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Collapse to black holes in Brans-Dicke theory.
I. Horizon boundary conditions for dynamical spacetimes
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We present a new numerical code that evolves a spherically symmetric configuration of colli-
sionless matter in the Brans-Dicke theory of gravitation. In this theory the spacetime is dynamical
even in spherical symmetry, where it can contain gravitational radiation. Our code is capable of
accurately tracking collapse to a black hole in a dynamical spacetime arbitrarily far into the future,
without encountering either coordinate pathologies or spacetime singularities. This is accomplished
by truncating the spacetime at a spherical surface inside the apparent horizon, and subsequently
solving the evolution and constraint equations only in the exterior region. We use our code to ad-
dress a number of long-standing theoretical questions about collapse to black holes in Brans-Dicke
theory.

PACS number(s): 04.25.Dm, 02.70.Bf, 04.50.+h, 04.70.—s

I. INTB.ODUCTION

In recent years, there has been renewed interest in
scalar-tensor theories of gravitation. One reason is that
these theories are important for cosmological inBation
models [1],in which the scalar field allows the infiationary
epoch to end via bubble nucleation without the need for
fine-tuning cosmological parameters (the "graceful exit"
problem). In addition, scalar-tensor gravitation ("dila-
ton gravity") arises naturally from the low-energy limit
of superstring theories [2,3]. Finally, with the construc-
tion of the Laser Interferometric Gravitational Wave Ob-
servatory, it may be possible to test scalar-tensor theories
to high precision [4] by looking for monopole and dipole
gravitational radiation &om astrophysical sources.

Quite apart from their potential physical significance,
scalar-tensor theories play another very useful role: they
provide an ideal laboratory for testing new algorithms
for numerical relativity. In general relativity, numerical
methods for treating spacetimes containing gravitational
radiation require at least two spatial dimensions, since
a time-varying quadrupole moment is needed to produce
gravitational waves. In scalar-tensor theories, one can
study many of the same strong-field phenomena that oc-
cur in general relativity, including gravitational radiation
and dynamical black holes, while still working in spheri-
cal symmetry.

We have developed a numerical code that solves the
coupled matter and gravitational field equations for the
evolution of a spherically symmetric configuration of non-
interacting particles in Brans-Dicke [5] gravitation, the
simplest of the scalar-tensor theories. We use this code
to study gravitational collapse to a black hole in Brans-
Dicke theory. This process has been discussed extensively
in the literature [6], but these studies have been limited

to addressing the Gnal state of the black hole after col-
lapse, or have used linearized approximations of the field
equations. Other than an early simulation by Matsuda
and Nariai [7], it is only very recently [4] that this process
has been calculated in any detail.

In constructing numerical models of gravitational col-
lapse in Brans-Dicke theory, we have been forced to ad-
dress the same difBculty that has plagued the field of
numerical relativity for the last 30 years: how does one
handle the spacetime singularity at the origin that in-
evitably develops during the formation of a black hole' ?

The traditional approach has been to utilize the
"many-fingered time" gauge freedom of general relativ-
ity to avoid the singularity altogether. Specifically, one
chooses coordinates such that the passage of proper time
grinds to a halt near the origin before the singularity ap-
pears, while weak-Geld regions of spacetime farther &om
the origin evolve farther into the future. This singularity-
avoiding (SA) method works well for short times, but
eventually pathologies develop in the transition region
between the "&ozen" interior and the "evolving" exte-
rior. These typically take the form of steep gradients or
spikes in the metric functions, and will eventually cause
the numerical code to crash [8]. Countermeasures such
as increasing the grid resolution produce little improve-
ment because the pathologies increase exponentially with
time.

Our solution to this problem is to use an apparent hori-
zon boundary condition (AHBC) method after the for-
mation of a black hole. The basic idea of this approach is
to truncate a black hole spacetime at a surface inside the
apparent horizon (AH) that cannot causally influence the
exterior. One then discards the singular interior entirely,
and only evolves the physically relevant exterior.

Seidel and Suen [9] have implemented this idea in gen-
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eral relativity for the case of a black hole with a Klein-
Gordon field in spherical symmetry. Their method in-
volves a coordinate system that is locked to the AH,
so that the coordinate speed of radially outgoing light
rays inside the AH is negative. This enables them to use
a causal difference scheme, similar to the causal recon-
nection scheme of Alcubierre and Schutz [10], to solve
evolution equations in such a way that information does
not escape &om the black hole, and no explicit boundary
condition is needed on the AH.

Our AHBC method is different &om that of Seidel
and Suen. Although we also use a coordinate system
that is locked to the AH, we solve the wave equation for
the Brans-Dicke scalar field using an implicit differencing
scheme motivated by the work of Alcubierre [11]. In ad-
dition, we solve for the metric variables using the elliptic
constraint equations rather than the evolution equations.
We obtain the required boundary conditions for this ap-
proach &om asymptotic Hatness, properties of the appar-
ent horizon, and by solving a single evolution equation
only on the AH, as explained in Sec. IV.

With our code we are able to follow accurately Brans-
Dicke collapse to black holes and the associated gener-
ation of monopole gravitational waves. We are able to
integrate the equations to arbitrarily late times into the
future, when all of the radiation has propagated out to
large distances and the central black hole has settled
down to final equilibrium. Using our code we are able
to resolve a number of long-standing, theoretical ques-
tions about collapse in Brans-Dicke theory. We are also
able to refine a promising technique for evolving black
hole spacetimes with radiation by integrating only in the
observable regions of spacetime.

This paper is primarily concerned with numerical
methods. The reader not interested in the numerical de-
tails should read Sec. II and then skip to paper II [12],
in which we discuss Brans-Dicke gravitation in more de-
tail, and we show how black holes formed in Brans-Dicke
theory behave differently than those in general relativity.

c=P =1, (2.3)

where P is the value of the scalar field far from any
sources.

Variation of Eq. (2.1) with respect to g and P yields
the Brans-Dicke field equations, which can be written in
the form

87rT
3+ 2&

G b ——8vrT'b,

(2.4)

(2 5)

where

+V 7'tp —g b (2.6)

Here V denotes covariant differentiation with respect to
the metric g b, is the covariant Laplacian V' V', and
G b is the usual Einstein tensor. The symmetric ten-
sor T b is the energy-momentum tensor for matter and
nongravitational fields, and T is its trace:

bl.
TGb: gGbd 2 )G G Gb ) (2.7)

T=T =Tbg (2.8)

VbT b =O. (2.9)

plicated. In particular, the coupling parameter u can be
a function of P.

In general relativity we are free to choose our units of
mass and time such that G = c = 1. In Brans-Dicke
theory, the inverse of the scalar field P plays the role
of G, so multiplying P by a global scaling factor changes
the unit of mass. We choose units such that

II. BASIC EQUATIONS

A. Brans-Dicke theory

The action for Brans-Dicke gravitation is [5]

I= ZBD —g ~ d x, (2.1)

where the Lagrangian density is

ZBD =g R sf+ 5 ——g 8 /Byes.
167l (d b (2.2)

The coupling constant ~ is dimensionless, and the scalar
field P has dimensions of G, where G is Newton's grav-
itational constant. The Lagrangian density 8 for matter
and nongravitational fields depends on the metric g but
not on P. The Ricci tensor R i, is related to the metric
in the usual way. In general relativity, the third term
in Eq. (2.2) is absent, and one sets P = G . In other
scalar-tensor theories [13], the Lagrangian is more com-

Although we have written the field equations (2.5) in a
form that resembles Einstein's equations, we emphasize
that Brans-Dicke gravitation is not the same as general
relativity with a Klein-Gordon scalar field. The difference
is the factor of P in the first term in the Lagrangian
density (2.2), which leads to second derivatives of P in the
field equations (2.5). Physically, this manifests itself as
a violation of the weak equivalence principle for massive
bodies [14]. This is discussed in more detail in paper II.

Notice that the matter stress energy is conserved [Eq.
(2.9)], even though T is not equal to 8vrG (the quan-
tity VbT' also vanishes because of the Bianchi identity
'|7bG = 0). As a result, the equations of motion of mat-
ter do not involve the scalar field; test particles move on
geodesics of the metric. Notice also that it is the trace
of the matter stress-energy tensor T b, not the effective
tensor T'&, that appears in the wave equation (2.4).

In vacuum, P = const is a solution of Eq. (2.4) for any
In this case, T'b reduces to T b and the field equa-

tions (2.5) become Einstein's equations. Therefore, any
vacuum solution of Einstein's equations is also a vacuum
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solution of the Brans-Dicke equations. In addition, many
(but not all) Brans-Dicke solutions with ~u[ ~ oo have

P ~ const and obey Einstein's equations. It is there-
fore said (but not rigorously correct —see paper II) that
Brans-Dicke theory reduces to general relativity in the

B. Equations (2.5) in (3+1) forxn

Adopting the usual Arnowitt-Deser-Misner [15] (3+1)
decomposition, we introduce a set of spacetime hypersur-
faces, or time slices, and a timelike vector field n normal
to these hypersurfaces. 'We adopt the convention that the
four-metric g b has the signature (—+ ++), so that

nn = —1 (2.io)

Spatial distances on a particular time slice are measured
by the three-metric p b, defined by

Jab = gab + a~b (2.11)

The extrinsic curvature K b describes the rate of change
of the three-metric along n (the "time" direction):

(2.12)

ds = —(n —A P )dt +. 2A Pdr dt+. A (dr +. r dO )

Here 2 denotes a Lie derivative. The field equations are
split into spatial constraints that relate K b and g b on
each time slice, and first-order (in time) evolution equa-
tions that take K b and p b from one slice to the next.

We work in spherical symmetry, and we choose the
maximal time slicing and isotropic radial coordinate con-
ditions. This gauge is de6ned by the isotropic line ele-
ment

point to have no causal eKect on the region exterior to
that point, the coordinate speed of radially outgoing pho-
tons must not be positive, and this requires a (positive)
shift.

The maximal slicing condition (2.14) is important for
our conventional SA method. because it causes the lapse
function to become small in the strong-field region of a
spatial slice that is about to hit a singularity. This slows
down the passage of proper time in this region while other
regions on the slice propagate farther into the future. In a
typical black hole spacetime, maximal slices will never en-
counter the singularity at r = 0. For the AHBC method,
maximal slicing is not at all necessary, but it is conve-
nient because it eliminates a component of K b &om the
equations.

We choose the isotropic spatial gauge primarily for con-
venience. The most general spherically symmetric metric
can be written in the form

ds = —(n —A P )dt + 2A Pdr dt

+Adr +Br dO (2.is)

The isotropic gauge condition A = B eliminates B &om
the field equations. This choice is not necessary for either
the SA or AHBC methods. However, there are gauge
choices (for instance, P—:0) that would spoil the AHBC
method.

Note that Seidel and Suen [9] do not use isotropic co-
ordinates, but instead choose the metric (2.18) and the
gauge condition OA/Bt = 0. This choice is useful because
the proper distance between two coordinate radii remains
fixed in time, but it does not seem to be necessary for
the success of the AHBC method, at least in spherical
symmetry. In fact, it tends to complicate the analysis
after matching onto the SA method, especially in the
linearized regime where it produces a &ozen coordinate
wave that adds gauge terms to the metric variables.

In maximal isotropic gauge, the field equations (2.5)
break up into two evolution equations,

and the maximal slicing condition

K=K, =0. (2.14)
A,, P—P " = ——-nKz,
A r (2.19)

"ds' = A'(dr'+ r'dn') (2.i5)

Here K is the trace of the extrinsic curvature K b. The
three-dimensional metric p, z on each t = const time slice
is given by (2.2o)

and four spatial constraint equations

A, fA„2)
KT, —pKT „=n s~s"', + ,'KT — "-

~

—+—
~As (A

2n „(Ar) „
A2 Ar

Equations (2.10) and (2.11) imply

n = (—n, o, o, o) . (2.16)

A5/2
—,[r (A'~ ) ] „=— (87rp' + s KT), (2.21)

The lapse function n measures the ratio of proper time
to coordinate time for a normal observer:

k „=8~S„'—3KT (Ar), -
Ar

(2.22)

de=ddt . (2.17) , (Ar'n „),, = —',K' + S7rp' + 4~T',
o.A3r2 (2.23)

The shift P is the velocity of the spatial coordinates with
respect to normal observers. It is a vector quantity, but in
spherical symmetry only the radial component is nonzero

(P = 0 for a g r), so we write P = P . The shift is cru-
cial for our AHBC method: in order for a coordinate grid

r'p)
r —

i

= —2nKT
&r),. (2.24)

Here and elsewhere in this paper, commas denote partial
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derivatives and

K —= 2K = 2K~p. (2.25)

TI ahT1
ab

c d
~ab = 7a+b Tcd

(2.26)

Equations (2.21) and (2.22) are the Hamiltonian and mo-
mentum constraints. Equations (2.23) and (2.24) result
&om the maximal slicing condition KT ———K"„and the
isotropic coordinate condition A = B, respectively. It
is important to note that Eqs. (2.19)—(2.24) are not all
independent: one may use the Bianchi identities to elim-
inate two of the six equations.

The efFective source terms appearing in Eqs. (2.19)—
(2.24) are defined by

16nT (u t'
8~T'P = + —

~

II2+3 (d ( A )
(2.32a)

4'l 1
8 p'/=8 p+ —

~

II + i+ (CA ), ,A')
(2.32b)

87rT ~ t'
z 421

(3+2') 2P g A'y
1 ('e&

+rlKT + —
]

—
[A qA), '

8vr S'„'P = 8vrS'„—

(2.32c)

@II(u
8vr S,'P = 8~S„— —II, —C KT . (2.32d)

and to explicitly compute P, and P „by finite difFerenc-

ing when necessary.
Evaluating the efFective source terms (2.26) using Eq.

(2.6) and the metric (2.13) yields

where T'b is given by Eq. (2.6). Similarly, matter source
terms p, T, S, and S b (without the prime) are defined
as in Eqs. (2.26), with the unprimed T b appearing on
the right-hand side of each equation. If one replaces the
primed source terms in Eqs. (2.19)—(2.24) with their un-
primed counterparts, one recovers the Einstein equations.

C. Scalar field

To solve the scalar wave equation (2.4) numerically, it
is useful to define the variables

(2.27)

(2.28)

D. Linearimed equations in vacuum

In the weak-field regime, we can use linearized the-
ory to describe the gravitational field. By matching our
numerical variables to the linearized solution, we can de-
termine the gravitational radiation seen by an observer
at infinity, and we can set boundary conditions at the
outer edge of our finite-difFerence grid. These boundary
conditions, including the ones imposed on elliptic equa-
tions, are valid even while the wave is passing through the
boundary. Such a matching technique was introduced in
numerical relativity by Abrahams and Evans [16].

Define the new variables

87r Tn
3+ 2' , , (Ar'n@),„.A3r2

In our coordinate system, Eq. (2.27) reduces to

P,, =Pe —nII,

and the scalar wave equation (2.4) becomes

e, = pc, + p„e —(nrr) „,

(2.29)

(2.3o)

(2.31)

a=—A —1, (2.33)

E=O! —1 (2.34)

(2.35)

If we set all matter terms to zero in Eqs. (2.19)—(2.24)
and Eqs. (2.29)—(2.32), and if we keep only terms linear
in a, Kz, e, P, (, C', and II, we obtain

Using II rather than P t as a dynamical variable elim-
inates explicit time derivatives of n and P in Eq. (2.31).
Furthermore, like the extrinsic curvature K b, the quan-
tity II is defined geometrically [by Eq. (2.27)] on each
time slice, independent of how one gets from one slice
to the next: in other words, its value on a given slice is
independent of n and P. This is not true for P t, This.
is important when making the transition &om the SA
method to the AHBC method: the lapse and shift are
discontinuous across the time slice that defines this tran-
sition.

The quantity C is a useful dynamical variable for
the AHBC method because it eliminates explicit second
derivatives from the wave equation. However, in the SA
method it is sufficient to use P as a dynamical variable

II = —,t

1 r~
r

2E~ 2Q~
XTt ——— — +4.. .r r .

2G~ C ~ C

r 2 r '

(2.36)

(2.37)

(2.38)

(2.39)

(2.4o)

(2.41)
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3'
) (2.42)

(2.43)

Note that there is no shift in LT gauge.
For a static situation, f is a constant, so it will appear

as an additional "mass" in the metric. We will therefore
write

(pl
4"),. (2.44)

f = 2M' ——const, time-independent case .

Hence,

(2.57)

If only outgoing waves are present, the solution of Eq.
(2.36) is

r( = f(t —r), (2.45)

where f is an arbitrary function of (t —r). We now
insert Eq. (2.45) into Eqs. (2.39)—(2.44), and impose the
boundary conditions e = a = 0 at r = oo. We find the
solution

2MT + 2M'
00

h~0T = 0,

(2MT —2M' l
)

(2.58)

(2.59)

(2.60)

A=1+a= 1+ Mg
r

f(t —r)
2r

(2.46)
2Ms= 1+ (2.61)

o. =1+@=1+ +C(t) f (t —r)
(2.47)

f'(t —r)
2

(2.48)

f'(t —r) 3f (t —r)K~ —— + + — [2M~ + 3f (t —r )r r2 p3 0

+2C(t)]dt . (2.49)

Here C(t) is an arbitrary function of time, MT is a con-
stant, and a prime denotes a derivative with respect to
the argument. The gauge function C(t) results form the
presence of a nonzero shift.

We see Rom Eq. (2.58) that a test particle in a Keple-
rian orbit measures a total mass M equal to MT + Mg.
The "scalar mass" Mp is the portion of the active gravi-
tational mass produced by the scalar Beld. As discussed
further in paper II, the "tensor mass" MT is the mass
measured by a test black hole in a Keplerian orbit. In
general relativity, Mg ——0 and MT ——M.

Lee [17] has derived expressions and conservation laws
for the tensor and scalar masses in terms of superpoten-
tials. He defines the gauge-invariant quantities

~T —— [p ( g)(g g" ——g 'g ~)],d Z, , (2.62a)
1

E. Masses

In order to deBne the mass of a spherical body in
Brans-Dicke theory, it is convenient to transform the so-
lution (2.45)—(2.49) into a simpler gauge. Let

1~T —~s = [(—g) (g"g" —g"g")],&d'~*16'
(2.62b)

where

h.b
= ~.b + Ca, b + Cb,a, (2.50)

(2.51)

which in the time-independent case reduce to MT and
MT —Mp, respectively. Here we assume Cartesian co-
ordinates, and E,. is the two-dimensional area element in
the asymptotic rest frame of the source.

Evaluating Eqs. (2.62) using the metric (2.13), we ob-
tain

(2.52)

Here hM& is the metric perturbation in maximal isotropic
gauge, and 6 b is the perturbation in the Lorentz- Thorne
(LT) gauge [16]. In the LT gauge, we have

r2
(P A ),r dA = ——(P A ) „, (2.63a)

16m

MT —Ms = (A ),„r dA = ——(A ),„.(2.63b)16' ' 4

LT
h00 = 2MT f (t —r)+ 7 (2.53) In the linearized regime, we can expand these expressions

to erst order in (P —1) and (A —1). The result is

f(t —r) )
)I

(2.54)

(2.55)

~T ———rA„——r42 1 2
2 )

~S = ——,'&2C'

(2.64a)

(2.64b)

f t —r
P = 1+ (gauge invariant) . (2.56) Further simpliBcation using the linearized equations

(2.45)—(2.49) yields
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~T ——MT,

~s= 2+f rf'
(2.65a)

(2.65b)

1 87rpA 3 6+-A (K )

~A4

—2M@,~ P= —(6A „+3O) ——',CK~+ lie(~ —1)
—(II + KT ) (4A „+a,), (2.66a)

—2(Mz —Ms), g (6A „241
+4KT + ~II@—KT (4A, + n, ,)
+II,(1+ e —(+4a),

(2.66b)

2~s, ~ = p i + 4',„ i

—24KT —114

—II(4A „+a, ) —II „(1+ e —( 4- 4a),
(2.66c)

where the variables e, a, and ( are defined by Eqs. (2.33)—
(2.35), and we assume that the fiuxes are evaluated in
vacuum. Notice that M~ q

——0 to first order. This is be-
cause Mz is strictly constant in linearized theory. How-
ever, there is a nonzero first-order contribution to Ms q

(the II,, term).
If we convert the surface integrals in Eqs. (2.63) to

volume integrals by Gauss' theorem, and we eliminate
second derivatives of A using the Hamiltonian constraint,
we obtain

BvrpAA + —A (KT) A + ——1) 4 A
2 0

Although these reduce to MT and Ms in the time-
independent case, the scalar mass is not well-defined dur-
ing dynamical epochs: M~ approaches r f'(t —r)/2 as
r m oo. The scalar mass has other unusual properties,
which are discussed in detail by Lee [17]. For exam-
ple, the scalar mass is not positive definite, and scalar
mass carried by a gravitational wave does not curve up
the background spacetime. Because the tensor mass MT
does not suffer &om such difFiculties, it is the quantity
that most deserves to be called "mass. " The quantity
M~ is positive definite, can only decrease by the emis-
sion of gravitational radiation, and has other energylike
properties, unlike the scalar mass or the active gravita-
tional mass M.

Gauge-invariant formulas for the fIuxes of MT and Ms
can be expressed in terms of the Landau-Lifshitz pseu-
dotensor and other pseudotensors involving the scalar
field [17]. In the case of spherical symmetry, it is easier
to obtain these expressions by difFerentiating Eqs. (2.63)
with respect to time and using the field equations to elim-
inate second derivatives of the metric. The two methods
must give the same answer. The result, to second order
in the amplitudes, is

—7A'(A )'+ '" + r'dr
r

F. Light rays and apparent horizons

From the metric (2.13), one can determine the coordi-
nate velocity of radial light rays

dp o.=+——p,dt+ A
(2.68)

and the ingoing and outgoing radial null vectors

(2.69)

A marginally trapped surface is defined by

V'~ A=O,

where A is the area of a (t, r = const) surface:

A = 4~r'A' .

(2.70)

(2.71)

In maximal isotropic gauge, Eq. (2.70) takes the form

1 A„ = 2AKTr
(2.72)

where we have used Eq. (2.19) to eliminate the time
derivative of A.

The apparent horizon is the outermost marginally
trapped surface. In our standard SA method. , we use Eq.
(2.72) to locate trapped surfaces. In the AHBC method,
we place a grid point on the apparent horizon and use
Eq. (2.72) as a boundary condition at that grid point.

For the AHBC method, we also need a relation that
forces the apparent horizon to remain at a constant grid
point as the metric variables and scalar field evolve in
time. Such an equation can be obtained by differentiat-
ing Eq. (2.72) with respect to t (holding r constant),
and then using Eqs. (2.19)—(2.22) to eliminate time
derivatives, second radial derivatives of A, and first ra-
dial derivatives of K~. After some algebra, we arrive at
the result

(2.67b)

These expressions will give us an additional check on
our numerical code. Because the region of integration
contains the origin, this check is only useful in the SA
method.

+—II A —7/@A A „—7Q A (A, ) r dr, 1 —8m A2r2(p'+ S,'/A)
1 + 8~A2r2(S~' + 8'/A) ' (2.73)

(2.67a) where the primed source terms are given by Eq. (2.32).
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III. SINGUI ARITY-AVOIDING (SA) METHOD tonian constraint (2.21) for A. We define

Here we present our singularity-avoiding numerical
method for solving the Brans-Dicke equations for a spher-
ically symmetric distribution of dust. Except for the ad-
dition of the Brans-Dicke source terms in the field equa-
tions, this method is very similar to that of Ref. [18].

We use a mean-field particle simulation scheme in
which the collisionless matter distribution is sampled by
a finite number of noninteracting particles, and the grav-
itational field variables are defined on a finite number of
grid zones. At each time step, the particles are moved
according to the geodesic equation. By binning the par-
ticles, we calculate the source terms p, S„,and T in each
grid zone. The source term T is used to determine the
scalar field via the wave equation, which is solved by
finite differencing on the grid. All three source terms
appear in the constraint equations, from which we deter-
mine the metric variables. The process is then repeated
for the next time step.

A. Matter source terms

m ou
(3.7)

T—= TA - 4vr(duo)r2Ar ' (3.8)

S„—= S„A' = —) 4ar24r ' (3.9)

mus"„—= s"„w' =
4~(nuo) rzAr (3.10)

Although the metric function o. still appears in these ex-
pressions, it is always multiplied by u . The quantity
nu depends only weakly on the metric [Eq. (3.12)].

Simply evaluating the sums in Eqs. (3.7)—(3.10) in
each grid zone gives reasonable values for the source
terms in that zone. Even better is to use the algorithm of
Hockney and Eastwood [19] to distribute each particle's
rest mass among its own grid zone and each of the two
neighboring zones. This procedure reduces the stochastic
fIuctuations associated with having only a finite number
of particles, giving us smoother results [20].

We sample the matter by a finite number of nonin-
teracting particles. If each particle has rest mass m,
four-velocity' u, and comoving number density JV, the
stress-energy tensor is given by

r' = ) mA'u u', (3.1)

where the sum is over all of the particles. The source
terms defined by Eq. (2.26) are

p=) mA(nu ) (3.2)

r= —) mX, (3.3)

S„=—) mfa(nu )u„,

S" = ) mJVu„/A

(3.4)

(3.5)

The comoving number density A' of each particle is
proportional to a b function for point particles, but can
be treated as a continuous quantity if the number of par-
ticles is large and the particle distribution is smooth. In
evaluating the source terms, we average over all particles
in each grid zone, so that we can think of each particle
as occupying the entire volume of the zone. Therefore,
we write

1 = 4~(nu )A r Kr, (3.6)

where Ar is the width of a grid zone.
Notice that the source terms in Eqs. (3.2)—(3.5) de-

pend on the metric function A. Since we use these source
terms to solve for the metric functions, it is helpful to de-
fine quantities that can be calculated from the particle
variables alone, without referring to the metric. This is
especially important when solving the nonlinear Hamil-

B. Geodesic equations

Since the matter is made up of particles, the equation
of motion V' T = 0 reduces to the geodesic equation
for each particle. Using the metric (2.13), we write the
geodesic equation as

du~

dt

l& o.'u

dt A2(nuo)

= —(nu )n „+u„P „+ nuo As

+, I

—+
(o.u')A'r' (r A )

(3.11a)

(3.11b)

The normalization of four-velocity gives us

( u„'
o.'u = 1 + + (3.12)

C. Scalar wave equation

After moving the particles and determining the source
terms, we proceed to the wave equation. In order to

These equations are solved for the variables r, u„, and
nu for each particle at each time step by an embed-
ded fourth-fifth order lunge-Kutta scheme with adap-
tive step size [21]. The quantity uy is a constant of the
motion. Derivatives of the metric that appear in Eqs.
(3.11) and (3.12) are obtained on the grid by finite dif-
ferencing. The values of these derivatives and the metric
functions at the particle position are then determined by
interpolating from the grid.
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minimize roundoff error when P is close to unity, we use
the variable

The wave equation can then be written

3 2 27' p

or@'lI'

)

( g
—2Pr(, . = —nII, (3.i4a)

(3.21)

8vrTo,
II g

—2Prli „~ = (r An(„z), s .

(3.14b)

These are Eqs. (2.29) and (2.31) written without explicit
use of the variable 4. It is not necessary to use 4 as a
dynamical variable until we introduce the AHBC method
in Sec. IV.

The regularity condition at the origin is „=0.
) (3.22)

In general relativity II = („=0, so one can determine
Z &om Eq. (3.20) and then compute @ &om Eq. (3.21).
This is the reason for using the variable Z instead of K~.
In Brans-Dicke theory, Eqs. (3.20) and (3.21) are coupled
because of the last two terms in Eq. (3.20), so we must
solve these equations simultaneously.

Equation (3.20) requires a single boundary condition.
For regularity, we set Z = 0 at the origin. Equation
(3.21) requires two boundary conditions. The regularity
condition at the origin is

=II, =0.
Since ( and II behave like

(3.15) At infinity, we match to the linearized solution (2.46).
Differentiating this equation yields

+1 + +2T ) Ci ) C2 const (3.i6) (rQ) „=1— (3.23)

for small r, we take radial derivatives with respect to
r2 rather than r in Eqs. (3.14). This ensures that our
Gnite difference equations yield the correct result near
the origin [22].

The outgoing-wave condition at inanity is

(rY) „+(rY),=0, (3.17)

D. Constraints

After determining the quantities (, II, and P, we then
solve for A and KT .

By introducing the new variables

where Y is either II or (. For spherical symmetry, Eq.
(3.17) is exact in linearized theory, as one can verify by
substituting Eq. (2.45).

We solve Eqs. (3.14) by an explicit staggered leapfrog
scheme that determines ( and II at time step n+ 1 given
their values at time steps n and n —1. No information
at time step n+ 1 is needed to solve the equations. After
determining ( and II, we calculate P &om Eq. (3.13). Fi-
nite difference approximations are presented in Appendix
A1.

which does not require knowledge of the tensor mass MT.
We d.etermine the variable Z using the momentum

constraint (3.20), and we solve the nonlinear Hamilto-
nian constraint (3.21) for @ using the iterative scheme
described in Appendix A2. Because @ appears in Eq.
(3.20), we must recompute Z at each step in the itera-
tion. We obtain an initial guess for @ from the evolution
equation (2.19), which we write as

W
0,t.

—W,.= —-nWKT .
2r 4

(3.24)

After determining Z and @, the variables A and KT are
found &om Eqs. (3.18) and (3.19). Finite difFerence
forms of Eqs. (3.20)—(3.24) are presented in Appendix
A2.

E. Lapse and shift

(3.25)

Having determined the scalar field variables and the
spatial metric variables, we can now calculate n and P.
The lapse equation (2.23) can be written

6 s 6 s 87r ( T
(r An „.) „3= (r A(„.) „s+ p+nAs '" '" As ' ' /As ( 2+3 cu)

Z=Ar QKz

Al/2

(3.is)

(3.i9)

The regularity condition at the origin is

o, ,„=0. (3.26)

we can rewrite the momentum constraint (2.22) and the
Hamiltonian constraint (2.21) in the form

(3.20)

We match to the linearized solution to obtain the bound-
ary condition at infinity: by difFerentiating Eq. (2.47),
we obtain

(3.27)
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This condition is independent of the gauge function C(t)
that appears in Eq. (2.47).

After solving for n, we calculate P from the shift equa-
tion (2.24). This equation requires a single boundary
condition. We impose Eq. (2.48) at the outermost grid
point:

rK~ rII2+2 (3.28)

Finite difference forms of Eqs. (3.25)—(3.28) are given in
Appendix A 3.

F. Crid

Our numerical grid extends from rq ——0 to ri
r . All variables are centered at half-grid. points ri+~y2.
In order to obtain a nearly constant number of particles
in each grid zone, we divide the grid into inner and outer
regions. The inner region, which contains all the par-
ticles, extends &om rq to r; „where ri, is the grid
point just; outside the outermost particle. The grid point
r2 is chosen so that it contains a fraction 1/i~, q of the
rest; mass. Spacing between other grid points in the inner
region is geometric in r:

3 3
i+1 i

ri ri —1
3 3

3 3
i+2 i+1

3 3
i+1 i

(3.29)

This ensures that the grid spacing is close to uniform in
r, so that for a uniform particle distribution each zone
has approximately the same number of particles. The
outer grid, which extends from ri, to ri, is matched
smoothly onto the inner grid. The spacing between outer
grid points is also geometric in r .

The grid is allowed to move at every time step so that
it follows the particle distribution. Each time the grid
is moved, all gravitational field variables are interpolated
&om the old grid onto the new one. Moving the grid al-
lows us to place many grid points where they are required
to maintain accuracy. If the grid remained stationary
during gravitational collapse, the particles would soon
end up only in the innermost grid zones, invalidating our
Gnite difference approximations.

G. Identifying apparent horizons

To determine the location of an apparent horizon, we
evaluate the quantity

1 $„18= —+2 '" ——Q KTr 2
(3.30)

r&AH+& r&AH
AH iAH iAH 0 0~AH+~ &AH

(3.31)

at each grid point. By Eq. (2.72), all grid points with
0 ( 0 are contained within a trapped surface. There-
fore, if ri» is the outermost grid point with 0 ( 0, then
the apparent horizon lies between ri „and r;„„+q. We
obtain the approximate value of r~H by

H. Initial data

Our initial time slice occurs at a moment of time sym-
metry, so that KT = II = P = 0. We first calculate
the initial values of the metric and scalar field using a
method similar to that of Matsuda [23]. This method is
discussed in Appendix B. It involves only ordinary dif-
ferential equations (ODE's), which can be solved to ar-
bitrary accuracy by standard numerical methods.

After obtaining the ODE solution, we re-solve for the
initial data using the mean-Geld particle scheme. We
first randomly place particles in the interior according to
the rest mass function M„,i(r) obtained &om the ODE
solution. We then compute the matter source terms by
binning the particles, and we solve for ( using Eq. (3.14b)
with II = P = 0. Next we solve for g and u using
the Hamiltonian constraint (3.21) and the lapse equation
(3.25). By comparing (, g, and n with the result of
the ODE solution, we obtain an important check on our
method.

I. Diagnostics

There are two evolution equations, Eqs. (2.19) and
(2.20), that we did not use in solving the Brans-Dicke
equations [although we used Eq. (2.19) as an initial guess
for @, we refined our guess using the Hamiltonian con-
straint]. We can test the accuracy of our code by com-
paring the left- and right-hand sides of these equations
at each time step.

Another check is obtained by mass conservation. In
the linearized region far from the origin, we calculate the
quantities Ms and MT by Eqs. (2.65), and compare
with the result given by Eqs. (2.66) and with the vol-
ume integrals (2.67). This is more useful than evaluating
the evolution equations at each time step because it is
sensitive to errors that accumulate over time.

IV. APPARENT HORIZON BOUNDARY
CONDITION (AHBC) METHOD

Here we present our AHBC method of solving the
Brans-Dicke equations for a spacetime that contains a
black hole. Our method depends on two primary ingre-
dients. The first is a horizon-locked coordinate system,
similar to that of Seidel and Suen [9]. We place the AH
at a fixed radial coordinate r~H, and require it to remain
there at all times. As described below, this requirement
yields boundary conditions at the AH that we use to solve
spatial constraint equations.

The second ingredient is truncation of our spacetime at
some radial coordinate r~ & r~H, so that we only evolve
the region r & rq and need not be concerned with the
spacetime singularity at r = 0. In order to do this, we
must choose coordinates such that for some r~cH & rq,
the r = const surfaces in the range rq & r & rcgH are ei-
ther outgoing spacelike or outgoing null. Thus, if such an
r~cH exists for all time, information kom the discarded
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region r ( r ~ cannot affect the remainder of the space-
time. We call rc~H a coordinate causal horizon (CCH).
One coordinate choice that guarantees the existence of a
CCH is to place rq at the event horizon. In this case, ri
is a CCH because the event horizon is an outgoing null
surface. However, this choice is not possible in practice
because the location of the event horizon is unknown un-
til the entire future evolution of the spacetime has been
determined. In general relativity, one can avoid this dif-
ficulty by placing ri at the apparent horizon, which can
be determined locally. This makes ri a CCH because in
general relativity the AH must be either spacelike or null.
In Brans-Dicke theory, however, this is not the case: We
find dynamical epochs in which the AH is timelike and
can lie outside the event horizon, as described in detail
in paper II. Thus, in Brans-Dicke theory we cannot in
general choose a coordinate system that is guaranteed to
contain a CCH. We can, however, test for the existence of
a CCH using the fact that inside a CCH the coordinate
velocity of outgoing light rays is negative. We therefore
place rq a few grid zones inside r~H, and check at each
time step that a CCH is present for some r ) rq. If we
find no CCH, we halt our numerical simulation and start
over, using a larger buffer zone between rq and r~H. In
practice, we always find a CCH as long as we retain a
large enough buffer zone.

We solve the wave equation in a manner that takes ad-
vantage of the causal structure of the spacetime. We
define a "causal boundary" at some radial grid point
rcB which coincides with either the AH or the CCH,
whichever is smaller. Given any r' & rgB, our difFerence
scheme ensures that the scalar field at r' depends only on
quantities at r ) r'. Furthermore, no explicit boundary
condition is needed at the inner grid point rq.

To obtain the metric variables n, A, P, and Kz, we
solve spatial constraint equations that require a total of
six boundary conditions. Three of these are provided
by matching to the linearized solution at the outer grid
point. The other three, in the SA method described in
the last section, were obtained by regularity at the origin.
In the AHBC method, however, we exclude the origin
kom our spacetime, so these three boundary conditions
must be imposed at the AH. We obtain two conditions
by locking the AH to a fixed radial grid point. One is
the marginally trapped surface relation (2.72), and the
other, Eq. (2.73), is the requirement that the AH remain
at a constant coordinate radius for all time. A third con-
dition could be obtained by setting the tensor mass M~
of the black hole to the value obtained by mass conserva-
tion, Eq. (2.66a). However, this would prevent us from
using mass conservation as a check on our numerical in-
tegrations. Instead, we use a difFerent approach: we use
the evolution equation (2.19) to update A on the AH.
Another possibility would be to evolve the value of Kz
on the AH using Eq. (2.20), but this would be more
complicated.

A. Matter

terms can be computed by binning particles into zones.
However, in the case of gravitational collapse starting
with a uniform density profile, we will find that an AH
does not form until after all matter has fallen into the
black hole. For this reason, we only need to solve the
AHBC equations in vacuum —it is not necessary to in-
clude matter particles in the code. This is a great advan-
tage in terms of eKciency, since in the SA scheme most
of the computer time is spent moving the particles, and
it also gives us flexibility in the grid choice, since we no
longer need to choose grid zones that are approximately
constant in volume.

We emphasize that there is no fundamental restric-
tion that prevents us from including matter in the AHBC
method, and for some physical situations not investigated
in this paper, e.g. , the collapse of a distribution with a
core-halo structure, an AH may form while there is still
matter in the exterior region. In such a case, including
particles in the code would not be very difFicult. For
this reason, in the following sections we will continue to
include the matter source terms in our equations.

B. Crid

For accuracy, it is usually desirable to choose the finite
difference grid to be uniformly spaced. However, a grid
uniformly spaced in r does not yield enough grid cover-
age near the AH. This is because the initial data for the
AHBC method is determined by matching onto the SA
method after a horizon is formed, and the SA method
typically produces an apparent horizon radius r~H much
less than the outer grid radius and metric quantities that
vary exponentially with r near the AH. It is therefore
convenient to choose a logarithmically spaced grid, and
to take all radial derivatives with respect to lnr rather
than r. This choice places many grid points near the AH
where they are needed, and still allows us to take finite
difFerences on a uniformly spaced (in ln r) grid.

For convenience, we define the new variable

(4 1)

Our radial grid then consists of the i points
(gi, q2, . . . , g;„„,. . . , g; ). The AH is located at the grid
point i = i~H. The point r; is chosen to be far from
the black hole, in a region where linearized theory is valid.
All variables except 4 are defined on the grid points; C is
defined on the half-grid points (gsy2, . . . , q; +ig2). The
staggering of 4 is essential for our method of solving the
wave equation.

Unfortunately, spacing the grid uniformly in ln r tends
to produce too sparse a grid at large radii. A consequence
of this is that outgoing waves get partially rejected at the
outer edge of the grid. To minimize this effect, we pick
a maximum threshold Aro for the spacing between grid
points. We choose our grid uniform in g unless this choice
would yield a grid spacing (in r) greater than Aro at the
outer boundary. In the latter case, we set r; —r,
equal to Lro, and choose the other grid points to that

As in the SA method, the particles can be moved ac-
cording to the geodesic equations and the matter source

gi+ j gi

7l2 '92 —1

pi+2 gi+ 1

pi+1 gi
(4.2)
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This gives us a grid that is as close as possible to being
uniform in g while still obeying r;+q —r; & Lro for alii.

1 Z
4y, y

(4.1O)

C. Wave equation
Equation (4.9) requires two boundary conditions. At

the outermost grid point, we match to linearized theory
by imposing Eq. (3.23):

The wave equation can be written in the form

(, =PC -~11, (4 3)

r2II
(r@)„=r— (4.11)

C, = -[Pe„+P„e—(~11),j,1

p 8' TnII, = —IIr 3+ 24)

(4 4)
Because there is no extra equation for the inner bound-
ary condition, we use the evolution equation (2.19) to
compute the value of @ at the apparent horizon. This
equation takes the form

C, +e~ 2+ (4.5)
p=p '"+ ———nKT.

vier

2r 4
(4.12)

1
II,t+ -4,„+24'

(4 6)

1 24 IIc t+ —e„+ ——=0.
r '" r r (4.7)

We solve Eqs. (4.4) and (4.5) for II and C by the causal
method described in Appendix C. Because this method
takes into account the causal structure of the spacetime,
it is not necessary to impose explicit boundary condi-
tions at the inner edge of the grid. Boundary conditions
at the outer edge of the grid are obtained by matching
both II and 4 to the outgoing-wave linearized solution.
Equations (2.37), (2.38), and (2.45) yield

Equations (4.8)—(4.11) comprise a coupled system of
nonlinear equations. We solve them simultaneously by
the iteration scheme described in Appendix D.

E. Lapse and shift

After obtaining @ and Z, we solve the lapse and shift
equations simultaneously for n and P. In the SA method,
these equations are solved independently; here they are
coupled because of a boundary condition that we now im-
pose at the apparent horizon. We write these equations
as

After determining C and II, we solve for ( using Eq.
(4.3). This equation is an ODE in time and requires no
boundary conditions. The scalar field P is then calculated
from Eq. (3.13).

D. Constraints

~,»+ ~,„11+2
)3,, 8~r' ( T= n (KT rg')'+— , p+2 ( 2+3 Cd)

~QIIr r (+, + — C,„+2@~1+ (4.13)

After solving the wave equation, the Hamiltonian and
momentum constraints are solved simultaneously for the
variables @ and Z, from which we can compute A and
ET. These equations are coupled because scalar wave
terms containing Q appear in the momentum constraint
(2.22). Equations (2.21) and (2.22) can be writteii as

(p) = —-nK (4.14)

At the outer grid point, we impose Eqs. (3.27) and (2.48),
which take the form

Z, „=8vrr S, —@ r
i II„+

4rl
~,-+ ~,.11+,

(4 8)
(rn) „=r+r'II,

rK~ rII
2 +2.

(4.15)

(4.16)

3 Z'
16 Pzg~r4

(sujet

42r ~

8

27' pr

(4„+2C) . (4.9)
1/r 2 —I'i —Iis

1/r'+ F, +I, +F4 ' (4.17)

For the inner boundary condition on n we use Eq. (2.73),
which can be written as

Equation (4.8) requires a single boundary condition.
At the apparent horizon, we impose the marginally
trapped surface condition (2.72), which we rewrite using
the variables vP, Z, and g:

where

8 & S„'l
i —

@2 P+ @2)
(4.18a)
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z s„&
3+ 2ld lp )

II
2 2 r r r

(4.18b)
SA method, because the two methods have a diferent
lapse and shift. These differences are due solely to the
different inner boundary conditions used in the two meth-
ods.

G. Diagnostics

F4 = (4.18d)

F. Initial data

The initial time slice for the AHBC method can be
any maximal isotropic time slice that contains an appar-
ent horizon. We use a slice provided by the SA method.
Because P is a scalar and @, K7, and II are three-
dimensional geometric objects on the slice, and because
we use the same three-metric for both the SA and AHBC
methods, the values of these variables on the initial slice
can be simply read ofF &om the SA slice. After laying
down a new spatial grid as described in Sec. IVA, we
spatially interpolate these variables from the old SA grid
to the new one. We then determine 4 from Eq. (2.28).
For self-consistency, we then freeze the value of g at the
AH and recalculate @ and Kz &om Eqs. (4.8)—(4.11).
Finally, we calculate n and P by solving Eqs. (4.14)—
(4.18).

Although the initial AHBC time slice coincides with an
SA slice, subsequent AHBC slices do not coincide with
those that would have been produced by continuing the

This cond. ition forces a grid point to remain at the appar-
ent horizon. It also couples the lapse and shift equations
(4.13) and (4.14), so that we must solve these equations
simultaneously. Finite-difference forms of Eqs. (4.14)—
(4.18) are presented in Appendix D.

Notice that in vacuum with constant scalar field, Eq.
(4.17) reduces to n = AP. Combining this with Eqs.
(4.10) and (4.12), we see that in this case vP q

——0 on the
apparent horizon. As a result, all quantities are mani-
festly time independent: Given the value of g on the AH,
which is constant in time, the quantities A, n, P, and Kz
are completely determined by coupled spatial constraint
equations with no source terms.

This time independence should come as no great sur-
prise because the vacuum solution with constant scalar
field is simply the exterior Schwarzschild solution. How-
ever, this result is remarkable from a practical point
of view: When one uses standard singularity-avoiding
schemes (including our SA scheme) to compute spheri-
cal collapse in general relativity, one does not obtain a
time-independent system at the end of the simulation.
Instead, one finds that the metric functions and their
derivatives are changing exponentially with time inside
the AH. However, using the AHBC method, any system
that results in a Schwarzschild black hole will become
manifestly time independent. This is the great benefit of
the AHBC method: One can integrate black hole space-
times arbitrarily far into the future without encounter-
ing singularities and without causing metric functions or
their derivatives to blow up.

In determining the metric and the scalar field, we never
use the Kz evolution equation (2.20) or the definition of
4, Eq. (2.28). Furthermore, while we need the A evolu-
tion equation (2.19) to determine a boundary condition
at the AH, this equation is not used at any other grid
point except as an initial guess. We therefore have three
equations that can serve as diagnostics at each time step.

In addition, we can compare the results of the masses
calculated by Eqs. (2.65) and (2.66). Unlike the step-by-
step comparison of equations (2.20), (2.28), and (2.19),
this method is sensitive to errors that accumulate over
time. Because we exclude the origin from our spacetime,
we cannot evaluate the volume integrals (2.67) in the
AHBC method. .

V. NUMERICAL RESULTS

In this section we treat a few select collapse scenarios
to calibrate our code. We use these cases to compare the
standard SA scheme with the AHBC method. For a more
complete summary of physical results and an evaluation
of collapse to black holes in Brans-Dicke theory, see paper
II.

A. Oppenheimer-Snyder collapse
in general relativity

A useful test of our code is Oppenheimer-Snyder [24]
collapse to a black hole in general relativity. We start
with a momentarily static, uniform sphere of dust with an
initial areal radius B, = 10M, where M is the total mass
of the configuration as measured by Keplerian orbits far
from the origin. We follow the collapse of this object to
a black hole using our SA scheme with u = 10 . Such a
large value of u puts us well into the general relativistic
limit. We use 41 interior grid points, 87 exterior grid
points, and 1200 particles. Our outer grid. boundary is
at r = 100M.

Figures 1—3 show snapshots of metric parameters at
selected values of coordinate time. Also shown are the
exact results obtained [25] by transforming the analytic
solution [24] into the maximal isotropic gauge. The SA
method agrees well with the exact solution until very late
times. The collapse of the lapse" can be seen in Fig. 1:
inside r, = 1.5M, the lapse function decreases exponen-
tially with time, freezing the clocks of normal observers
in this region. The values of A and P inside r, = 1.5M
also change rapidly with time, as can be seen in Figs. 2
and 3. Because of the large values of A, coordinate radii
become very small compared to isotropic radii. For ex-
ample, the areal radius of the matter surface at t = 87M
is about r, = 1.5M, while its coordinate radius is only
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FIG. 1. The lapse function n vs areal radius r, on se-
lected maximal time slices for general relativistic Oppen-
heimer-Snyder collapse from R = 10M. Calculations by the
SA method (dotted line) are compared with the exact solu-
tion (dashed line). Time and distance are measured in units
of M.

r ~ 5 x 10 M. In addition, the gradients of o., A, and
P become very steep near r, = 1.5M.

Tracking particles at r 10 M with a grid that ex-
tends to r = 100M and resolving the metric function A
which drops from ) 10 to 2 between r = 10 M and
r = M requires an enormous dynamic range. Because
our inner grid follows the particles at each time step,
grid points tend to accumulate at the limit (matter) sur-
face, r, 1.5M. Although this allows us to resolve the
large metric gradients better than with a stationary grid,
our code eventually loses accuracy as the gradients grow.
This can be seen in Figs. 1—3: the SA method and the

] 04 ~ I I I I I

FIG. 3. The radial shift P vs areal radius r, on selected
maximal time slices. Labeling is the same as in Fig. 1.

exact solution begin to disagree at about t = 60M, and
this discrepancy increases exponentially with time. Even
if we were able to maintain accuracy, numerical over8ow
would eventually cause our SA code to terminate.

A spacetime diagram of Oppenheimer-Snyder collapse
is shown in Fig. 4. Because of the "collapse of the lapse, "
the matter particles sit at a constant areal radius after
t = 50M. An apparent horizon, which forms at t = 44M
outside of the matter, has an initial areal radius of r, =
2M, in agreement with the Schwarzschild solution. It
increases slightly in size after about t = 70M because of
numerical errors.

The above numerical diKculties do not occur in the
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FIG. 2. The metric component A vs areal radius r, on
selected maximal time slices. Labeling is the same as in Fig. 1.

FIG. 4. Oppenheimer-Snyder collapse in maximal slicing,
calculated by the SA method. The 6ve solid lines represent
world lines of matter elements containing 20%, 40Fo, 60'Fo,

80'Fp, and 100'70 of the interior rest mass. Time and areal
radius are measured in units of M. The dotted line is the
apparent horizon, which forms at about 4 = 44M, at which
point it already coincides with the event horizon.
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AHBC method because we no longer use such a patho-
logical coordinate system. In Fig. 5 we show the met-
ric coeKcients obtained from the AHBC method after
matching onto an SA time slice at t = 45. We use 128
grid points, and place the outer boundary at r = 100M.
The apparent horizon is located at the grid point i = 4,
which is at coordinate radius r = 0.78M and areal radius
r, = 2M. The innermost grid point is at r = 0.7M. Be-
cause all the matter has fallen past the AH by t = 45M,
we no longer need to move the particles we have dis-
carded the region of spacetime that contains them. In
this case the metric is manifestly static.

B. Scalar waves on a Schwarxschild background

u, , =u..+Vu, (5.1)

where

u=r, P, (5.2)

z —= r, + 2 ln(r, /2 —1),

1.6

1.4
0.8

10

r, /M

0.4
I I I I I III[

10
I I I I I IIII

102

r, /M

0.6

I I I I I IIIL

0. 1

04

0.2
0.05

10
0

10
I

I I I I I IIII
10~

r, /M r /M

FIG. 5. Metric quantities for t ) 45M for Oppenheimer-
Snyder collapse in general relativity, calculated by the AHBC
method. We remove the region of spacetime inside the appar-
ent horizon at r, = 2M and only retain the vacuum exterior.
All quantities are constant in time.

Consider a small scalar perturbation about a
Schwarzschild black hole. If the perturbation is so small
that its contribution to the metric is negligible, then it
is not necessary to solve the coupled Brans-Dicke equa-
tions (2.4) and (2.5) to determine the future evolution of

Instead, one only needs to solve the wave equation
(2.4) in vacuum on a Schwarzschild background. This
equation can be written in the form [26,27]

r, is the areal radius, and t, is the Schwarzschild time
coordinate. The variable z is the familiar "tortoise" co-
ordinate, which runs from z = —oo (at r, = 2) to z = oo
(at r, = oo). The mass of the black hole has been set
equal to unity. Equation (5.1) provides an important
check for our AHBC code. This equation is not dificult
to solve numerically —it is simply a one-dimensional flat
space wave equation in a static potential.

We set up the following test case: At t, = 0, the metric
is Schwarzschild and the scalar Geld is given by

C f(r, —rp)')= 1+ —exp
2cr2 j (5.5)

where rp ——80, C = 10, and o = 5. We set P t,

0 initially. As time progresses, the initial pulse divides
into two pieces: one moves outwards to infinity, while
the other moves toward the black hole and is partially
reflected by the Schwarzschild potential.

We calculate P as a function of r, and t, for this case by
two independent methods: we solve the full Brans-Dicke
equations using the AHBC method, and we solve the per-
turbation equation (5.1) using a staggered leapfrog finite
diQerence scheme. The AHBC method requires metric
coeKcients on an initial time slice; these are provided by
matching onto Oppenheimer-Snyder collapse (calculated
from the exact solution following Petrich, Shapiro, and
Teukolsky [25]) after the matter has fallen into the black
hole.

Because the AHBC method and the perturbation
method use difFerent coordinate systems, we must be
careful in setting up the initial data. Equation (5.5) is
defined. on the Schwarzschild time slice t, = 0. This slice
does not correspond to the maximal slice t = 0, or any
other t = const slice in maximal isotropic gauge. How-
ever, the initial Gaussian pulse (5.5) is far from the black
hole, where t = const and t, = const slices nearly coin-
cides. Therefore, if we choose the slice t = 0 to coincide
with t, = 0 at r, = 80, we can use Eq. (5.5) to determine
P at t = 0 for the AHBC method without introducing
much error.

Although t = const and t, = const slices nearly coin-
cide at r, 80 where the initial wave is nonzero, these
slices difFer considerably in the strong Geld region near
the black hole. If we wish to compare the results of the
AHBC and perturbation methods in this region, we must
use coordinate invariant quantities. We therefore intro-
duce a set of stationary observers at specified values of
the areal radius r„and we record the values of P and P
measured by each of these observers as a function of ~,
the proper time measured by the clock of each observer.
To synchronize the clocks in a manner independent of
the choice of time slicing, we introduce an ingoing light
signal that passes r, = 80 at t, = t = 0. Each observer
starts his clock running from w = 0 when he sees the sig-
nal, e.g. , at the initial time slice, an observer at r, = 80
reads r = 0, an observer at r, = 90 reads r 10 [plus
O(1/r, ) corrections], and an observer at r, = 70 reads

—10.
Figure 6 shows P and P as measured by two dif-

ferent observers. The observer at r, = 100M sees two
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FIG. 6. Scalar field and its derivative with respect to
proper time 7, as measured by stationary observers, for a
small scalar perturbation about a Schwarzschild black hole.
Yhe proper time 7. is measured in units of M, the mass of the
black hole. The AHBC method (solid line) and the perturba-
tion method (dotted line) almost coincide. Both methods use
256 grid points. The observation radii, from top to bottom,
are r, = 100M and 5M.

8r A

dt A

This quantity is negative inside the apparent horizon, in-
dicating that in this region information may only move
inward with respect to the coordinates. Such a coor-
dinate system is essential for solving the wave equation
without explicitly imposing a boundary condition at the
inner edge of the numerical grid. Because the spacetime
is Schwarzschild, the apparent horizon coincides with the
event horizon, so that the coordinate grid point on the
AH moves along an outgoing light ray. At large radii
dr/dt approaches unity because the coordinate system is
asymptotically Minkowskian.

peaks of scalar radiation. The first travels outward
&om r, = 80M, starting at the observer's proper time

20M, and passes the observer at w 40M. The sec-
ond travels inward from r, = 80M, is partially reflected
by the black hole, and then moves outward, passing the
observer at 7 220M. The observer at r, = 5M does
not see the outgoing radiation pulse, but instead sees a
combination of the ingoing pulse and its reflection. The
agreement between the two numerical methods is excel-
lent, demonstrating that the AHBC scheme is able to
handle gravitational radiation without producing large
numerical reflections at the apparent horizon or at the
outer grid boundary. In addition, the above case extends
&om t = 0 to t = 300M, much longer than a traditional
SA scheme would allow.

Figure 7 shows the coordinate velocity of outgoing light
rays:

FIG. 7. Coordinate velocity dr/dt of outgoing light rays vs
areal radius r, for a Schwarzschild black hole with a weak
scalar perturbation. Areal radius is measured in units of
M, the mass of the black hole. The quantity dr/dt is time
independent because the scalar field is too small to signifi-
cantly change the background Schwarzschild metric. The ar-
row indicates the position of the apparent horizon, which is
at r, = 2M. The inner edge of the computational domain is
at r, = 1.96M.

C. Oscillating Einstein cluster

In order to demonstrate the emission of monopole grav-
itational radiation, we evolve a system that undergoes
spherical oscillations. At t = 0 we place particles in ran-
domly oriented stable circular orbits, and then reduce
each particle's four-velocity component uy by a constant
factor (. The particles are arranged so that the comoving
energy density is initially uniform throughout the config-
uration. If ( = 1, the particle distribution would remain
in equilibrium. In general relativity such an equilibrium
system is called an Einstein [28] cluster. For ( ( 1 and a
weak gravitational field, particles do not remain in equi-
librium, but instead move on elliptical orbits with iden-
tical periods, and the entire spherical distribution peri-
odically expands and contracts in a homologous manner
[29]. In strong gravitational fields, however, the oscilla-
tions of the distribution are not homologous because of
shell crossing. In addition, the existence of a scalar field
in Brans-Dicke theory allows monopole radiation, so that
the system loses energy. The particles eventually settle
irito a new equilibrium state.

Figure 8 shows P —1, II, and the metric quantities
A~/ —1 and o. —1, measured at r = 400MO as a function
of coordinate time for an oscillating cluster with ( = 0.95
and an initial area radius R = 10Mo. Here Mo is the ini-
tial active gravitational mass M of the cluster. The parti-
cles and the spacetime are evolved using the SA method.
In order to produce a significant amount of gravitational
radiation, we set u = 1. As the cluster oscillates, it
produces scalar gravitational radiation that first reaches
r = 400MO at a time t 400MO. The amplitude of the
oscillation is damped because energy is lost to radiation.
Notice that the lapse function o, oscillates even before
the radiation reaches r = 400MO. This is because o. is
determined by elliptic equations which "feel" the oscil-



COLLAPSE TO BLACK HOOLES IN BRANS-. . . . I~ e ~ ~ 4223

0.0002—

—0.0002—
0 400 800

t/Ma

0.354

0.353

5 0.352

0.351

400 800
t/Mo

100—
(/f

80—

60—

40—

I

I

I

I

I

I

I

I

I I

f

I t

—0.98

0.29—
—0.99

10

I

400 800
t/M,

I

0 400 800
t/Mo

0 FIG. 9. 0 enppen eimer-Snyder colla se in
ory using maximal 1' '

o apse in Brans-Dicke the-

T}i fi ol d 1

a s icing, and calculat
i ines represent world 1' f

p, p, p, 80+p, and 100 p of the interior rest
n area radius r, are mea

~ ~

the initial mass of thss o e configuration. The d
0)

apparent horizon, which fo
e otted line is the

, w ic orms at about t = 44M0 ~

FIG. 8. Scalar 6eld and metric uaq
a ing einstein cluster with ~ = 1

initial areal radius R = lOMO. T s

1 61' dr gri points, and 195 outer ' ' . e
dotted lines show lt

ou er grid points. The
ow resu ts calculated with an g

particles, 61 inner r
'd Th 1s. e c ose agreement betwe

demonstrates that ou d
e ween the two case

a our code accuratel ha
wave boundary condition

e y andles the outgoin
y con actions at our outermost

while waves are passing through the boundary
os grad point eve

lations of ththe interior matter distributio
gravitational rad t' hia ion tnat ro

er is ri ution as well as the
p opagates to infinity.

D. 0 eppenhexmer-Snyder collapse
in Brans-Dicke th eory

We now consider'der a case in which the e8'e

G ld 1 }1 houg t at one cannot use
imations to determine h

use linear approx-

We treat the analo
ermine the evolution of to he spacetime.
a ogue o Oppenheimer-

B -D k th o Th'eory. his case is identi
S VA ha we set ~ = 1 to in
h 1 fild h g y.on e spacetime come

experiment; however our
is not to calculata e a physicall reali

er, our purpose here
p

e begin with a uniforniform, momentaril
par ic es with total m

tial radius r, = 10M
a mass Mp and ini-

f h
'

1

he zero subsc
i ia va ue—as it evolves

'

lo bs ecause of scalar ravit
Because u = 1 th

gravi ational radiation.
e scalar mass M co

16%%up of the initial rn M .
g contributes about

configuration with our
ia mass p. We follow thow e collapse of the

g o gerior, 00 particles. Ourerior gri points, and 12
un ary is at r = 100Mp.

A spacetime diagram of the colla se
Th horizon forms outside t~
at t = 44M . It 't' " si e he matter surface

ini ia}}yhas a radius r
sca ar e radiates away. By t = 65Mp

s the AH hashas grown to r, = 1.69M .
g by about 0.01M

p. It then decreases
not visible in the fig )

is ecrease represents

It is discussed furth~ ~

o es t at is not present in eng neral relativity.

merical errors fr
ur er in paper II. Aftter t = 90Mp, nu-

rs om exponentiall row
ents become lar e e

y growing metric gradi-
e arge enough that the matter

1 din area radius. These e
cause the code te ocras att=99M. A

d . ese errors eventually

do ot llo h ga ow t e code to run m
gri points, it onl ry

s ows the scalar field as a f
radius and coordinate

e as a unction of areal
r ina e time. The scalar fiel

ating away soon after th f
e egins radi-

zonatt =44M. 0
er e ormation of t

p. utsi e the AH a u
e apparent hori-

p
es ou ward towards fir s m nity. Inside the AH

o is ozen in time becau " se o
h 1 "Alarge gradient in P develo s

f to t d /M=
11 db~ ~

si e r, = 1. Until ver 1

cles at every time st
vere y our grid, which fic ollows the parti-
e s ep. owever, the rid

1me y sparse: At t = 80M

and at t =90M
ie ou si e coordinadinate radius r/Me ——10

p, only 29 of these rid oi
/M =1. Th kis ma es it difBcu}t to reso v

1 f 1 d
U 1'kni e the e case

a ia ion at late times.
g neral relativistic case di

hem as not settled into i
the time the SA code 1

in o its Gnal state by

t
co e loses accurac . T

e spacetime rema' d
y. is is because

a black hole it conti
mains ynamical afteer the formation of

~ ~

i continues to emit scalar gra it

}1 }1
i ion, at t = 80Mp one ca

itational radiation b
muc energy has been ost owing to grav-

ia ion ecause the tail end of t
h ot t o t df

1 d h
ga e ar enough &om. the

earize t eory. B t =
h o td btfga e a it further into the weak-field re-



4224 SCHEER., SHAPIR 0, AND TEUKQI.SKY

I I
g

t=45

0— 0—
I I

5 t= 145

0— 0

t=186

I

t=] 66
I I

t=206

I

10 1pp
1.,/M

10
r /M

ipp 10 ]pp
1.,/M

FIG. 10. Sc@1@q ge1d P
selected maximal t 1'

e as a function of aareal radius r, on
a ime s ices for the colla

Time and distanc
e co apse shown in Fig. 9

r
ance are measured ofanc in units of

the AH.
mic sca e in order to show the region inside

0
I

80 p 40
' I

1- j'M
S ~,/M

0 40
1;(M

FIG. 11. Same as Fig. 10, exce t calp g

future. Time and dista
o in egrate farther into the

n is ance are measured in
areal radius r, is lotted

in units of Mo. The
, 's p o e on a linear scale.

gion, but t~ethe grid coverage in the
sparse.

in e exterior is becoming

The SA method fails h b
accuracy far enou h t h

'
s ere ecause it ca

ug in o the future. A
annot maintain

be able to determi
e. Although one might

e ermine the wave form and
ergy by increasing the d

an radiated en-

so, this would be t 1

e gri covera e b ag y a factor of 4 or
e extremely costi in te

h bove simulation with 256 riov grid points requires
ime on a SUN S ar

grate to t = 90M .
parcstation 5 to inte-

s, i takes 32 CPU
1CPU h

At each time ste
d f i s ime moving the artie

1 t' t Th l
(At 2 10 M

ms. e ength of eac
0 at late times, usin g o )

In the AHBC method we no ion erg po

f th toth f t The u ure. The savin s in c
ecause we no longer have a C

tion and we no lo
ave a ourant limita-

onger need to move p
gri points requires onl

run omt =45M to3

of 4
eac time step is At 0.09

1 h '
h SA'n e method for

ermore, each step in the AHBC
a es an average of 0.4 CPU se op

o wi gri poin s. The initial data

e ac ole forms. At t~
e e wit the ~chwarzschild solution and

0.84

0.832—
(""

i

50 100 150
t

—0.8 I

50 100 150
t

0.4

0.84

0.8O6

50 100 150
t

0

—0.4

—0.8
I i I

i-'
I

50 100 150
t

FIG. 12. Mass coass conservation for the AHB
upper two plots the '

e C method. In the
e instantaneous mass

( o1id1i ) d }I
&

an e time-integrated ma
(dott d li ) ho
radii 80MO, 75Mo 50M

nes are s own versus coordinate time at coordinate
0, and 25Mo. Obs

radii see the outgoin 1

servers at smaller
u going pulse at earlier time

1 t bt dbe y extrapolatin the da
plots to r = oo. Time is

g e ata in the upper two
= oo. irne is measured in units of Mo0 ~

a constant scalar field, in agreement with

ass conservation is shown in Fig. 12. The

. Notice that values
e a i erent radii do not a

th t' 1 t' t . T}1
mass, although it is di

e s ep. e same is true or the scalar
i is i cult to see this &om the figure



COLLAPSE TO BLACK HOLES IN BRANS-. . . . I. 4225

because the scale of the Mg plot is much larger than
that of the Mz. plot. This small discrepancy is not due
to numerical error; it results from second-order terms
that are not accounted. for in the linear-order expressions
(2.64). These terms produce O(1/r) corrections to the
masses. It is interesting to note that the instantaneous
values of MT do not exhibit this error after the scalar
field has radiated away —the solid lines in the upper left
plot converge to the same value for t ) 175MO. This is
because in the final state the spacetime is Schwarzschild,
and in this case the second-order terms vanish [18]:

M (Ii
A / =1+—+O~ —

4 ~, GR, vacuum.
2r (r (5.7)

VI. CONCLUSION

By adopting an AHBC method we have avoided
the troublesome coordinate pathologies of singularity-
avoiding schemes used. in numerical relativity. We have
used this method to evolve spherically symmetric space-
times in Brans-Dicke theory. In particular, we have
treated Oppenheimer-Snyder collapse to a black hole
in both the general relativistic limit and in a regime
in which the scalar field effects are strong. We have
also tested our code against an independent method by
evolving scalar perturbations on a Schwarzschild back-
ground. Our code can handle black hole spacetimes that
contain gravitational radiation and is capable of main-
taining high accuracy for an arbitrarily long time. Al-
though we have restricted ourselves to spherical space-
times, our scheme does not explicitly utilize results spe-
cific to spherical symmetry (such as matching to an ex-
terior Schwarzschild metric). Accordingly, we feel that
generalizing the scheme to multidimensions holds con-
siderable promise.
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APPENDIX A: FINITE DIFFERENCE
EQUATIONS FOR SA METHOD

In this appendix we discuss the numerical details of
the SA method, including the finite difference approxi-
mations for equations found in Sec. II. The numerical
grid extends from r1 ——0 to ri „=r „. All variables
are centered at half-grid points r,.+1/2. Time steps are
labeled by the index n. We define the time derivative
operator

&[Y],"+i/2 —= (Y,i),"+i/.

Yn+ 1
+~n —1 i+1/2 i+1/2

Yn n —1

+ Yi+1/2

and a Laplacian-like operator that takes two arguments,

&[+y Y]q+i/2 = [(+Yr~),ra]i+i/2

3 3 i+1 2 2i+i i ( i+3/2 i+1/2 )

(Y,.+,/2
—Y~" i/2 l

2 2
+i/2 i 1/2 )

(A2)

Here Lt = t„+1 —t, and. X and Y are any variables
defined at half-grid points ri+1/2. The quantities X;
that appear in the finite difference expression for 'R are
obtained from X,".

+1&2 by linear interpolation in r .
We also d.efine an operator for a derivative with respect

to r2:

Q[Y]..„.= (Y. )..„. (A3)

This operator will only be used for variables that satisfy

Y„2 const1 + const2 x r 2 (A4)

Yn Yr~

(Y )~ i+i/2 i i/2—
2 2
i+1/2 i —1/2

(A5)

at all grid points ri and then interpolating linearly in r
to the half-grid points r;+i/2. To determine Q[Y],+i/2
at i = 1 we extrapolate linearly in r using the values of
(Y„~),"- at i = 2 and 3.

near the origin. Because all quantities are defined at
half-grid points, the finite difference approximation of
Q[Y]".+i/2 is obtained by first calculating
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1. Wave equation

The finite difFerence form of Eqs. (3.14) can be written

where

&X],+1/2 = '+1/24+1/2&X], +1/2
n Dn~i+1/2 i+1/2 & (A6a)

„+1/2 —ri „—1/2
(As)

&[Ill,"+1/2 = 2r'+1/2&,"+1/2 &[11]";+1/2—
(&";+,/2)'

Tn n

(A6b)

Notice that all quantities on the right-hand side of Eqs.
(A6) are evaluated at time step n. For a grid uniform
in r, these equations are second-order accurate in both
space and time.

Because of the way we have Gnite differenced the equa-
tions, we have already included the regularity condition
(3.15) at the origin, so this equation need not be im-
posed explicitly. A Gnite difference approximation of the
boundary condition (3.17), which is imposed at the out-
ermost grid point, is

and y is either II or (. This equation is second-order
accurate in space and time.

For a uniform Cartesian grid, the Courant stability
condition for the above difference scheme is

Ar

[P + 2o./A I

' (A9)

Lri
IA+2»*/-4'II) ' (A10)

where typically we choose e = 0.5 for accuracy.

where Lr = ri+1 —ri. For a variable time step and a
nonuniform radial grid, we use the stability criterion

yn+1 Xm»» —1/2 y~ (
+1/2 r . ~max 1/2 ( 1irn~2r. +1/2

ri .„+1/2

2. Constraints

The initial guess for @ is computed from Eq. (3.24).
We use the 6nite difference scheme

/ i+1/2~i+1/2
+[M]i+1/2 2 i+1/2Pi+1/2 Q[ P]i+1/2 + 4&i+1/2@i+1/2 ( T)i+1/2

2ri+1/2
(A11)

Since the evolution equation is only used for an initial guess, the stability of the scheme used to solve it is irrelevant,
and. the accuracy is only important for reducing the number of iterations needed to solve the constraints.

A second-order accurate finite-difFerence form of the momentum constraint (3.20) is

Zi+1/2 Zi —1/
r5 r5

i+1/2 i—1/2

s~(S„);
5ri 5 ~ r2 —r2i+1/2 i —1/2

~/
2~~' & ~'+1/2 ~' —1/2

4'i j i+1/2 i—1/2
(A12)

The quantities A, , II, , and P; de6ned on grid points i are determined from their values on half-grid points using linear
interpolation in r To determin. e Z3/2, we integrate from r = 0 to r = r3/2 using the fact that g, (, P, and S„/r obey
Eq. (A4) near the origin. The result is

Z3/2 ——

6 4
&3/2 3/2 t 115/2 —113/2 / ~113/2 & (5/2 —(3/2 t

8~(S,)3/2
—2T3/2 2 2 +

I5 5/2 3/2 ~ ~3/2 ) 5/2 3/2 )
(A13)

Equations (A12) and (A13) are solved for Z by starting at Z3/2 and working up to Z; +1/2. Because Eqs. (A12)
and (A13) depend on v/i through the scalar wave terms, we must solve this equation at every step in the iteration of
the Hamiltonian constraint.

The Hamiltonian constraint, Eq. (3.21), can be written

( s'il/2y ) ) ~(k)@p(k) (A14)

where the coefficients R(") do not depend on g. We solve this nonlinear equation by an iterative scheme. Let g be an
initial guess for g, and write @ = /[1 + (g —@)/g]. If we have a good initial guess, we can evaluate the right-hand
side of Eq. (A14) to first order in (g —@)/g. The result is
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6( '(t"0,. ),. = 4"').&'"'i"'"' '(p(k)&+ [1 —p(I)]@)
k

(A15)

We finite difFerence this equation as follows:

6~[ '0",@]; /. = 4,",/, ):&,' ', /, @,"','/, (I(I)&*+ / + [
—&(I:)1@'+/. ) . (A16)

3Z2
(1) '+1/2
i+1/2 6'+ 1/2 ~i+ 1/2

(A17a)

This is a tridiagonal set of linear equations that can be
solved for @. The coefficients R. 1/2 appearing in Eq.
(A16) are given by

6
R[r A, n];+,/2

A;+1/2) 3

2
II'+1/2 3 2+ 2* + (~r)*-+1/2

2
(A19)

8~= 0.',+1/2 Pi+1/2 +
P;+,/2 (A;+1/2) ( 2 + 3/~ )

~(2) Pa+1/2
i+1/2

i+1/2

&II
( )

4)II ~

i+1/2 8y2i+1/2

(A17b)

(A17c)

This is a tridiagonal system of equations, which is easily
solved by standard methods. The value of A at a grid
point i is obtained by linear interpolation in r .

There is no need to explicitly impose a boundary con-
dition at the origin. The boundary condition at infinity,
Eq. (3.27), is imposed at the outermost grid point. A
6nite-difference version of this equation

2
(4) f ri+1/2 Q[(]i+1/2 l

4'i+1/2 J
(A17d)

(rn), +,/, —r(n);
&rr1a,2c+1/2 2xna2c 1/2

(5)R, ,/, ————'R[r, (];+,/2, (A17e)

(r&)' ..+./. —(r@). ..-1/2
~i .„+1/2 —&i .„—1/2

= 1 ——[( II); /
—(rlI), / ] . (A]8)

After obtaining the initial guess Rom Eq. (All), we
iterate Eq. (16) until convergence. Because the variable
@ appears in Eq. (A12), we must recalculate Z at every
step in the iteration.

3. Lapse and shift

and the values of p(k) for k = 1, . . . , 5 are —7, —1, 5, 1,
and 1, respectively.

The boundary condition at the origin, Eq. (3.22),
is taken care of automatically by the finite di6'erence
scheme and does not need to be added explicitly. The
boundary condition (3.23) is imposed at the outermost
grid point. In finite difference form, this condition is

= 1+ —,
' [(rII), „+,/, —(rII); „,/, ] . (A20)

For the shift equation (2.24), we use the finite difference
approximation

~/
/ '+1/2

ri+1/2 ri 1/2 (ri+1/2— I

= ———'(I( )"i—1/2 )»i
(A21)

Pi „+1/2 2 (r~T)i „+1/2 + 2 (rll)i „+1/2 ~ (A22)

Equat1ons (A21) and (A22) are easily solved by starting
at i = i and proceeding down to i = 1.

APPENDIX B: INITIAL DATA FOR SA METHOD

If one chooses Schwarzschild coordinates such that

~2+gt2 + ~2~d~2 + p2dg2

where o. and KT at the grid points r; are calculated from
their values at the half-grid points by linear interpola-
tion in r . The finite difFerence form of the boundary
condition (3.28) is

Equation (3.25) is linear in n, and can be solved using
the finite diBerence approximation

then the Brans-Dicke field equations for a static configu-
ration of dust can be written in the form [23]

q
t' T l 1+r@' f 2 —2e ) (2+ w)r@'2

2A' = 8~r.e2~ & p+ 3+2~) 2+r @' ( r, ) 2+r @' (B2)
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q" = ——(1+e'A)+s~e'~ " + '
I p+

r~ 3+ 2cd 2 i 3+ 2ld)

C' = [ 2—r.g'+ —,'(r.g')2+ e —1],r, 2+v, (84)

where in Schwarzschild-like coordinates [32]:

—:in/ . (B5) (B17)

Here primes denote difFerentiation with respect to the
areal radius r„and we have chosen units such that P = 1
atr, =oo.

For a static distribution of particles with comoving
d.ensity p„ the source terms in the above equations are
given by

4ag'-~
1 — 2

1 + (2 + Q (( —1)
2

(B18)

(819)

(B2o)

(B6) The constants R, Q, and y are determined by matching
to the interior solution, subject to the constraint

Here
~'+ x* (i + -) —x~ —i = o

2
(B21)

u' =—upe~ In the exterior, the isotropic radius is given by

-0
(1 C,i) —1/2 (B9)

We can find the isotropic radius r from the relation

reAr'= (B10)

The amount of rest mass M, ,t enclosed within a radius
r, is given by

4 eAr2
M,',t =

u
(B11)

Near the center of the star, Eqs. (B2)—(Bll) reduce to

4~e-& r,' T() + ~ ~ ~

3 3+ 2'
4vre

—@'r2,( To

(B12)

(B13)

where u is the time component of the particles' mean
four-velocity field. If all particles are static, u = 1. If
particles are in randomly oriented circular orbits,

(B22)

Note that our parameter y corresponds to Matsuda's A/A
and Brans' C/A, and our parameter Q corresponds to
Matsuda's (1+A)/A and Brans' (1+C)/A.

To determine the complete solution for a star with a
given areal radius B, and a given density profile, we first
integrate Eqs. (B2)—(B4) and (Blo)—(Bll) from r, = 0
to r, = B,. These equations are ODE's and can be
integrated to arbitrary accuracy by standard numerical
methods. To perform the integration, we make an ar-
bitrary choice for p, (r, = 0), and we set D = 1 and
4o = @o = 0. We will later determine the true values
of D and go by matching to the exterior solution. The
value of Cp is completely arbitrary, and only serves to
determine the time coordinate.

After performing the integration, we match e and g'
to the exterior solution, thereby obtaining (s, the sur-
face value of (, as well as the parameters Q and y. The
quantity (s is given by

2m. e &Or2 t' To@=C'o+ '
i
po- I+"

3 ( 3+2~) (B14) where

ui(&s + ) + &2(s = 0, (B23)

2me +or2 ( To1+ '
i po+ i+. , (B15)

3 E 3+2
4m ppr,

Mrest 3
' + . . -

oi = e (1+ ~is, Qs), (B24)

The constants Q and g are found f'rom

~
-=-1- -" [1+"@'+(1+ -.

' )("4')'] (B25)

where a zero subscript indicates a value at the center.
The constants D, @o, and @o are determined by matching
to the exterior solution.

For the exterior solution, we match to the Brans type
I metric [31]. This solution can be expressed analytically

1 +(2 2( —A~

Q=

s(,e-~.
1 —(s2

(B26)

(B27)
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Knowledge of (s and y determines the value of Q at
the surface as calculated kom the exterior solution:

APPENDIX C: SOLUTION OF WAVE
EQUATION IN AHBC METHOD

vPs.„, = y 1n(s . (B28)

40 = X»(s —4s,„„, (B29)

and make the transformation

pMpe ', (B30)

r ~ re&',

M...~ -+ M„.,e40

everywhere in the interior. We transform the variables p,
T, and M„,i along with @ so that the quantities A, 4, r,
r„and g' remain invariant —this way we do not need to
recalculate (s, Q, and y &om Eqs. (B23)—(B27). This
invariance is easily verified by examining Eqs. (B2)—(B4)
and (B10)—(Bll).

Finally, we determine the value of B &om Eq. (B18)
evaluated at the surface

-R. (1 —&s)&s
'

4
(B31)

and we obtain the value of D by matching r, and r at
the surface:

B(1+(s) (B32)

Making the transformation r ~ Dr everywhere in the
interior completes the solution.

The various masses are found kom the exterior solu-
tion:

Ms = —Bx, (B33)

In general, this will not be equal to the value of @s ob-
tained from the interior solution, @s. .. because we chose

@{r,= 0) = 0 when integrating the ODE's. In order to
match the value of g at the surface, we define

In the AHBC method, the coordinate velocity of an
outgoing light ray, given by Eq. {2.68), is negative at co-
ordinate grid points located inside the CCH. Therefore,
in this region information propagates in the inward di-
rection with respect to the coordinates. In principle, any
quantity at a given grid point in this region is completely
determined by information that has propagated inward
from the exterior. This implies that no boundary condi-
tion should be imposed at the innermost edge of the grid,
since this edge lies in the causal future of the remainder
of the spacetime. We take advantage of this property
by calculating quantities at a given grid point inside the
CCH without using information from the region interior
to that grid point. Not only does this permit us to use a
numerical scheme in which information inside the CCH
cannot move outward, but it also &ees us from impos-
ing an explicit boundary condition at the innermost grid
radius.

Alcubierre [11] has constructed an implicit scheme
for solving the scalar wave equation in flat (1+1)-
dimensional spacetime, but in an arbitrarily moving co-
ordinate system. His scheme treats transitions between
regions of the grid where light rays can move in only one
coordinate direction, and regions in which they can move
in both directions. In the former regions, his scheme en-
sures that information propagates in only one direction.

We use a method based on Alcubierre's analysis, but
we do not use the same finite difference scheme. Like
his method, ours is imphcit, uses spatially averaged time
derivatives, and requires no rewriting of the 6eld equa-
tions in an inertial coordinate system. This makes it
diferent from the causal differencing method of Seidel
and Suen [9] and the causal reconnection scheme of Alcu-
bierre and Schutz [10]. However, while Alcubierre solves
the second-order wave equation for P using a scheme with
three time levels, we solve two coupled first-order equa-
tions [Eqs. (4.4) and (4.5)] for the variables 4 and II
using a two-level scheme. Directly solving second-order
equations (in time) is not very well suited for 3+1 numer-
ical relativity, in which one prefers to have initial data
defined on a single Cauchy surface, and one propagates
this data from one time slice to the next.

Mz ——B(2Q —g), (B34)
1. Finite difFerence eguations

M = 2B(Q —y) . (B35) We define the following time derivative operator 7~
that averages over the three nearest spatial grid points:

Given an areal radius B„a density pro6le
p, (r, ) /p, (0), and a prescription for determining the four-
velocities of particles such as Eq. (B9), the entire solution
is determined by only one parameter, the initial value of
p, (0) used to begin the integration [this is not the true
value of p, {0)because p, (0) is modified by the transfor-
mation (B30)]. To construct a solution with a particular
mass, we vary the initial value of p, (0) until Eq. (B35)
yields the desired result. This procedure can be thought
of as finding a root of a single (complicated) function of
one variable.

II"+ —II"
yA[v],". +"=—[1 —8;(1+A;)]

II"+' —II" rI". +' —rI".
+0 i+i i+1 +Op i—1 i—i

Lt At

where

gi+ i gi

rl2 fl2 —1
(C2)
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at = t"+' —t"

For a spatial grid uniform in q, we have A; = 1. The
above operator is second-order accurate in both space
and time. The quantity Oi is a numerical coefFicient that
describes the amount of spatial averaging, and is dis-
cussed further below. As discovered by Alcubierre, this
averaging is important for solving the wave equation in
the regime where the coordinate speed of outgoing light
rays is negative. For ei = 0 there is no averaging; the
time derivative at spatial grid point g; is computed using
only quantities at g;.

In order to average quantities in time, we introduce
the operator

s=PI2+ „D[~1,"+ .'DX],"
I

A [ l+i(2
)

ri+1/2

1
'Di(2 [p],"+,i, ,

ri+1/2

A [~1";+ii2
)

ri+1/2

(Cloc)

(Clod)

(Cloe)

(c1of)

A [y]~+i/2 i P n+i + ~n) (c4)

A [&]+i)2 —= 2(&+i+&") . (C5)

Because of our staggered grid, we use a three-point
derivative operator 'V and a two-point spatial derivative
operator 'Vi/2.

re re —1
D[&]' —= (&~)' =

pi+1 gi —1

+ q+, —q, (Y;—
'gi+ i gi i—

&I;+, —I;l
&&'+i —

&* J
Y;
'gi —i )

(C6)

'Di(2P ]' —= (&n)' =
gi+ 1/2 . Oi —1/2

(C7)

The operator 27 is second order accurate even for a
nonuniform spatial grid.

In vacuum, the wave equation (4.4) and (4.5) can be
written in the following implicit finite difference form us-
ing the above operators:

which is accurate to second order in Lt. Because most
of our variables, such as II, are defined on the spatial
grid points (ii, . . . , i „), but the variable 4 is defined
on the half grid points (isi2, . . . , i „+2), we deffne an
operator that averages over spatial grid points:

1
'Di(2[~1;+i). .

ri+1/2
(Clog)

IIn+ 1 IIn
[A [@]l"+"

Lt
——A„[A [C']]"+ (C11)

Notice that the coefficients defined by Eqs. (Clo) are
not centered at time step n+ 2, but instead are centered
at time step n. This is because the quantities cx, P, and
vP are only known at time step n when the wave equation
is solved. As a result, this difFerence scheme is only first
order accurate in time, although it remains second order
accurate in space (for a uniform spatial grid). However,
in the case where the metric coefFicients change much
more slowly than the wave variables II and 4, the scheme
becomes second order accurate in both space and time.

If one neglects the terms with S, X, and V in Eqs.
(C8) and (C9), and one assumes a uniformly spaced grid,
a Von Neumann analysis shows that the above difference
scheme is unconditionally stable. The terms containing
S, X, and V should not significantly affect stability be-
cause these terms do not contain derivatives of 4 or II.

The boundary conditions at the outer grid point, Eqs.
(4.6) and (4.7), can be written

(C8)

7 [II],". ~ = QD[A, [II]],". + ~ + P'D
~ [A, [4]],"+ ~

+SA, [A„[C]],". +",
' = ——'Di)2[Ai[C']1" "

——A, [Ai [4]],"-+'~' + —Ai [II] .
ri ri

(C12)

7~[O],". +,'(~2' ——W'D[Ai [4]],". +,']~,
' + XAi [4],".+i]~,

+UD, &, [A, [II]j"+,'&~,
' + VA, [A.„[II]]".+,'&,

' .

(c9)

The coefficients Q, P, S, W, T, U, and V are given by

Both of these conditions are imposed at i = i . For a
grid uniform in g, they are second order accurate in both
space and time.

2. Causal solution method

n

ri

n

(gn) 4r

(C1Oa)

(C1ob)

To solve the wave equation at each time step, we first
determine the location of the CCH to the nearest grid
point using Eq. (2.68). We then define a causal boundary
at ri~~ = rgB, which we place either at the CCH or the
AH, whichever is smaller.

Equations (C8) and (C9) together with the boundary
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conditions (Cll) and (C12) comprise a coupled system of
linear equations for the variables C . +1/2 and II,. +, where
i = (1, . . . , i „).Because there are a total of 2i „vari-
ables and only 2i —2 equations, the system is under-
determined. However, this is a shortcoming of our Gnite
difFerence approximation rather than a property of the
underlying differential equations. In the continuum limit,
Eqs. (4.4) and (4.5) together with the boundary condi-
tions (4.6) and (4.7) should uniquely determine 4 and II
everywhere in the spacetime region covered by our grid,
given appropriate initial data. No additional boundary
condition is needed at the inner edge of this region be-
cause no information can propagate outward from this
boundary.

This leads us to the following questions: Which of the
2i variables should be determined by the 2i „—2
finite difference equations, and how should we determine
the remaining variables?

For the moment, consider only Eq. (C8). For a par-
ticular value of i, this equation involves 5 grid points at
time step n and 5 grid points at time step n+ 1. These
are the points labeled by i, i + 1,i —1,i + 2, and i —2.
Figure 13(a) is a spacetime diagram showing these grid
points for the case i = 4, in a coordinate system where
oppositely directed photons move in opposite directions
on the grid. In this case, one traditionally uses Eq. (C8)
to determine II4+ in terms of quantities defined at the
other nine grid points.

Now consider the case in Fig. 13(b), in which the co-
ordinates are chosen so that both left-directed and right-
directed light rays move to the left. We could proceed
in the same way as we did in Fig. 13(a), and use Eq.
(C8) for i = 4 to determine II4+ . This approach should
cause no difBculty for either the stability or accuracy of
the scheme. However, we instead choose to exploit the
causal structure of the problem by using Eq. (C8) for
i = 4 to determine II3+ . In this way, quantities at the
point (i = 3, t = t +q) only depend on data from points
with i & 3. This would not be permitted for the case
shown in Fig. 13(a), since in that case, quantities at the
point (i = 3, t = t„+q) should be determined from infor-
mation that propagates &om both directions. However,
in the case shown in Fig. 13(b), information can in prin-
ciple only propagate to the left, a property which our

I

tn+1 0 0 0 0 0 0 0 O 0 0

0 0 0 0 ~ ~ 0 0 0 0

2 3 4 5 6 7

I1+1
0 0 0 0 0 0 0 0 0

(b)

tn 0 0 0 0 0 0 0 0 0

2 3 4 5 6 7

FIG. 13. Spacetime diagram showing the grid points in-
volved in Eq. (C8) for i = 4. This equation is centered at
the event (i = 4, t = t„+gy2), indicated by a cross in the
figure. The solid circles denote the grid points involved in
the equation; other grid points are shown as open circles. In
case (a), left-directed and right-directed light rays move in
opposite directions, as indicated by the light cone. In case
(b), left-directed and right-directed light rays move to the
left with respect to the coordinates.

scheme enforces.
We therefore adopt the following solution method: For

grid points i = 1, . . . , i~8, we solve for II, + and 4. +1/2

using Eqs. (C8) and (C9) centered at i + 1 and i + 3/2,
as in Fig. 13(b). For grid points i = icn+2, . . . , i „—1,
we solve for II, + and O.+z 2 using Eqs. (C8) and (C9)
centered at i and i + 1/2, as in Fig. 13(a). The quanti-
ties IIi „and 4; +1/2 are determined by the bound-
ary conditions (Cll) and (C12). Following Alcubierre,
we determine the two remaining variables, IIi~~+1 and
C', +s~2, by requiring the functions II(r) and 4(r) to be
smooth: we use quadratic interpolation to obtain the two
extra equations.

This procedure can be encoded into a single matrix
equation, which we write schematically in the form

r
X ~ ~ ~ ~

a o o o

~ ~ ~ ~
X ~ ~ ~ ~

X ~
X ~

~ 0 X ~ ~
~ ~ X ~

( ~m+1
@n+X

3/2

QYL+ 1

@ll+F
xc.g+1/2

IIn+ 1
icy+1n+C'...+3/.

IIn+1ie +2
4, +F

i~B+5/2

X ~ IIn+1
~ x)

imam+&/2 /

=RHS. (C13)
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The last two rows of the matrix equation represent
the boundary conditions (4.6) and (4.7), and the rows
corresponding to i = igB + 1 and i = icB +

&
represent

the two interpolation equations. All other rows represent
Eq. (C8) or (C9) for some particular value of i. All
quantities located on time slice t are absorbed into the
right-hand side (RHS) of the matrix equation. Nonzero
entries in the square matrix are indicated by either dots
or crosses. The single cross on the diagonal element of
each row denotes the grid point being determined by that
equation. The square matrix is band diagonal, so Eq.
(C13) is easily solved by standard inethods [21).

The above algorithm has the important property that
grid points inside the causal boundary cannot infIuence
grid points in the exterior. This is true not only in the
continuum limit, but in the discrete case as well. For
example, since II&+ appears in only one equation, it
must be determined by that equation; hence it cannot
possibly affect 4 or II at any other grid point.

Until now we have not specified the spatial averaging
parameter 0; that appears in the time derivative opera-
tor (Cl). Normally one would set 0; = 0, siiice averaging
time derivatives over space makes the difference scheme
dispersive. However, this choice is inadequate for the grid
points i = 1, . . . , icB, where we solve for II, + and 4.

+&&2

using equations centered at i + 1 and i + 2. This is be-
cause the matrix elements multiplying II,-+ and 4. +

&2

in rows i and i + 2 are small in magnitude compared to
other elements in the same row, so that when one inverts
the matrix to solve for these variables, one effectively
sums several terms that nearly cancel and then divides
by a small number. As a result, the matrix inversion is
unstable. To cure this, we set 0, = 1/(2+ 2A;) inside the
causal boundary r = rcB, so that there is a stronger cou-
pling between neighboring spatial grid points. Outside
the causal boundary, we do not need this coupling, so we
set 8; = 0. Using different values of 0; in the exterior
than in the interior causes no problem because the two
regions of the grid are causally disconnected, even in the
finite difference approximation.

Because we use an implicit difference scheme, there is
no stability limitation on the time step. However, for
accuracy it is useful to set the time step so that inside
the causal boundary, the past directed light cone of a grid
point at (i, t +i) contains the event (i + 1, t +iy2), as in
Fig. 13(b). In general, this requires the time step to be

(C14)

at the innermost grid point. We typically choose e = &.

APPENDIX D: AHBC SOLUTION
OF CONSTRAINTS

To solve for i/i and Z, we ffrst find the value of g at the
AH using the evolution equation (4.12). This equation
also provides an initial guess for g elsewhere. We use the
finite difference approximation

&l@t,
" = „' (&Wj,"+—2'@,") —4~,"&,"(~—~)," (Dl)

where the operator 17 is defined in Eq. (C6) and the oper-
ator 7" is given by Eq. (Al). This scheme is second order
accurate in space and time, even for a nonuniform grid
or for unequal time steps. The stability of the scheme is
irrelevant since the result is only retained at the AH —at
all other grid points, g is refined using the Hamiltonian
constraint.

Next, we solve the momentum and Hamiltonian con-
straints simultaneously using an iterative scheme. These
equations are coupled because Brans-Dicke scalar radia-
tion terms containing Q appear in the momentum con-

straint (4.8). Let g be an initial guess for i/i, and let Z
be an initial guess for Z. If we substitute

(1+
)

Z —ZlZ=Zi 1+
Z

(D2a)

(D2b)

into the constraint equations (4.8) and (4.9), and expand
to first order in the small quantities (@—g)/Q and (Z-
Z)/Z, the result is

larger than the grid spacing. Notice that a Courant-type
condition would produce entirely the opposite effect: if
one decreased the time step in Fig. 13(b) sufficiently, the
past light cone of the point (i = 3, t = t„+i) would not
contain the spacetime event (i = 4, t = t„+i~2). From
Eq. (2.68) we take the center of the light cone to be at
Ar = /34—t, so we impose the condition

Z,„+v/r(6$'r')
~

II„+
~

= 8~r4S„+ (5i/'r')
~

II„+-II@(dt i 4
— "s 2 ( II@ldr i

(D3)

4', gq+0q(&+ 2
l+& g -, +@4r) 3 Z Z2 COP+ —(4„+24)+ (4 +5II g )16 $2gsr4 4Q 8/2

9 Z
8 $2@7r4

4vr pr 2 (u112r 2 @s

A
. (D4)

Applying the same linearization procedure to the boundary condition at the AH, Eq. (4.10), we obtain



COLLAPSE TO BLACK HOLES IN BRANS-. . . . I. 4233

1 3 Z
2 4 tt)4r2P

1 Z 3 Z
at AH.

4 @3r2$ 4 $3r2P
(D5)

For the two other boundary conditions, we set the @ at the AH to the value obtained from the evolution equation,
and we use Eq. (4.11) at the outer grid point.

The constraints, together with the boundary conditions that they must satisfy, can be written in the Rnite difFerence
form

r ile .
'D, /, [Z];,/, + A„[Q];,/, A„[6@' '];,/, 'D, /, [II];,/, + A„

l i+1/2)

IIO~r= 8~~ [r'~.];+1/2 + ~[54"r'];+1/2 'Di/2[II]'+1/2 + ~ ~ ( )
i+1/2)

&'[0]'+ D[@]' I
1+ ' '

I
+ Z' — - + @'—C;r5 3 *,' ——,-;, + 4' (Di/2[@]'+ 2A [C']')

i

(dP 9 Z2
+ ",(A, [e],'+51I,'j;) =--, , ', ,

2

1 117 / [vjjr]; /
= 1 ——(Il,r;+II; r; ), i =i

~i-X/2
(D8)

1 3 Z.
&[@];+@; —,+-, -, ',

4 @4&2y.

1 Zi 3 Zi
4 q3&2y 4 q3&2y

z = 'LAH (D9)

(D10)

Here the operator 'V is de6ned by

&'[Y]'—= [Y, ]'= Yi+g —Yi

pi+1 gi —1 pi+1 gi

Yi —Yi

pi+1 gi —1 rti gi —1
(D11)

and the operators 17, 171/2, and A„are defined as in Eqs. (C5)—(C7). In the above equations, the averaging operator
A„ takes precedence over other operations, e.g. ,

A„[»']= A„[X](X„[Y])2.

Note that 27[17[Y]]g 172[Y], but, for an equally spaced grid,

(D12)

&1/2[&1/2[Y]l = &'IY] . (D13)

Equations (D6)—(D10) can be encoded into a single matrix equation:

X ~ ~ ~
X ~ ~

X ~ 0 4
X ~
~ X ~

~ ~ X 0
~ ~ X

ZeAH —1

AH

ZiAH

&AH

ZxAH+1

@&AH+1

=RHS. (D14)

~ ~ ) &~'.. )
Here crosses denote elements on the diagonal, and dots represent all other nonzero entries. The RHS matrix. does not
depend on @-- or Z, but does depend on the initial guesses Q and Z.
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Given an initial guess, we iterate the matrix equation (D14) until convergence, using the values of g and Z at
each step as initial guesses for the next step. The matrix equation is solved by a standard band-diagonal inversion
technique [21].

APPENDIX E: AHBC SOLUTION OF LAPSE AND SHIFT EQUATIONS

The lapse and shift equations, Eqs. (4.13) and (4.14), together with the boundary conditions (4.16)—(4.18), can be
written in the finite difference form

/'1+21)y] &. . . S~r2 t' T,1)2[n];+17[o.]; (

'
[

= n; -((K2),r;Q, ) + '
( p;+

~y,'. II2r,2. ~,
,
(1+1)[y],) (El)

z
+1/2 [X]i+1/2 + 2~[~]i+1/2+

i+1/2
(E2)

1/; —(F.). —(F.).' ' ' 1/;+(F.)'+(F.)'+(F )'
=0, z='LAH ) (E3)

Here X; —= /3;/r;, and

1 1Vl/2[Mr]i —1/2 1 + 2 (lliri + Hi —lri 1) &
1 = Xnxa~

+i—1/2

(KT); II;X;=
2 2

+ ) & —&max

s~ ( (s) l

(E4)

(E5)

(E6a)

s~ /(s „),
2 2 2 4

T,.

3+ 2ld
(F.6b)

(F,), =,(rl;@,'

+
'D, /, [4],

(KT );@;

$21)[II],
xj r;P;
@*&N'
ri i i

(@,'ll, —e,) .

(E6c)

(E6d)

The operators A„1)1/2, 17, and B are defined by Eqs. (C5)—(C7) and (Dll). The averaging operator A„has
precedence over other operations.

The lapse and shift equations are coupled because of the boundary condition (E3). To solve them simultaneously,
we write Eqs. (El)—(E5) as a single matrix equation:

X e e ~

X e
x,

~ ~ ~
X e

X e ~ ~
e X

e e e
X e

X;„„
+&AH

XRAH

&AH

& AH+1
+&AH+&

=RHS.

X X, .„
~ x) (n, ")

Here crosses denote elements on the diagonal, and dots represent all other nonzero elements. This equation is solved
for o. and X by a standard band-diagonal inversion method [21].
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