from the fact that the Universe with
the negative vacuum energy Vp ( —10 gem would

collapse within 10 yr. This constraint does not dif-
fer very much from the observational constraints on the
vacuum energy ~VO~ & 10 gcm . The anthropic con-
straint Vp ( 10 gcm on the positive cosmological
constant follows from the theory of galaxy formation [21].
Unfortunately, it allows the vacuum energy to be about
2 orders of magnitude greater than 10 gem . This
disagreement remains the most dificult part of the cos-
mological constant problem. We will argue in this paper
that under certain conditions this part of the problem
can be resolved.

Another problem to be discussed is related to the re-
cent argument of Refs. [22, 23] that in the context of
inflationary quantum cosmology it is most probable that
the density perturbations are produced by topological de-
fects. This argument is related to the baby Universe the-
ory, the possibility to choose between the theories with
different coupling constants, and the probability distri-
bution Pz. We will try to formulate this argument in
a more exact form and examine its validity, taking into
account the results of Ref. [6].

In order to compare theories with diferent coupling
constants (and different values of the cosmological con-
stant) in the context of quantum cosmology, one should
know first of all how inflation can be realized in each
of them. In particular, self-reproduction of the universe
and stationarity of the probability distribution PJ are not
generic properties of all inflationary models. There are
some inflationary models where self-reproduction does
not occur, while there are other in which it does, but
the probability distribution P„is not stationary: it con-
stitutes what we called a runaway solution [8, 9]. In the
main part of this paper we will consider a large class of
inflationary models where each of these regimes can be
realized.

In Sec. II we will discuss the main features of the
chaotic inflation scenario in the simple theory of a scalar
field P minimally coupled to gravity, with the effective
potential 4P~ [24]. In this discussion we will follow refs.
[5, 6]. In Sec. III we will consider the same model, but
with the scalar field P nonminimally coupled to gravity
due to the term z(P R in the Lagrangian. Models of this
type have been extensively studied by many authors, see,
e.g. , [25, 26]. However, the theory of self-reproduction of
the universe and the behavior of the distribution P„in
these models have not been addressed so far. Meanwhile,
as we will see, this behavior can be quite nontrivial. De-
pending on the value of the coupling constant (, each
of the regimes mentioned in the previous paragraph can
be realized in these models. In Sec. IV we will generalize
this model by including one-loop quantum gravity correc-
tions (conformal anomaly). The model we will consider is
a hybrid of the standard chaotic inflation scenario (with
an arbitrary coupling z($2B) and the Starobinsky model
[27]. We will show, in particular, that one of the in6a-
tionary branches in Starobinsky model, which had been
considered unphysical for the reason that the Hubble con-
stant on this branch was growing rather than decreasing,
may have a very interesting interpretation when taking
into account the self-reproduction of the inflationary uni-
verse.
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The results obtained in Secs. II—Iv are of some in-
terest independently of the speculative discussion con-
tained in the last part of our paper, Sec. V, where we
compare various theories in the context of quantum cos-
mology. To avoid possible misunderstandings we should
emphasize &om the very beginning that in this paper the
discussion is carried out in the context of the baby Uni-
verse theory. We will compare difFerent quantum states
of the Universe (we will call them different "Universes" ),
which are described by theories with difFerent coupling
constants. This approach difFers considerably from the
more conventional approach developed in [6, 8], where
difFerent exponentially large causally disconnected parts
of the same Universe, which may have difFerent laws of
low-energy physics inside each of them, have been com-
pared to each other. The reason for this difFerence is
that the total volume of difFerent Universes may grow
at a difFerent rate, depending on the coupling constants,
vacuum energy, etc. On the other hand, as it was shown
in [6, 8], the total volume of all parts of the Universe de-
scribed by a stationary probability distribution P„grows
at the same rate. Therefore when comparing difFerent
Universes the main efFect may arise &om comparing the
rates of expansion for various values of coupling con-
stants. Meanwhile, when considering difFerent parts of
the same Universe, the relative &action of the volume
of a stationary self-reproducing Universe in a given state
(i.e. , in a state with given fields, given efFective coupling
constants, etc.) is controlled by the normalized proba-
bility distribution P„.Comparing difFerent parts of the
same Universe has a much simpler interpretation than
the speculative possibility of comparing difFerent quan-
tum states of the Universe. However, we believe that
some "theoretical experiments" with the baby Universe
theory may be useful, since they allow us to look at many
problems of quantum cosmology &om a new perspective.
In particular, in Sec. V we will consider infiation in the
Starobinsky model. We will argue that if the cosmologi-
cal constant in this model is non-negative, then it is most
probably zero.

II. ELEMENTARY CHAOTIC
INFLATION MODEL

In this section we will describe the classical evolution of
the inflaton field with the efFective potential V(P) =

4 (b .
The equations of motion during inflation in this theory
can be written as

vy)')" (2
(3M~2) ( 3) M~'

v'(y)
3H &6~&

According to these equations, the infIationary regime
(~H~ ( H ) occurs at P & P„where P, = M~/~sr How-.
ever, these equations are valid only at densities smaller
than the Planck density, V(P) ( M&, or (t

(A/4) ~ M~. We will call P, the end of inflation bound-
ary and Py the Planck boundary.

where V(P, t) is the total volume of all domains contain-
ing scalar field (b. In the terminology of Ref. [6], this is
the non-normalized probability distribution P„.

It is possible to find solutions to this equation subject
to the appropriate boundary conditions at the Planck
boundary and the end of inflation. Such solutions are
generically of the form

V(~ t) = & (~) (4)

where a is some constant and P~ is a time-independent
normalized probability distribution to find a field P in
a unit physical volume. In case that the dependence of
V((t, t) on P and t can be factorized as in Eq. (4) we
will speak about stationary solutions for V(P, t) and for
P„(P).Dependence of these solutions on the conditions
at the boundary where infiation ends is exponentially
weak [6]. However, in general, solutions strongly depend
on the boundary conditions at large (b. The simplest
boundary condition one can impose is V(P~) = 0. One
can argue that inflation ceases to exist at V((t) & M&
because of large quantum fluctuations [6]. An advanced
version of this argument was recently given in [22]; we will
consider it in Sec. IV. One can show that the stationary
solution far V with the boundary condition V(P „)= 0
(whatever is the value of the (t „&)P, ) is given by [6]

V(P t) d(A)H „(A)tg (P)

The coefficient d(A) in the chaotic inflation scenario can
be interpreted as a fractal dimension of infIationary do-

The infiaton Geld fIuctuates in de Sitter space during
a time interval At = H with an amplitude approxi-
mately equal to the Gibbons-Hawking temperature:

IIbP= —.
27r

Quantum fluctuations then act on the coarse-grained
background field as stochastic forces, producing a Brow-
nian motion on the value of the infiaton Geld. In av-
erage, the value of the scalar Geld at any given point
will follow the classical evolution toward the end of infla-
tion. However, those rare domains in which the infiaton
field grows due to quantum ftuctuations will infiate more,
since the rate of expansion H is proportional to (b . Be-
yond a certain value of the inflaton field P = P„for
which the amplitude of quantum fIuctuations becomes
larger than its change due to classical motion in the
same time interval, bP & AP = PH i, we enter the
regime of self-reproduction of the Universe. In the case
of a simple quartic potential, such a value is given by
4). = (2~&/3)-'~'M~.

The Brownian motion of the infiaton during the self-
reproduction of the Universe can be described in the
physical frame, which takes into account the growth of
the proper volume of the infIationary domain, with an
ordinary difFusion equation [19,6]:

a)V c) H'~' 8» V'H'~'V + V I+3HV,
gt BP E 8m 2 c)~ 3H )
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mains at the upper boundary P = P „[6].(For a dis-
cussion of the fractal dimension in the context of the new
inflationary scenario see [28].)

If the upper boundary P „coincides with the Planck
boundary P~ defined by the condition V(gi ) = Mg„
then the distribution P grows as

(3—f(A))~~~ M~t P (y)

where f (A) = 3 —d(A). Another useful form of Eq. (6) is

y( t) [3 f(A—)]~~M~t P ( )

where V(p, t) is the total volume of all domains with a
given density and Pz(p) is the probability distribution
to find a domain of a unit volume containing matter
with density p. If one divides these equations by the P-

independent factor e( (" )~& ~ one obtains the nor-
malized stationary probability distribution P„discussed
in [6]. In this paper, however, we will often talk about
the unnormalized distributions (5), since they show the
growth of the total volume of all domains filled with a
given field P [29].

It is important to study how the fractal dimension d(A)
depends on the coupling constant A [6]:

A 1 10 10 10 10 10 10
d 0.9719 1.526 1.915 2.213 2.438 2.604 2.724

As we see, d(A) grows with decreasing A toward the usual
space dimension 3. This means that f (A) decreases with
A; it can be shown that f (A) vanishes in the limit A -+ 0.

Note that the distributions V(P, t) and P„depend on
the choice of time parametrization. For example, instead
of usual time t measured by observers by their clock,
one can use "time" r = ln

( '0)
——f H(P(x, t), t) dt.

Here a (x, t) is a local value of the scale factor in the
inflationary universe. Obviously, the time T measures the
logarithm of the local expansion of the Universe. Solution
of the diffusion equation for V(P, 7) is also stationary, but
it looks slightly diff'erent [6]:

(3—1.1~%)~ P (y)

growth of each particular domain, accompanied by a de-
crease of density inside it, and the growth of the total
volume of all domains containing matter with a given
(constant) density. In the standard big bang theory the
second possibility did not exist, since the energy density
was assumed to be the same in all parts of the Universe
("cosmological principle" ), and it was not constant in
time.

The reason why there is a universal expansion rate
(5) can be understood as follows. Because of the self-
reproduction of the Universe there always exist many
domains with P P „,and their combined volume
grows almost as fast as e ~ " . Then the field P in-
side some of these domains decreases. The total volume
of domains containing some small field P grows not only
due to expansion e ", but mainly due to the un-
ceasing process of expansion of domains with large P and
their subsequent rolling (or difFusion) toward small P.
The above-mentioned universality of the expansion law
will play a crucial role in our discussion of quantum cos-
mology in Secs. V and VI. In what follows we will turn
to other models, where this law may or may not hold.

III. NONMINIMAL COUPLING TO GRAVITY

In this section we will describe the classical evolution of
the inflaton Geld with a generic chaotic potential, coupled
to the curvature scalar with a small nonminimal coupling

M2
d4~ g

P Q 2Q g 2

16m 2 2

M2
(1 —6() 3Hrtpp = 4V(P) —PV'(P) — R .

(10)

In this theory the effective Planck mass takes the form

Mi2(P) = M& —8m'(P . We can write the equations of
motion for the homogeneous field P during inflation, in
the slow roll-over approximation, as

32vr V(P)R =12H

which corresponds to a fractal dimension 3 —l.li/A.
In what follows it will be important for us, that even
though the distributions V(P, t) and V(P, r) differ from
each other, both share the same property: they grow at
large t (at large r) with a rate which increases as A goes
to zero.

One should emphasize [6] that the factor e t

e"(") "(") in (5) [as well as the factor e( ' ~) in

(8)] gives the rate of growth of the combined volume of
all domains with a given field P (or of all domains con-
taining matter with a given density) not only at very large

P, where quantum fluctuations are large, but at small P
as well, and even after inflation [30]. This result may
seem absolutely unexpected, since the volume of each
particular inflationary domain grows like e &&~, and af-
ter inflation the law of expansion becomes completely
different. One should distinguish, however, between the

We will consider two different cases: ( & 0 and ( & 0.
For simplicity we will assume that ~(~ && 1/6.

1. Case ( & 0. In this case there is a clear bound on
the inflaton field,

8vr(
'

27r A$4

M~2 —8~($3 '
A((4M'

Mz —8n (&P

(12)

in order that gravity be attractive, i.e. , M&(P) = M&—
8n(r/i & 0. We will consider a typical potential of chaotic
inflation, V(P) = AP /4. The equations of motion (10)
are then
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The Planck boundary is given by

2MP
~A+ 16~(

the inflaton field, MP(p) will become dominated by its
evolution.

Let us consider again V(ttt) = A/4/4, and later com-
ment on alternatives. The equations of motion are

M2P ( p2 ( p2
7r

(14)

Note that tin & ti„in particular, tin = tt (i —
ee "t) for

~A « 16~(.
Therefore, if ~A & 16vr( && 1, the inflaton field will

stop just before P, . On the other hand, the range of
inflation corresponds to ~H] & H, which gives

2~A/4

Mp2+8vr~(~$2
'

Ay4M'
MP2 + 8vr~(]$2

The Planck boundary is given by

y (wA —167r~(]) & 2M

(16)

(17)

where the upper boundary of the infIationary regime is
given by P, = P, (1 —2(). Therefore, in order that in-
flation ends before reaching Planck boundary (13), we

require ~A & 64vr( . The classical motion of the coarse-
grained inflaton field is affected by its quantum fluctua-
tions 8P =

2
An inflationary domain of the universe will enter the

self-reproduction regime when the amplitude of quan-
tum fluctuations of the inflaton field in that domain
b'hatt is larger than the corresponding classical motion
b, P = PH i in the interval At = H i This h. appens
for P ) P„where

A
4s 4c I 768~2(3

Hy (2~A&" y3

(3) (18)

There are runaway solutions in this case, since the
quantum diffusion of the inflaton has no boundary for
large P, see Eq. (17), and the probability distribution
will move toward the maximum expansion rate. For large
P, this becomes

Therefore, if ~A & 16'~(], then the inflaton will never
reach Planck density. On the other hand, the end of
inflation for small ](~t is given by p, = MP/~vr.

The amplitude of quantum fluctuations of the inflaton
field at sxnall ](~ is given by (2). Self-reproduction in this
case will occur, for small ](], at

Domains with P ) P, will inflate and produce more do-
mains with even higher values of the inflaton, until they
reach the upper boundary of inflation P;.

To investigate various regimes which are possible in
the model (9) with ( ) 0 one should compare P„P;,P„
and Pp for various relations between A and (. One can
show that inflation does not exist at all for ( ) 1/6. In
the case ( « 1/6, which we are considering in this paper,
inflation occurs at p ) p, = MP/~~. There exist three
different regimes.

(1) ~A & 64vr( . In this case p, & ttt; & p, & r/ip &
Therefore there is inflation but no self-reproduction

because P; & P, .
(2) 64vr( ( v A ( 167r( In this case. p, & p, & pP &

P; & P, . There is inflation and self-reproduction.
(3) ~A ) 16vr(. In this regime P, ) P, and we re-

cover the usual results of chaotic inHation with a quartic
potential.

To be more accurate, when i/A grows near 64vr(, it
has three different critical values when P;, P„and Pp
change their mutual positions from p; & p, & pP to( P;. However, these critical values do not
differ much from 64~( .

In this theory there are no runaway solutions since
the quantum diffusion of the inflaton stops just before
the critical value (11). For arbitrary potentials we may
or may not have inflation, but there will never be run-
away solutions, even if the parameters allow for a Planck
boundary, because of the bound (11).

2. Case ( ( 0. The Planck mass in this case is given
by MP(p) = MP + 8m](]gP. Thus, it is always positive,
and there is no bound on P. In fact, for large values of

while the value of Planck mass also grows with P, as
MP = (8~(())ii'2 P.

Runaway solutions are probability distributions satis-
fying a difFusion equation similar to (3) that move forever
toward large values of the field P [8, 9]. The way it moves
will depend on the type of potential. For A/4 it is an
explosive behavior, as we will see. The probability dis-
tribution gives a statistical description of the quantum
diffusion process toward large P, but it proves useful to
analyze the particular behavior of those relatively rare
domains in which the field P increases in every quan-
tum jump of amplitude (2). We can compute the speed
at which those domains move toward large values of the
field P from

hP H2 A

24~~(~
(20)

where H is given by (19). We find an explosive solution

( A

We see that those Grst domains of the diffusion process
reach infinity in Gnite time. Note that the total volume
of such domains at that time will be Gnite, and then
they will start growing at an infinitely large rate. This
behavior is explosive, it corresponds to probability distri-
butions that are nonstationary and singular at P ~ oo.



434 JUAN GARCIA-BELLIDO AND ANDREI LINDE

1/2

H =i
q6n/(/ )

(22)

It can easily be seen that there is infiation (~H~ ( H )
only for

It should be noted that the existence of runaway solu-
tions or even inBation is not generic. In fact, for arbitrary
potentials of the type V(P) = 2" gP", n ) 2, the equa-
tions of motion (10) become, for large P, 8vr~(~P )) M&,

21&IH& (~ —2),

&'4 = —V'(4)

M
)

= g .V(4) + &,4~-4 —2g~-(~&)

Mi ( 1 (i) 1 (3)H„„+ H„„~
87t q6M' Hp

where

(26)

1
(n —1)(n —2) ( (23)

~ lH„„=2(V'„V' —g„„V') R+ 2RR„„
1 2

gpvR )

4n /6n)(j (n —2) (
~

( 8vri/2nI(l
qM&)

(24)

where the last inequality comes from the Planck bound-
ary in the large inBaton limit. It is clear that in order to
have self-reproduction we need

4
(n —2) (25)

In conclusion, as we increase ~(~, first self-reproduction
disappears, and then even inBation itself is no longer
sustained for a given n. Therefore, runaway solutions
are very special and appear only for theories satisfying
both (23) and (25).

In particular, for an exponential potential in the limit of
very large P one effectively has n = oo. Thus the nonmin-
imally coupled term prevents inBation in the theory with
an exponential potential at very large P. Rirthermore,
one can also compute the self-reproduction regime for an
arbitrary chaotic potential like above. For those values of
n for which there is inflation, the condition PH ( bP
reads

~ ~H„„R„R,„——,RR„„——,g„„R
1 2+ 4 gpss/R o

(27)

M' ( H' 8~V(y) l
6 ( Hs3 3Mp~H3 )

(28)

The parameters Hp and M in the original version of
the Starobinsky model were related to the conformal
anoxnaly, but in a later version the term 6M, was sim-
ply added to the Lagrangian by hand [31,32]. The value
of Ho is of the same order as M~, but it can be some-
what smaller if there are many matter fields (of spin 0,
1/2, and 1) contributing to the conformal anomaly. In
fact, one loop gravitational corrections in our theory are
somewhat more complicated, especially because the the-
ory of the infiaton field P is not conformally invariant.
Nevertheless when the number of other Gelds contribut-
ing to conformal anomaly is suKciently large, i.e., when
the masses M and Hp are suKciently small, our approx-
imation may be reasonable.

During inBation one can write the equations of motion
for the homogeneous fields P and H, in the slow rolling
approximation, as

IV. CHAOTIC INFLATION
AND CONFORMAL ANOMALY

V'(&)
3H (29)

A. Starobinsky model with in6aton Beld

In this section we will describe inBation in the com-
bined model, including scalar Gelds and the R terms,
which may appear in the theory because of the one-loop
quantum gravity eKects. Note however, that these terms
by themselves can lead to the existence of inBationary
regime, as was first realized by Starobinsky [27]. There-
fore in this subsection we will remember some basic fea-
tures of the Starobinsky xnodel. After that we will add a
nonminimal coupling to the inQaton field.

The equations of motion associated with the Starobin-
sky model in the presence of an inBaton Geld with poten-
tial V(P) can be written as

Let us neglect the scalar Geld Grst, i.e. , consider the orig-
inal Starobinsky model Grst. All possible inBationary
and noninBationary regimes in this model have been de-
scribed in a particularly detailed way in [33]. However, as
we will see, with an account taken of the self-reproduction
of the inBationary universe we can get some additional
(and rather unexpected) information about this model.

First of all, let us remember that there exist three
diferent inBationary regimes in this model, and only
two of them are usually considered in the literature.
Namely, the first stage of inQation occurs for Hp && M
in the regime with ~H~ ( M2/6 (( He. In the limiting
case H = 0 inBation occurs with the Hubble constant
H = Hp. Just as in the new inQation model, this regime
is unstable, and inBati. on enters the second regime with
H asymptotically approaching —M3/6. During this pro-
cess the Hubble constant decreases, until it reaches the



STATIONARITY OF INFLATION AND PREDICTIONS OF. . . 435

value H M, which corresponds to the end of inflation.
However, there also exists another, rather unusual

inflationary branch, namely, Eq. (28) at V (&j&) = 0,
H && Hp, reads

M
6Hp2

Obviously this is an inflationary regime with ~H] &( H
for M (& 6Hp. In this regime the Hubble constant in-
definitely grows, and approaches infinitely large values
within a finite time At ~ 6Hp/M . For this and some
other reasons this branch was believed to be unphysical
and not very interesting [33, 22]. Neglecting the possi-
bility of inflation with positive H can lead to important
constraints on the rate of inflation in the Starobinsky
model.

Indeed, Eq. (28) in the limit H -+ 0 has two possible
solutions [34]:

tion of classical space-time ceases to exist, and the usual
derivation of the stochastic equations for P„becomes in-
valid [6].

In order to study the process of the universe self-
reproduction in the Starobinsky model, we should Bnd
the amplitude of quantum fluctuations of the scalar cur-
vature A 12H, which are related in the following way
to the fluctuations of the canonically normalized scalaron
field b(p:

M2
hR = (48vrC)'i bp,

where C = 1+R/3M —R/6Hp [34]. Both the scalaron
hp and the inflaton fluctuations bP satisfy approximate
massless equations in de Sitter space, whose solution is
well known, and whose amplitude is approximately given
by Gibbons-Hawking temperature, H/2'. (Scalaron has
a tachyonic mass squared —M2, where M « H [34].)
Using (31) we find Ci~ 2H/M, and therefore

Hp 32vr V(P)
2 ( 3Hp2M~2 )

H
by=bP = —,

2vr
'

(33)
In the limit of small V(P), these two branches obviously
correspond. to the Starobinsky inflation with H = Hp,
and to the scalar field driven inflation with H
One can easily see, that for H ( 0 the Hubble constant
H on the upper branch becomes smaller than Hp. Thus,
one can consider Hp as an upper bound on the rate of
inflation in a rather general class of models. Typically
this bound is very close to the Planck bound H „M~,
but in certain cases Hp can be somewhat smaller than
M& [22]. This is a very interesting observation, since it
provides a natural upper boundary which is necessary for
finding the probability distribution Pz [6]. For Hp « M
the upper boundary for inflation becomes even lower. In
this case there is no inflation close to the upper branch
of Eq. (31); and the lower branch cannot go higher than

H „Hp/~2, which corresponds to V(P)—
However, if inflation near the upper branch of (31) is

possible, then one cannot always neglect the possibility
of inflation with H ) 0. Indeed, in the usual chaotic
inflation models classical motion of the scalar field shifts
it to smaller values of V(P). However, quantum jumps
of the field P in the regime of self-reproduction can move
it against the classical Bow, toward the highest possi-
ble values of V(P). Similarly, the classical motion shifts
H toward the singularity at the inflationary trajectory
with H ) 0. However, if this trajectory allows self-
reproduction, the Hubble constant H may drift toward
its very large values, and then in some of inflationary do-
mains it may jump back toward H ( Hp. Since the rate
of expansion of the Universe at the branch with H ) Hp
is very large, the volume of the corresponding parts of
the Universe grows at a very high rate, and the existence
of the "pathological" inflationary branch with H ) Hp
will give a dominant contribution to the overall rate of
the Universe expansion e" " . In this case H~ „willbe
greater than Hp. One can still argue that H „should
not be much greater than M~, since in this case the no-

Let us now consider inflation at H Hp, with V(P)
0. Self-reproduction will occur in this case if the classi-
cal shift of the Hubble constant within the time H is
smaller than the amplitude of fluctuations of H. This
condition implies

~ ~ ~

& bH. Together with Eqs. (28)
and (33), this condition gives

Hp21— Hp2

MMg (34)

Some care should be taken when applying this criterion
at H Hp. it should be satisfied for all H within the
interval bH from Hp. This gives the following criterion of
the self-reproduction at H Hp, which essentially coin-
cides with the criterion for inflation there: M & ~3Hp.
A similar criterion can be obtained from the condition
that the fractal dimension for inflation at H = Hp is
positive: M ( 3Hp, see Eq. (40) in the next subsection.

However, this condition is not strong enough to ensure
self-reproduction for ~H —Hp~ ) Hp. The corresponding
condition follows from (34). At small H this condition

Hreads M & M, at large H this condition is M &P
ao
Mp

Therefore one should consider several diferent regimes
in our model.

(1) M ) 3Hp. There is no inflation in the Starobinsky
model, but inflation may exist due to the scalar field P,
for V(P) (

(2) ' —& M & 3Hp. There is inflation and self-

reproduction at H Hp. However, self-reproduction
occurs only in a narrow band Hp + AH (34), with
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3Hp3
)

27r m2

3Hp3

2~M2

(36)

~H-~ ":
2~sr MMp

This means, in particular, that only a small part of the
branch with H ) Hp, H ) 0 is of any interest for us; the
points which go beyond Hp+LH never return, and move
toward a singularity. Therefore in this case the efI'ective
maximal value of the Hubble constant will be of the order
of Ho + AH (35). After inflation at the upper branch,
the Hubble constant becomes smaller, and inflation con-
tinues at the lower branch, which will be responsible for
the density perturbations in the observable part of the
Universe.

H
(3) M & M' —.In this case self-reproduction occurs

at the whole branch with H & Hp, H & 0, at least until
inflationary domains enter the area where the curvature
becomes higher than the Planck one. In this case there is
no upper bound for the Hubble constant near H = Hp,
the upper bound for H is expected to be of the same
order as M~.

In what follows we will consider the stationary proba-
bility distribution in case (2), assuming that Ho (& Mp,
H (( M & 3Hp. In this case self-reproduction of

the Universe occurs in a very narrow region (AH (& Hp)
near Ho, see Eq. (35). The results of our investigation
will be useful for us when we will discuss the cosmological
constant problem.

The corresponding diffusion equation will be written in
terms of the canonically normalized fields P and y, where

p is the scalaron field introduced in [34], see Eq. (32).
According to [34], this field satisfies the same equation as
a tachyon Beld with the mass squared —M in de Sitter
background. We will assume also that V(P)
Assuming H Hp, one can show that self-reproduction
of the Universe occurs in the intervals

V(P, t) exp(dH „t)exp
~

—2vr a
Ho)

(38)

In our case, the maximum rate of inflation which pro-
vides the largest relative volume is given by H
Hp + AH Hp. In the limit of the quantum diffusion
dominating classical drift, Hp )) mM~, we Bnd

m

~vrMp
' (39)

while the fractal dimension is given by

m
3Ho2 2+vrMp

(40)

The stationary solution (38) is a Gaussian centered at
P = 0. It does not depend on p in the domain of self-
reproduction (36).

B. Starobinsky model with
nonminimally coupled scalar field

In this section we will briefly describe the classical evo-
lution of the inflaton Beld with a generic chaotic poten-
tial, coupled to the curvature scalar with a small coupling
( & 0, ~(~ &( 1/6, in the context of the Starobinsky model.
In this case our equations of motion are somewhat mod-
ified:

The diffusion equation for V(P, y, t) for H Hrj can be
written in the form

BV Ho B2V M2 B
Bt 8~2 &@2 3Ho By

pV

( 2~y'm')
+3Ho i

1 — iV
Ho)

Ho B V m2 B' By
+ H, By(~ )

There is a solution in the limit of large time t:

= —V'(Q) + ~(~QR,

(i)H
H'(P)

~

R„„—g„„R[ = (V—'„V'„—g„„V') (((P + B„$BP — g„(BQ)—
Mp2 (P) /' 1

M (y)

(41)

Here ~ lH„and ~ lH„„aregiven by Eq. (27) and

Mp($) = Mp2+ 8m ~([P2,

M(y) =
Mg

Mp(P)
M.

(42)

During inflation (~H~ & H ), the equation of motion for
H can be written as

8vr Vg) H
3Mp2 (p) Ho (p)

6H2H
M2($)

In the limit of H ~ 0, the equation of motion for the
scalar Beld reads
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On the other hand, Eq. (43) in the limit H ~ 0 has two
possible solutions:

H() (Q), t 32vr V(P)
2

~
3H02(p)M~2(p)

~

In the limit of small P and V(P), the upper branch cor-
responds to the Starobinsky inflation with H = HD. In-
fiation at large P is strongly model dependent. The main
qualitative difFerence with the regime studied in the pre-
vious subsection is the following. If V(P) grows at large
P more slowly than 3H02(P)M&~(P)/32m, then there may
be no upper bound for the Hubble constant H(P).

For example, there is no upper bound for H(P) in the
theory V(P) = 4P for A ( 24vr( H02/M&~. In this case,
the value of the inflaton Geld can increase indefinitely in
the regime of self-reproduction,

H2 HP
H2 2K

(46)

H = H. (4) = ' (8~[&1)"&Mg
(47)

which increases indefinitely with P. In this case, self-
reproduction occurs for all values of P if 8vr~(~ ( H0/M&,
see Eq. (46). The rate of inflation at the lower branch
also grows without limit:

12[(f
(48)

This regime coincides with the one that we have found
at the end of Sec. III, see Eq. (19). The reason is very
simple: If the effective Planck mass grows very rapidly
with the growth of P, then inflation never approaches
the Planck boundary, and the effects associated with the
conformal anomaly always remain small.

V. INFLATION, QUANTUM COSMOLOGY,
AND THE COSMOLOGICAL

CONSTANT PROBLEM

and we find what we have called runaway solutions, that
is, non stationary probability distributions that move for-
ever toward large values of the fields [8, 9]. The rate of
in8ation (45) in the limit 8m[(~P )) M& at the upper
branch becomes

verse theory. We do not really know which constants can
be considered adjustable, and which ones are "true con-
stants"; in what follows we will consider several different
possibilities.

As a working hypothesis we will assume that the most
probable quantum state of the Universe is the state where
the total number of observers of our type can be greater.
This condition can be rather ambiguous [8], but we can
use it as a starting point of our investigation of inflation-
ary quantum cosmology.

The main idea can be illustrated by considering the
simplest model of the scalar field P minimally coupled to
gravity (( = 0) with the effective potential V(P) =

4 P .
As we already mentioned, the total volume of difFerent
parts of the Universe with a given value of the scalar Geld

P (or with a given density) in this model grows in time as
V(P, t) e~ ~~"ll " Pz(P), where f (A) ~ 0 decreases
in the limit A ~ 0 [6]. It is clear then that the greatest
rate of expansion can be reached in the limit A -+ 0 [6,
22, 23].

This is a rather general conclusion. The overall rate
of expansion of the Universe grows when the efFective
potential becomes more and more flat. A similar result
was known in chaotic inflation even without taking into
account the Universe self-reproduction: The total degree
of infiation there was proportional to exp(c/~A), where
c 1 [1]. Thus, the size the Universe after infiation be-
comes exponentially large for small A. Moreover, it was
known that if one has several scalar fields P; with cou-
pling constants A;, the last stages of inflation are typically
driven by the field P; with the smallest A;. This helped,
to some extent, to understand why coupling constants
of the inflaton Geld are so small: They may be large,
but the structure of the part of the observable part of
the Universe was formed at the last stage of inflation,
which was driven by the Geld with the smallest coupling
constant A; [1]. However, the results obtained in [6] are
much stronger, and, being interpreted in a certain way,
they can be even dangerous.

Indeed, let us take the baby Universe theory seriously
and assume that we can actually compare difFerent uni-
verses with different coupling constants. The total num-
ber of observers of our type which may appear for a given
set of coupling constants A, at a given time t is presum-
ably given by the symbolic equation

~(&,, &)- J ~PD&P&--t(PD &') J'Rf. (P, &')

t
x V(p, t', p0, A;) dt' .

0

A. Quantum cosmology predictions
for the minimal model

Now we will turn to the discussion of predictions of
quantum cosmology, assuming that one can live in difFer-
ent quantum states of the Universe with di8'erent cou-
pling constants. One should emphasize that this as-
sumption in its most radical form (all values of coupling
constants are possible) is extremely speculative, being
based on some particular interpretation of the baby Uni-

Here P„,t(p, A;) is the probability of creation of an (in-
flationary) universe with initial density p0 V($0) in
the theory with coupling constants A;, Pi,g, (p, A, ) is the
probability for life of our type to appear in a unit vol-
ume of such a universe at density p. This equation can
be written more accurately, but the main point we are
going to make will not depend on many details.

Note that in the standard big bang cosmology there
would be no need in integrating over time in addition
to integrating over density p, since p would be a def-
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inite function of time t all over the Universe. In our
case domains of space with given p appear at all sufB-
ciently large values of time t. In particular, suppose that
the probability distribution V(p, t, po, A, ) is stationary,
V(p, t, po, A;) e i"*l P„(p),as in Eqs. (4) and (7) [29].
It is important that this solution does not depend on the
initial condition po. Therefore one can take an integral
over po, absorbing all information about the probability
distribution P„e~q(po,A;) into some function P„,~&(A;).
This yields

a(A, , t) -.-i"'l' P...., (A, ) ~-'(A, )

x dp Pi;r, (p, A;) P„(p) (50)

Typically P„,q(A;) is a smooth function of the coupling
constants A, For example, one can take for the probabil-
ity of quantum creation either the square of the tunneling

4
wave function exp —

8 16, 17, or the square of the
3MHartle-Hawking wave function exp 8

~ 14 which, in

our opinion, does not describe quantum creation of the
Universe [1]). Independently of this choice, after the in-
tegration over po one obtains an irrelevant normalization
constant P„q,which does not depend on A, The func-
tions n(A;) and Ph&, (p, A;) entering Eq. (50) are also not
expected to exhibit any singular behavior with respect to

The only function which strongly depends on A; in
this equation is e ~"'~

For example, if the upper boundary for inflation in the
theory 4P coincides with V(P) = M&, one has e

e~ "j ~" e ~"l~~~M~ It is clear from Fq.
(50) that most of the observers of our type should live
at an indefinitely large time interval kom the big bang,
i.e. , at t ~ oo [6]. (The conditions for the appearance of
life in each particular domain of the Universe at a given
density p does not depend on time in the limit t ~ oo,
whereas the number of such domains grows as e i"'l'. )
But in this limit the relative number of observers livin'g in
the Universes with a nonvanishing A becomes suppressed

by a factor e i"l~~ ~ as compared with the number
of observers living in the Universes with A ~ 0.

Thus the factor e i"l~& ~ always wins over all
anthropic considerations [8]. (A similar argument holds
in more traditional versions of the baby Universe the-
ory [35].) Meanwhile, the probability of existence of life
of our type becomes strongly suppressed in a Universe
with small A. For example, the typical amplitude of
density perturbations produced during inflation is pro-
portional to 10 ~A. Therefore, one could argue that in
the limit A ~ 0 there will be no galaxies, and no peo-
ple to live there. The conclusion that quantum cosmol-
ogy picks up fiat potentials was interpreted in [22, 23] as
suggesting that inflation does not produce density per-
turbations (these perturbations decrease as 10 v A in the
limit A ~ 0), and one should use topological defects in
order to account for galaxy formation. However, in the
limit of absolutely flat potentials there will be neither in-

flationary density perturbations nor topological defects.
Typically, superheavy topological defects are produced
after inflation only if the potential V(P) is very curved;
in fact, it is very diKcult to produce such defects in the
context of inflationary cosmology. In certain cases these
difBculties can be somewhat weakened, and strings can
be produced even at low energy density in some theories
with very flat potentials [36]—[38]. On the other hand,
in the same class of theories it is also possible to obtain

5 x 10 5 [the result following from the Cosmic Back-
P

ground Explorer (COBE) data in the normalization of —~

used in [1]] even for extremely fiat potentials at a very
small energy density V(P) [37,38]. Thus, the use of topo-
logical defects produced after inflation may not have any
obvious advantages over the standard inflationary mech-
anism of generation of density perturbations. The only
constraint on the applicability of each of these mecha-
nisms is the reheating constraint: If the energy density
at the end of inflation is too low, then particle produc-
tion will be exponentially suppressed, and there will be
no observers to enjoy life in such a Universe.

This is a typical anthropic constraint and, as we have
already mentioned, it is not strong enough to win over

the factor e i"lv & ~ '. For example, the expression
102~A is only statistically correct, which means

that in the eternally self-reproducing inflationary uni-
verse there will always appear exceptional domains where

P
5x10 even for A && 10 . Such parts of the Uni-

verse may be extremely rare, but eventually (because of
the factor e ~f"l~& ~

) their total volume will become
much greater that the volume of more regular domains
with A 10 ~ and —~ 10 ~A. The same arguments

P
may apply to the possibility of large fluctuations with
an unusually high baryon density. This suggests that ac-
cording to our scenario most of the observers should live
in those parts of the Universe where conditions for exis-
tence of life appear as a result of an extremely improbable
fluctuation. The total number of observers living in such
domains should be large only because of the indefinitely
large time of existence and exponential growth of a self-
reproducing inflationary Universe. One could expect that
most observers of our type should live in terrible and ir-
regular conditions, perhaps on the verge of being extinct.
Many would argue that this conclusion contradicts obser-
vational data, even though some pessimists would agree
with this conclusion and use it as an advanced version of
the doomsday prediction.

Since this conclusion certainly looks unpleasant, let us
see whether we have real reasons to worry.

(1) There is a simple formal reason to have doubts
about the results of the approach developed above. If
the Universe enters the stage of eternal self-reproduction,
then after a suKciently large time there is no difference
between the Universes formed at two diferent moments.
That is why we introduced the integration over time t
in Eq. (49). However, we also introduced a cutoff in
this integral at some time t. The only reason of doing
so is that otherwise the integral diverges and we get in-
finitely large number of observers for any given A. This
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not well motivated introduction of the upper bound in
the integral in (49) is the main reason why the proba-
bility distribution P„doesdepend on the choice of time
parametrization [6, 8]. Therefore, one may argue that the
versions of the theory which allow self-reproduction of the
Universe and, consequently, an infinitely large number of
observers, are preferable as compared with the versions
without self-reproduction, where the number of observers
may be Gnite. However, if there are many branches of the
Universe which allow self-reproduction, their comparison
is ambiguous since it involves comparison of infinities, see
Introduction.

Unfortunately, this simple argument does not sound
entirely convincing in our case. Indeed, as we already
mentioned in Sec. II, even the choice of a radically differ-
ent time parametrization w, where time is measured not
by clocks but by rulers (w is the logarithm of the local
expansion of the Universe) does not change our conclu-
sion: The total volume of all inflationary domains with a
given P (or with a given p) grows at a much greater rate
in the limit A ~ 0. Nevertheless, it remains not quite
clear whether one has any physical reason to compare
diferent Universes at the same time t

(2) Our investigation was based on the assumption that
different universes with different values of the coupling
constant A may actually exist. Moreover, we assumed
that the coupling constant A may take all possible val-
ues, including zero. In the context of the baby Universe
theory these assumptions look reasonable, but the baby
Universe paradigm may be wrong, or it may have lim-
ited validity, being applicable to the vacuum energy of
the Universe (cosmological constant), but not to other
parameters. Also, the problem disappears if A can take
only a discrete number of values, not including zero.

(3) Our estimate gives us the total number of observers
of our type for different values of A. But is it correct to
say that we consider observers of our type if they belong
to the Universe with different coupling constants'? Shall
we perhaps compare sheep to sheep and wolves to wolves' ?

Does it make any sense to say that it was improbable for
the authors to be born in Spain and in Russia, because
they could have been born in China or India where the
total population is much larger?

(4) In our discussion we assumed that the number of
observers of our type is directly proportional to the vol-
ume of the Universe. But one cannot get any crop even
from a very large field without having seeds first. The
idea that life appears automatically once there is enough
space to be populated may be too primitive. More gener-
ally, in this paper we are making an attempt to describe
emergence of life solely in terms of physics. It is certainly
a most economical approach, but this approach may not
be correct, especially if consciousness has its own degrees
of freedom [1].

Unfortunately, we are not in a position to discuss these
issues in this paper. Quantum cosmology is developed by
trial and error, and we are not pretending to have final
answers to all these questions. Instead of that we will try
to develop our scheme somewhat further, in an attempt
to see whether or not the conclusions we have reached in
this section are general.

B. Quantum cosmology in
mare complicated models of in8ation

The model which we considered in the previous section
has only one dimensionless parameter, A. Meanwhile, in
the model (9) there appears another parameter, (. We
do not really know whether or not one is allowed to vary
each of these two parameters in the context of the baby
Universe theory. I.et us assume for a moment that the
parameter ( is fixed and positive, as in the first model
considered is Sec. III. We will also assume that ( (& 1/6,
since otherwise we do not have inflation in this model,
which makes the total volume small and finite. In the
theories with ( « 1/6 there are several difFerent possibil-
ities discussed in Sec. III. In particular, for i/A ( 64vr(
there is inflation but no self-reproduction. In this case
stationarity of P„is impossible, and the growth of volume
of inflationary domains is finite. Thus, it is unfavorable
[from the point of view of increasing the number of ob-
servers of our type JV(A, t)] to have ~A ( 64vr(2.

On the other hand, for ~A ) 167r( the number A'(A, t)
grows with the decrease of A, as we have shown in the
previous subsection. This pushes the coupling constant
A into the region

64vr(2 & VA & 167r(.

In other words, if the coupling constant ( is fixed, the
maximum of Al(A, t) appears not at A = 0, but soine-
where in the interval (51). This corresponds to density
perturbations in the interval 2 x 10 ( & —~ & 5 x 10s(.

P

Thus, instead of the problem of vanishing —~ we have the
usual problem of requiring the coupling constants to be
very small, in this case related to the coupling constant

On the other hand, if one can vary both A and (, the re-
sults appear to be quite different. In this case the greatest
number of observers will live in the universes with ( & 0,
~A & 16m~(~. Indeed, as follows from Eq. (21), there
exist some domains with a finite volume, in which the
scalar field P reaches infinitely large values within finite
time t =

&&
. After that time the rate of growth ofAgo

the total volume of the Universe containing indefinitely
large field P becomes infinite, for any value of A. It takes
some more tiine (because of quantum jumps and classical
rolling) before the rate of growth of volume of the Uni-
verse with small P (and p) also becomes infinite. It is im-
portant, however, that the rate of expansion of domains
containing a finite field P (or finite density p) becomes
infinitely large within some finite time. It hardly makes
any sense to compare the number of observers in differ-
ent Universes if this number is infinite in each Universe
even at a Rnite time t. This is a much stronger man-
ifestation of the same ambiguity which we encountered
before, when the integral in (49) became infinite in the
limit t —+ oo.

Our conclusions wil1. not change much if we add the
terms B to our model. As follows from Eq. (40), the
overall rate of expansion of the whole Universe grows
when the curvature of V(@) (i.e. , the mass m) decreases.
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On the other hand, if one can vary both A and ( in the
theory 4P, then for negative (, and A & 24m( Hp/M&
one obtains runaway solutions, and the rate of expansion
becomes infinitely large within a 6nite time.

Let us summarize our results. The theory —"P4 with
( = 0 is a particular version of the more general class
of models with arbitrary (. In fact, even if one starts
with the model with ( = 0 for P = 0 and R = 0, one
almost inevitably obtains an effective coupling constant

g 0, which depends logarithmically on P and R, as a
result of quantum corrections [39]. If one varies A for
a given ( ) 0, one does not obtain the dangerous re-
sult that JV(A, t) has a maxiinum at A = 0. Instead one
can find a maximum of JV(A, t) somewhere in the inter-
val 64vr( & v A & 16ir(. On the other hand, if one
can vary both A and (, then the only conditions which
one can get are ( & 0 and ~A & 16'~(~. Under these
conditions the total volume of the Universe (and the to-
tal number of observers which will occupy this volume
later) becomes in6nite within a finite time t, which makes
any further analysis ambiguous. Therefore at present we
do not think that one should worry too much about the
conclusion that quantum cosmology prefers vanishing ef-
fective potentials V(P), even though this issue deserves
further consideration.

In addition, we should emphasize again that all re-
sults obtained in this section have been derived under
the very speculative assumption that one can compare
different Universes at the same tiine. If one would com-
pare different exponentially large parts of the Universe
with diferent laws of low-energy physics, there would be
no difference in the rate of growth e ~ '~ of these parts
[6, 8], and our conclusions would be quite difFerent, see
Discussion.

C. Extended Starobinsky model
and the cosmological constant problem

Even though there are many potential problems as-
sociated with the approach developed in this paper, it
certainly allows us to look at the old problems of quan-
tum cosmology from a diferent perspective. Let us try
to apply our methods to the problem of the cosmological
constant.

The main lesson we have learned from our previous
investigation is that the total number of observers is al-
most entirely controlled by the factor e" " . If one
considers the usual in8ationary models where inflation
is driven by the scalar field P, then one can expect that
adding a vacuum energy Vp to the effective potential will
only increase dH . For example, if the upper boundary
for inflation is determined by the condition V(P) = M&,
then H „= 3 M~, independently of Vp. A similar
result is valid if there is no inBation in Starobinsky model
(if, e.g. , Hp (( M), and the upper bound for the scalar-
field-driven inflation is given by Hp/~2, independently
of Vp. Then the only factor which depends on Vp is the
fractal dimension d. One can easily understand, for ex-
ample, that with an increase of Vp the potential 2 P +Vp

near its upper bound becomes more 8at, which typically
increases d. We have verified this conjecture by chang-
ing Vp and finding d numerically. Thus one may guess
that quantum cosmology pushes the cosmological con-
stant A = M,

' toward its largest possible values. This
P

would be a very undesirable conclusion, especially since
the anthropic principle allows a positive vacuum energy
Vp to be as large as 10 g cm, which is 2 orders of
magnitude greater than the present observational con-
straints on Vp.

However, this conclusion is not general. Indeed, let us
consider Starobinsky model together with the scalar 6eld
with the efFective potential V(P) + Vp, where Vp is some
constant, and V(P), as before, vanishes in its minimum,
e.g. , V(P) = —P . We will assume that Hp « M~,
and M' — (( M & 3Hp. As we have shown in the
Sec. IV, the maximal rate of expansion H „Hp+
LH Hp is achieved at top of the Starobinsky branch,
for the smallest value of the efFective potential V(P) = 0,
and the self-reproduction of the Universe occurs in a very
narrow region near Hp, AH « Hp (35). However, in the
present case the analogue of Eq. (31) at small P yields

Hp 4A
1 6 1

2 ( 3Hp2)
(52)

where A = M, Vp is the cosmological constant. Thus,
P

adding the cosmological constant A ) 0 diminishes the
maximal value of the Hubble constant H. In the limit
A &( Hp one obtains

m

3H,' 9H,' (54)

This gives

"' = exp d(A) Hp
~

1—( A

p')
(55)

Note that both factors in the exponent decrease with a
growth of A. In the w-parametrization of time the last
factor disappears, being absorbed into the definition of
T [6], and the resulting exponential factor acquires the
form

( M M A
3H2 9H4

m

2+srM„)
(56)

Therefore, the exponential factor decreases with increas-
ing A for either choice of the time parametrization. This
suggests that out of all possible Universes with A & 0 it
is most probable to live in those Universes with A 0.

H „Hpi1-( A

6Hp2 )
Adding a cosmological constant changes the fractal di-
mension d as well. The corresponding changes can be
approximately described by substituting H

„

for Hp in
(40):
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Perhaps this is the reason why we live in a Universe (or
in a part of the Universe) with a vanishingly small value
of the cosmological constant.

Note that both in this case and in the case of the
coupling constant A we are speaking about probability
distributions that become infinitely sharp in the limit
t ~ oo. It strongly resembles the infinite sharpness of
the distribution of probability to 6nd a Universe with a
given cosmological constant in the context of the baby

2
Universe theeryp(A, ) exp(exp s [12]. The ex-

istence of such a peak in the baby Universe theory was
extremely counterintuitive. Indeed, if our Universe had
lived for only 10 yr, it could not "know" the value of
its energy density with infinitely high precision. In our
case the explanation of the infinite sharpness of the prob-
ability distribution is very simple: The Universe lives for
infinitely long time, and even a very small deviation from
A = 0 eventually makes a lot of difference.

A note of caution is needed here before one gets too
excited. First of all, we have obtained our results in the
context of a particular inflationary theory, which may or
may not be correct. Our conclusions would be different if
one is allowed to vary not only the cosmological constant
but other coupling constants as well. Even more immedi-
ate problem arises if one considers the possibility to have
a negative cosmological constant, since in this case our
exponential factor becomes even greater. This is similar
to the problem of the negative cosmological constant in
the baby Universe theory [15].

An obvious way out of this diKculty is to note that
the universe with Vo && —10 gcm 3 would collapse
within the time smaller than 10 yr, and nobody would
discuss the cosmological constant problem in such a Uni-
verse. Unfortunately, as we already mentioned, an-
thropic considerations typically are not strong enough
to 6ght against indefinitely growing or decreasing expo-
nents. However, anthropic considerations could be quite
sufBcient if we were able to find some natural cutoff in
our integrals (49) at very large t Taking i.nto account all
our doubts concerning the measure of integration, this
possibility is not inconceivable.

Another possibility is that a negative cosmological con-
stant is forbidden by some law of nature. This is known
to be the case in globally supersymmetric theories, where
the cosmological constant can only be positive or zero. In
locally supersymmetric theories this property can be vi-
olated. Still there is a chance that in future theories the
problem of a negative cosmological constant will be less
urgent.

Finally, it is quite possible that the problem of a nega-
tive cosmological constant should be addressed at a some-
what more advanced level. If there is any analogy be-
tween our approach and the baby Universe theory, this
analogy suggests that perhaps we still did not make "ex-
ponentiation of the exponent, " we still did not take into
account nonlocal interactions of exponentially expanding
Universes with each other. This interaction may be less
efEcient if the Universes must disappear soon after being
created, which is the case if the cosmological constant is
negative. A possible solution of the problem of negative

cosmological constant in the context of the inflationary
baby Universe theory was envisaged in Ref. [40).

VI. DISCUSSION

This paper consists of two main parts. In the first part
of the paper, Secs. II—IV, we have studied several differ-
ent regimes which are possible in inflationary cosmology
with an account taken of the process of self-reproduction
of inflationary domains. It appears that by changing the
coupling constants in a simple class of inflationary mod-
els one can go Rom the models where inflation is possi-
ble, but there is no self-reproduction of the Universe, to
the models where the Universe is self-reproducing, and
it can be described by a stationary probability distribu-
tion P„(P) Some. additional modifications lead to models
where self-reproduction of the Universe is so active that
the corresponding probability distribution within finite
time moves toward infinitely large values of the infla-
ton field P. This classi6cation of possible in8ationary
regimes, as well as the investigation of self-reproduction
in the models of a scalar field nonminimally coupled to
gravity and in Starobinsky model, can be of some interest
independently of a more speculative discussion contained
in Sec. V.

The investigation performed in Sec. V is based on the
assumption that coupling constants can take different
values in difFerent quantum states of the Universe (which
we call difFerent "Universes"). The basic assumption
which we are making is that we are typical observers, and
therefore we live in those Universes where most other ob-
servers live. Thus, by 6nding out the values of coupling
constants in the Universes occupied by most of the ob-
servers, we may find an "explanation" of the values of
the coupling constants in our own Universe.

This approach is very ambiguous, even though we un-
derstand it much better than the Euclidean approach to
the baby Universe theory. It is amazing that in some
cases these two approaches give similar results. One of
these results seems especially interesting. If one consid-
ers self-reproduction of the Universe in the context of
the Starobinsky model and assumes that the cosmolog-
ical constant A may take different non-negative values
in different parts of the Universe, then our results im-
ply that a typical observer should live in a state with
A = 0. Of course, one should not consider this result
as a solution of the cosmological constant problem until
we understand why the cosmological constant cannot be
negative. We clearly realize how far we are from any anal
and rigorously proven conclusions.

In the beginning of our paper we have mentioned that
the possibility of having different coupling constants ap-
pears even without any recourse to the baby Universe
theory. Indeed, during the process of self-reproduction of
inflationary domains the Universe becomes divided into
exponentially large regions where all possible laws of the
low-energy physics compatible with inflation can be re-
alized [1). Since these parts of the Universe are exponen-
tially large and causally disconnected, for all practical
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purposes one may consider them as separate universes.
Thus one could expect that all results of the investigation
performed in Sec. V should be valid for the distribution
of probability to live in a part of the Universe with given
values of coupling constants. This would make our dis-
cussion much less speculative.

We have used this approach in [6, 8]. However, the re-
sults obtained in [6,8] differ considerably from the results
of our investigation of the baby Universe theory. The rea-
son is that in all parts of the Universe which can be pro-
duced &om a single inQationary domain by the process
of classical motion and quantum diffusion (or tunneling),
the exponential factor e in the stationary distribution
(4) is universal. It does not depend on the value of the
effective cosmological constant (vacuum energy) in each
particular minimum of the effective potential, on the cur-
vature of the eB'ective potential near each of its minima,
etc. All phases which can exist in the theory and which
can transform to each other due to classical motion and
quantum jumps appear to be in a kind of "thermal equi-
librium" with the same "temperature" o.. Only those
parts of the phase space of the theory which evolve ab-
solutely independently of each other can have different
values of o. [41]. Therefore in the theories where the prob-
ability distribution is stationary, the most important tool
for comparison of different branches of inflationary Uni-
verse is not the overall factor e, which we have studied
in this paper, but the normalized probability distribution
P„.This distribution does not have any singularities en-
countered in our treatment of the baby universe model.
Consequently, this approach is not expected to lead to
any troubles with too fI.at effective potentials. Since the
probability distribution P„is not singular, one can use it
in combination with the anthropic principle in order to

explain the values of effective coupling constants in our
part of the Universe [6, 8].

On the other hand, the theory of inBationary baby
Universes can be more powerful in solving the cosmo-
logical constant problem. That is why we have men-
tioned both possibilities in this paper. The main rea-
son why we decided to discuss here the results obtained
by both methods despite all uncertainties involved can
be explained as follows. For many years the general
attitude toward quantum cosmology was rather scepti-
cal. Even some authors of quantum cosmology believed
that this theory, being very important for investigation
of creation of the Universe, does not have any testable
observational consequences. However, our investigation
suggests that within the context of quantum cosmology
there may exist a rather strong relation between the val-
ues of coupling constants, the structure of the Universe
at ultimately large distances, and the properties of inter-
actions at nearly Planckian scales. By testing one part
of the picture we may get some nontrivial information
about its other parts. This may give us a possibility to
test the basic principles of quantum cosmology as well.
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