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Universal scaling and echoing in the gravitational collapse of a complex scalar field
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This paper studies the gravitational collapse of a complex scalar Beld at the threshold for black
hole formation, assuming that the collapse is spherically symmetric and continuously self-similar.
A new solution of the coupled Einstein-scalar Beld equations is derived, after a small amount of
numerical work with ordinary difFerential equations. The universal scaling and echoing behavior
discovered by Choptuik in spherically symmetrical gravitational collapse appears in a somewhat
difFerent form. The properties of the end state of the collapse are derived: The collapse leaves
behind an irregular outgoing pulse of scalar radiation, with an approximately Hat spacetime within
it.

PACS number(s): 04.20.Jb

I. INTRODUCTION

Recently there has been a lot of new interest in gravi-
tational collapse just at the threshold for the formation of
black holes, inspired by the striking numerical results of
Choptuik [1] on the spherically symmetric gravitational
collapse of scalar field configurations. Further numerical
results for vacuum relativity in axial symmetry by Abra-
hams and Evans [2] suggest that the phenomena discov-
ered by Choptuik is not just restricted to spherical sym-
metry, and a number of extensions have been proposed
[3-s].

Gravitational collapse has two kinds of possible end
states, according to current views. The first end state
consists of a black hole, plus some outgoing matter and
outgoing gravitational radiation. The second end state
consists of a stationary remnant star, plus some outgoing
matter and outgoing gravitational radiation, but no black
hole. The choice between these end states depends on
initial conditions; gravitational collapse ends in a black
hole only if the gravitational Geld becomes strong enough,
in the sense of the singularity theorems [9].

A third possibility, the naked singularity, is thought
not to occur (cosmic censorship conjecture [10]) but is
not rigorously ruled out.

The thought experiment employed by Choptuik, in the
context of numerical relativity, is to "tune" across the
critical threshold in the space of initial conditions that
separates the non-black-hole end state from the black
hole end state, and to carefully study the critical behav-
ior of various quantities at this threshold [1,11]. Among
the infinite number of parameters that characterize the
initial state, he chooses to tune a single convenient pa-
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rameter p that influences the strength of gravity in the
initial state. One could imagine that the threshold be-
havior would be intricate, and depend strongly on ex-
actly how one tunes across the threshold. However, he
finds impressive evidence that the threshold behavior is,
in important respects, universal.

For gravitational collapse of fermionic matter from
suitably regular initial conditions, the Chandrasekhar
mass sets the scale of minimum mass for any black hole,
as long as the initial conditions are sufIiciently regular.
Some condition on regularity of the initial conditions is
clearly necessary; otherwise, one could create black holes
of arbitrarily small mass with focused beams of ultra-
relativistic fermions, evading the threshold set by the
Chandrasekhar limit. Barring irregular initial conditions,
the black hole mass MBH(p) for fermionic configurations
therefore behaves in a simple and rather uninteresting
way at threshold: It is a step function of p.

For gravitational collapse of bosonic matter from reg-
ular initial conditions, one might have thought that
MsH(p) would likewise be a step function of p, with the
role of the absent Chandrasekhar mass being played by
some mass scale of the initial data. However, this is not
the case. In the spherically symmetric collapse of a mass-
less real scalar field P coupled to gravity, Choptuik finds
the power-law behavior

MiiH(p) oc (p —p*)~, p = 0.37,

at threshold, and conjectures that p might be universal.
For a massless scalar Geld with no self-coupling, no bound
star can exist, so that the end state consists of outgoing
scalar radiation, plus a possible black hole.

Furthermore, exactly at the threshold p*, he finds a
unique field configuration acting as an attractor for all
nearby initial conditions on threshold and so as an
"intermediate attractor" for all initial conditions. This
field configuration, which we will call a "Choptuon, " has
a discrete self-similarity, by virtue of which it exhibits a
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striking, recurrent "echoing" behavior: It repeats itself
at ever-decreasing time and length scales,

P(t', r')=
(n

(2a)
(2b)

(2c)
(2d)

(2e)

where (t, r) are spherical coordinates and A = ln 30 is a
constant belonging to the Choptuon, determined numer-
ically [1]. The solution is thus invariant under a discrete
family of scale transformations. This Choptuon is itself
regular, and acts as an intermediate attractor for a very
wide class of regular initial data in spherical symmetry.

Why study the field configuration exactly at thresh-
old? After all, we understand what happens just be-
low threshold (outgoing radiation) and just above (tiny
black hole plus outgoing radiation). Beyond the obvi-
ous fascination of the Choptuons, there are at least two
important motivations. First, Choptuons amount to a
new kind of counterexample to some formulations of the
cosmic censorship conjecture, a counterexample that can-
not be blamed on bad choice of matter fields. Technically
they are a counterexample because regions of arbitrarily
strong curvature are visible to observers at future null
infinity. One can always bypass this new counterexam-
ple by reformulating the conjecture for instance, to
specify that generically such behavior does not occur
but the more serious point is that Choptuons threaten to
obstruct any proof of the cosmic censorship conjecture
using the global theory of nonlinear partial differential
equations. Therefore it will be necessary to confront and
understand them.

Second. , and. even more importantly, Choptuons repre-
sent in principle a means by which effects of extremely
strong field gravity, even quantum gravity, can be observ-
able in the present Universe. An experimenter, tuning
across the black hole threshold in a succession of gravita-
tional collapses, should be able to observe events in which
some outgoing radiation appears from regions where the
spacetime curvature is as strong as the Planck value,
and where the quantum behavior of general relativity
or string theory may be studied. Therefore, the quan-
tum corrections to the classical Choptuon, or, indeed,
the quantum gravitational and stringy generalizations of
the Choptuon, demand study.

Striking though they are, the numerical computations
involving partial difFerential equations (PDE s) do not
give complete information about the Choptuons. For
instance, output is restricted to the domain covered by
the numerical coordinate system adopted, which may not
cover the whole domain of dependence of the initial data.
This makes it; hard to study the end state, the space-
time singularity to which the Choptuon collapses, and
the burst of radiation that it emits. Therefore it is valu-
able to find further Choptuons that can be studied by
analytic techniques or mostly analytic techniques, includ-
ing numerical solution of ordinary differential equations
(ODE's). Evans and Coleman [12] have proposed the idea

~(t, ) = (-t)'-f(- /t) (3)

where u is a constant to be fixed by a nonlinear eigenvalue
problem arising from the field equations. This field is
continuously self-similar: Under a scale transformation
by an arbitrary parameter A, it transforms solely by a
phase factor:

t'= e
—'t,

r=e r,—A

(4a)
(4b)

ds"= e-"ds'
P(t', r') = e

—' "P(t, r)
(0& A &oo).

(4c)
(4d)

(4)
This solution thus exhibits "linear" phase oscillations, a
form of the "echoing, " superimposed on an exact con-
tinuous scale symmetry. It is thus similar to, but "less
nonlinear" than, the solution of Choptuik [1].

We are able to construct a Choptuon as a nonex-
tendible spacetime, singular only at the single point
(t, r) = (0, 0), which evolves From regular initial data. A
burst of outgoing scalar radiation, irregular but of finite
energy, emerges just prior to the retarded time at which
the singular point forms at (0, 0), and explodes along the
future light cone of that point. The most surprising as-
pect of this Choptuon is that spacetime appears numeri-
cally to be Hat throughout the interior of the future light
cone of the singular point. Thus, in this example anyway,
a Choptuon leaves behind fIat space, with no numerically
measured radiation after the irregular outgoing burst.

Since a real P is a special case of a complex P, all of
Choptuik's numerical results immediately apply as spe-
cial cases to a complex field; in addition, we find that
there exist intrinsically complex Choptuons which do not
reduce to the real case. Which of these Choptuons is the
strongest intermediate attractor is an important ques-
tion not addressed in this paper; we will return to it in

of continuously self-similar Choptuons, a special case of
discretely self-similar Choptuons. In particular, they ob-
tained continuously self-similar Choptuons for the spher-
ically symmetric collapse of hot gas. The Evans-Coleman
configurations show the threshold behavior of MBH and
are intermediate attractors in spherical symmetry, but
do not show echoing. Continuously self-similar solutions
are convenient because they are governed by ODE's, not
PDE's. The greater numerical accuracy obtainable with
ODE's is desirable, not for its own sake, but because of
the light it may shed on the deeper questions of univer-
sality.

The subject of this paper is the behavior at thresh-
old in gravitational collapse of a complex scalar field P,
under spherical symmetry. The use of a complex scalar
field, rather than a real one, will allow "echoing" to oc-
cur in the form of phase oscillations: P changes phase,
but not amplitude, under a scale transformation. We
thereby construct and study a continuously self-similar,
complex Choptuon as solutions of the coupled Einstein—
scalar-field equations. In spherical coordinates (t, r) our
scalar field takes the form
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future papers. Preliminary numerical evidence by Chop-
tuik [13] seems to show that the real Choptuon is at least
not rendered unstable when complex degrees of freedom
are added.

cally symmetric, and admits a homothetic Killing vector
field [14,12] ( obeying

C(g~„ = V'„( + V' („= 2g„„,

II. FIELD EQUATIONS

t = t(t') (6)

of the time coordinate, and such a transformation can be
used to set n(t, 0) = 1 for t & 0 on the axis. By regularity
(no cone singularity), a(t, 0) = 1 on the axis for t & 0 as
well.

Matter consists of a free, massless, complex scalar field

P that obeys the wave equation

/=0,
while the Einstein equations are

1B„——g„B=SvrT„
2

= 8vr
I

VvPV P gv 7 ~V
1

We begin with the spacetime metric in the form used
by Choptuik [1]:

d82 — O, 2dt2 + /2dp2 + p2dg2 (5)

where n(t, r) and a(t, r) are functions of time and radius.
This is an example of a "radial gauge" because the area
of spheres (given by the coefficient of dA2) defines the
radial coordinate. The radial gauge breaks down at an
apparent horizon, and so another coordinate system will
need to be used if an apparent horizon appears. The time
coordinate is chosen so that gravitational collapse on the
axis of spherical symmetry first occurs at t = 0 and the
metric is regular for t ( 0. This metric remains invariant
in form under transformations

("8„=ta, + rB„

possibly after a further coordinate transformation, Eq.
(6). Equations (9) and (10) are implemented by Eqs.
(4a)—(4c). The metric functions are then of the special
form

n(t, r) = n( —r/t), a(t, r) = a( r/t). —

The minus sign is chosen so that r/t ) 0—where t &
0 to the past of the singularity. Dimensional analysis
(in classical general relativity, not quantum field theory)
suggests that P(t, r) should have dimensions (length)o.
Therefore, should we assume that P is invariant under

= 0 or P(t, r) = P(r/t)~ No, the global U(l)
symmetry must be accommodated too. Quite generally,
one must allow for spacetime symmetries to get mixed
up with internal symmetries; for instance, the Maxwell
equations for the potential A~ are conformally invariant
only in the sense that a gauge transformation be allowed
to accompany each conformal transformation. In this
case, we must allow some U(1) transformation, Eq. (8),
to accompany each scale transformation:

Z(P = ("0„$= uuP, (12)

under an infinitesimal scale transformation, or

P(t', r') = exp( —iur A) P(t, r),

which generates a continuous one-parameter family of
homothetic motions (self-similarities) on spacetime, Eqs.
(4). Here, 2 denotes the Lie derivative. In a coordinate
system, Eq. (5), ( may always be taken in the form

These equations amount tc. under the finite scale transformation, Eqs. (4), with cu a
constant of the solution.

This transformation law for P can be conveniently im-
plemented by adopting the form

G —12

&(t r) = (-t)' f(z).

The time coordinate t has now been redefined, Eq. (6),
so that the erst singularity of the collapse is at t = 0;
and a new independent variable z has been introduced
by(7d)ol, a= 4vr (B„Q*B,Q + 0„$0,(6*) .

1 1—B7.G= (7b)

2 (1 1 i (1 . 1
I

—~.n+ —&-a
I

= 8~ ~,~.0*~.4+ ,A4A4* ~, —
r

�0P

O. G G

(7c)

These equations admit global U(1) symmetries for a con-
stant A,

z = r/t;— (14)

P'=e* (8)
z is invariant under scale transformations, Eqs. (4). Also,
from Eq. (11),

leaving the metric invariant. A=0! Z
~

Q=G Z (15)

III. CONTINUOUS SELF-SIMILARITY

We now derive the form of the scaling transformations,
Eqs. (4), for the fields. We assume spacetime is spheri-

With the scale symmetry implemented by Eqs. (13),
(14), and (15), the next step is to solve the field equa-
tions. We can give initial conditions in the hypersurface
t = —1 and then evolve forward in time. It follows from
a theorem of Berger [15] that the Einstein equations are
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compatible with homothetic symmetry, in the sense that
scale-invariant initial data will always evolve to a scale-
invariant spacetime; therefore, the field equations ought
to have a solution.

Remarks should be made as to how suitable the as-
sumption of self-similarity is. Self-similar spacetimes
can never be asymptotically fiat [because the Arnowitt-
Deser-Misner (ADM) or Bondi mass would define a
length scale, breaking self-similarity]; furthermore, there
are some reasons to believe that self-similar spacetimes
can never be spatially compact [16]. Spatial compact-
ness is irrelevant here, but should not gravitational col-
lapse be modeled by an asymptotically Oat spacetime?
However, the self-similar solution should be interpreted
as a model of the gravitationally collapsing region out to
some radius B, where it can match smoothly onto a non-
self-similar, asymptotically Hat region. To anticipate, we

will find that our solutions always have a certain horizon
called the past similarity horizon; as long as the match-
ing radius B is outside the past similarity horizon, the
gravitational collapse that we study here will remain en-
tirely within the domain of dependence of the self-similar
region of the initial data. For instance, for the complex
Choptuon discussed below, a value B & 5.004 sufFices.

Transform the metric variables o., a to a new set 6, u
given by

b(z) = ~(z)/o(z)

u(z)= a (z) —1.

Under the similarity hypothesis, b = b(z) and u = u(z)
are functions of z—: r/t alo—ne. Under this transforrna-
tion, the metric, Eq. (5), becomes

ds = e 1(1+u) —(b —z )d7 + 2zd7. dz+ dz + z dO )
where 7 = lnt Follow. ing Choptuik's notation, represent P in terms of complex functions (4 (t, r), II(t, r)) where

(16)

where the functions q(z), p(z) are

4= B„P= (—t)* 'q(z),
II= —Ogg = —(—t)* 'p(z),

d
q(z) = —,

dz
o, f dfi.

p(z)= —
l
'~ f —'—

In ( dz)

The field equations now take the form

d &ql 1 (u+2 01 (ql 1 ( —z b l (P+ 0 l fq)'
~-r Ep)

' (17a)

db bu

dz z'
—„=( +1) 4-(lql'+lpl')
du—= —87r (u + 1)bRe (q*p),

)z (17c)

(17d)

where

P~ = z(d + u + 1,
—z2.

The boundary conditions are as follows. At z = 0, reg-
ularity of solutions on the axis of spherical symmetry
demands

b(o) = 1,
u(o) = o,

q(o) = o.

The boundary value P = p(0) of p is a free boundary
condition, and will henceforth be taken real and non-

negative by a global phase transformation of P, without
loss of generality. Integration of Eqs. (17) from z = 0 to
z = +oo is tantamount to solving the initial value prob-
lem in the spacelike hypersurface t = —1, along with the
further constraint equations that enforce self-similarity
on the initial data [15]. Evolution in t is then fixed by
self-similarity.

The wave equation (17a) has a singular point when
A vanishes, i.e. , when b(z) = z. This value of z will
be called z2, and the point will be called a similarity
horizon. It represents the null hypersurface in spacetime
where the homothetic Killing vector, timelike near the
axis, becomes null. The value of u there,

v. —= 1 —u(z2),
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is free, while b(z2) = z2 is of course determined by z2.
The Hat space wave equation provides a simple intro-

duction; see Fig. 1. Here the metric is

ds = —dt +dr +r dO

and the general spherically symmetric solution to the
massless wave equation is

where 1' and g are arbitrary functions. The homothetic
Kilhng vector is ( = tBq + rO and all self-similar solu-
tions, Eq. (3), are linear combinations of

The coordinates (w, z) have a singularity on the spacelike
hyperplane t = O. Yet another coordinate system for Hat
spacetime, regular at t = 0, is (p, v), where p = ln(r) and
v = 1/z = t/—r; the metric is

ds = e ~ —dv —2vdvdp+ (1 —v )dp + dO . (21)

const,
(q, p) const,

(22a)

(22b)

Returning now to the curved spacetime metric, Eq. (5),
analysis of the wave equation near z = z2 shows that q(z)
and p(z) likewise have a regular solution and an irregular
solution at the similarity horizon. The regular solution
behaves like

and the irregular solution behaves like

where f (
)(X4P+i)/K (23a)

(23b)

Here P+ is an outgoing wave, is regular at the past sim-
ilarity horizon z = +1, and is irregular at the future
similarity horizon z = —l. In contrast, P is an ingoing
wave, is irregular at the past similarity horizon z = +1,
and is regular at the future similarity horizon z = —1. All
solutions are regular at the hypersurface t = 0 or z = oo,
except at the single spacetime point (t, r) = (0, 0). Only
the linear combination P —P is regular at the origin
r = 0 of spherical coordinates (for all t g 0). We can
transform from the coordinates (t, r) to the coordinates
(r, z) where r = lnt Then the. metric becomes

ds = e —(1 —z )d~ + 2zdrdz+ dz + z dA I

(20)

This behavior is identical to the case of Hat spacetime
except for one aspect: the presence of the quantity

K =
dz ~=z,

in the exponent. For Hat spacetime v = 1. In a self-
similar spacetime, v. plays a role parallel to that of the
surface gravity of the event horizon of a black hole in a
stationary spacetime, and in this paper we will simply
call it the "surface gravity. "

The regular solution again represents outgoing radi-
ation crossing the similarity horizon, and the irregular
solution represents ingoing radiation propagating along
the horizon. Since the subject of study is gravitational
collapse from regular initial conditions, and since the sim-
ilarity horizon z = z~ is in the Cauchy development of
the initial data it is to the past of the earliest singular
point (t, r) = (0, 0) —regularity of P will be demanded
on the similarity horizon. This means that a linear com-
bination of q and p must vanish at z = z2,

P+g(z2) —P p(z2) = o—
so that, for instance, we can choose p(z2) freely as
a complex-valued boundary condition at the similarity
horizon, and q(z2) is then fixed.

To sum up, the free data for the system will be taken
as

FIG. 1. Coordinate systems in Minkowski spacetime. Ar-
rows show the homothetic Killing vector field $ = tB& + rB
Shown also are the past and future light cones of the origin;
in the terminology of this paper, these light cones are past
and future similarity horizons, where ( becomes null. For
coordinates z and v, see Sec. III.

P—:p(0) (real),
Z2 )

K = 1 —u(z2),
p(z2) (complex),

(25a)

(25b)
(25c)
(25d)

(25e)

amounting to six real constants. Solutions to the sys-
tem Eq. (17) must be found by searching in the six-
dimensional data space.
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IV. CONSTRUCTION AND PROPERTIES OF
THE COMPLEX CHOPTUON

The numerical methods we used followed Chap. 16 of

and one free boundary (at z = zz). e s o wi
adaptive s epd

' t ODE solver from each boundary point, to
meet at a point z~ in e mit the middle. The six free data values
were ad usted in an outer loop with a Newton's-met o
so ver or non if linear equations, the six non inear equations
being the matching conditions for the six ODE s ( ) a
zi. Convergence of Newton's method then identified a so-

with a Runge-Kutta integrator, while a Bulirsch- toer in-
te rator was subsequently used for higher precision. The
solution was then continued to larger z withou

'
hout the need

for further boundary conditions.
To enforce numerically the boundary condition on the

horizon is difficult, because the irregular part of P, w ic
1 an tet to annul vanishes anyway i

23 . Said dif-smaller K, the faster it vanishes; see Eq. (23). ai i-
ferently, the difBculty is that we want to start a pure y
regular so ution a e1

' t th horizon and continue it, ut the
unwanted irregular solution grows rapi yidl as it is contin-
ued away from the solution; this is a numerically unstable
situation. We handled this by computing analytically the
second derivative of the regular solution at z = z~, an
using a secon -or er ayd- d Ta lor expansion to start the so u-
tion there. venth . E n so we encountered numerical pro ems
for r + 1/3, as discussed in the Appendix.

A single new solution was found on a dodomain 0 & z (
z2, obtained with the ~values

0.4
0
O"
0.2 horizon

4

, (b)

4 6

FIG. 2. Behavior of the complex Chopo tuon the solution( z & 10. The pastfor ~ = 1.9154446, over the domain 0 & z & 1
at z = 5.0035380, and w wassimilarity horizon is locate at z2 ——

a The complexdetermine yd
'

d b demanding regularity there. a
b( ) d ( ) which represent the scalar field P.functions q z an p z w ic

The metric functions b(z) and u(z).

u = 1.915444 6 + 0.000 000 1,
P = p(0) = 0.67217263 + 0.0000004,
z2 ——5.003 538 0 + 0.000 000 2,

u(z2) = 1 —r = 0.397 072 05 + 0.000 000 03,

p(z2) = (0.020 305 3444 + 0 000 000 003) + (0.007 153 158 + 0.000 000 002) i .

1 Ch t "ItThis solution will be called the "complex Choptuon. Its
complex conjugate solution, with h 'gh the si n of u changed,
also of course exists. Figure 2 displays the functions q(z),
p(z), b(z), u(z) for the complex Choptuon.

We also found a solution at u = 0, corresponding to a
real scalar field P; this, however, is nothing but the ffat
(k = 0) Robertson-Walker cosmological model with a rea

of the numerical results are reportea in the Appendix.
The complex Choptuon solution was continued

smoo y pthl past z = z2 to large z. The nature of the point
ationz = oo on the z axis must now be clarified. Examina ion

on physica groun sh 1 d there should be no spacetime sin-
gularity here, since z = oo corresponds to the space i e
hypersurface t = 0, which should be regular except at the
axis, since it lies in the Cauchy development of the ini-
tial data. Any apparent singularity there must fall un er

dZ
dtU= b(z), ui = 0 at z = oo,

z
(26a)

q( ) ~~ . ..(q(z) l,
~iP(")r &p( )r ' (26b)

b(z)
V lO

z (26c)

D B) =G, Z (26d)

The spacetime metric, Eqs. (5) and (16), becomes

strong -suspicion as a coordinate singularity caused by a
bad choice of time coordinate, Eq.
deed the system of equations can be rendered regular at)

z = oo by the change of variables
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ds = e ~ ((1+u) [ d—iv + 2vdivdp+ (1 —v )dp ] + dO ), (27)

where p = lnr. Moreover, the scalar field written as Eq.
(3) appears irregular at z = oo, but can be written in a
regular form as

P(t, r) = r* E(iv), (28)

and (Q(iv), P(iv)) are derived in a regular way from
P(iv). In terms of the new independent variable iv, the
equations of motion become

d /Qi
div (P)

( v

1 —v2
11 (P+ 0 l (Ql

(29a)
GV = tl —1)
GGJ

4~(IQI'+ IPI') —u

= —8vr (u + 1)Re(Q*P).
O'M

(29b)

(29c)

(29d)

From the last two equations, u(iv) can be expressed as

u(~) = 4~[IQI'+ IPI'+ 2«e(Q*P)]. (30)

The point z = oo is now marked by v(iv) = 0, and the
system is clearly regular at this point. [The apparent
pole at v = 0 in Eq. (29c) is canceled by a zero in the
numerator, from Eq. (30).] The singular points v = +1
are, in contrast, true singular points of the system, and
are, respectively, the past similarity horizon at z = z2
and a new future similarity horizon.

Integration of Eqs. (29) is tantamount to integration
of the field equations in a timelike hypersurface r = 1.
Because of self-similarity, this in turn is tantamount to
evolution in a timelike direction of a whole spatial hyper-
surface 0 & r & oo, in the region outside of any similarity
horizons.

Numerically we proceed as follows. Having found a
solution for 0 & z & z2, we integrate it a little further in
z and then transform by Eqs. (26) to the iv variables. At
this point v is a little less than 1 and decreasing. Then we
integrate in iv (noting that the solution, if it approaches
iv = 0, always continues smoothly through) until one of
two things happen.

The first alternative is that u ~ oo at some point;
we interpret such a point as an apparent horizon in
spacetime, where radial gauge coordinates [which we use
throughout; see Eq. (5)] break down. Such an apparent
horizon probably means that the solution represents, not
a Choptuon, but a black hole that is growing by self-
similar accretion of scalar field. We believe that such
a solution, if continued further in a diferent coordinate
system, would always encounter a spacetime singularity
within the black hole, but we will not pursue this issue
here.

The second alternative is that v ~ —1 at some finite
m. We interpret this as a second, future similarity hori-
zon. The complex Choptuon behaves in this way. What

I

are the proper boundary conditions at the future sim-
ilarity horizon. Above, at the past similarity horizon,
we argued that P should remain regular because it arose
from regular initial conditions, and was not influenced by
the spacetime singularity to its future. That argument
does not hold here, because the future similarity hori-
zon is outside the domain of dependence of the initial
data; in particular, it is the Cauchy horizon of that do-
main. Observers on the future similarity horizon will see
data coming from the singularity, and indeed it is a very
interesting question to ask what they will see. There-
fore no boundary condition at all is enforced on P at the
future similarity horizon; (P, Q, P) may be an arbitrary
combination of regular and irregular solutions. This is
good, because we have already used up all our boundary
conditions at the axis and the past similarity horizon,
and we would be embarrassed to have to obey further
boundary conditions. However, we must still decide how
to continue the solution across the horizon, because the
horizon represents a singular point of Eqs. (29) and fur-
thermore is a Cauchy horizon in spacetime. Evolution
across a Cauchy horizon in classical general relativity is
never unique. Quantum considerations, which might fix
the evolution in some way, are beyond the scope of this
paper, though later papers will treat it. Therefore we
will continue with a conservative assumption about how
to evolve.

Drop self-similarity for a moment, and look at the gen-
eral boundary conditions for a wave equation in curved
spacetime. A test wave function P is allowed to have dis-

continuity, or a discontinuity in some higher derivative,
across the characteristic surfaces of the wave equation,
which are the null hypersurfaces of spacetime. However,
if the wave equation is coupled to gravity, a discontinu-
ity in value of P will cause an infinite-mass singularity,
and is therefore forbidden: T„(V'P) 8( ) . How-

ever, a discontinuity in the first or higher derivative of
P is allowed. In terms of the characteristic initial value
problem, the initial data for the wave equation on a char-
acteristic hypersurface are the value of P itself, but do not
include any derivatives of P.

We now assume that spacetime continues to be self-
similar to the future of the future similarity horizon. So
turn now back to our self-similar equations for P. The
matching rules for P at the future similarity horizon are
as follows. The wave function P must be continuous
across the horizon, to forbid an infinite-mass singularity
at the horizon. The regular part of P represents incoming
radiation crossing the horizon from the regular region ex-
terior to it. In contrast, the irregular part of P consists of
outgoing radiation originating very close to the spacetime
singularity, streaming along the similarity horizon. In to

coordinates, the wave variables (Q, P) of the irregular
part of the solution oscillate an infinite number of times
while approaching the future similarity horizon, and also
die as a power law if r & 0. However, if v. = 1, the ampli-
tude of the oscillations remains constant. The irregular
part of the solution is allowed to be discontinuous; that
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is, the amplitude of the irregular part of (Q, P) can be
difI'erent on the two sides of the horizon. This causes at
worst an (allowable) jump in the stress energy.

In general we expect to find that (Q, P) contains both
regular and irregular parts at the future similarity hori-
zon. Then the regular part must be continuous, but the
irregular part is allowed to jump arbitrarily. The solution
can still be fixed uniquely, if we are willing to postulate
that spacetime is smooth along the future time axis t ) 0,
r = 0. In that case, P and the spacetime geometry must
obey boundary conditions at the future time axis, which
are essentially the same as the boundary conditions we
have already imposed at the past time axis. Just count-
ing degrees of freedom in the boundary conditions, we
expect this boundary condition to Gx a unique solution
(or perhaps a discrete set of solutions).

However, at this point a numerical "miracle" happens
at the future similarity horizon. We find that for the
complex Choptuon, P is purely irregular there, so that
the regular piece of P vanishes, which entails that v = 1
(to an accuracy of 10 ), so that the future similarity
horizon carries initial data for flat spacetime with con-
stant P. In particular the mass aspect vanishes on this
null hypersur face.

Figure 3 displays the functions Q(tv), P(iv), v(tv),
u(tv). Note that, at the future similarity horizon marked
by v = —1, u = 0, which means the mass aspect vanishes
there; this is the numerical miracle discussed above. As
indicated in Fig. 4, the scalar field is irregular at the fu-
ture similarity horizon, and oscillates an infinite number
of times. A distant observer, measuring outgoing radia-
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FIG. 4. Same as Fig. 3, except that the horizontal axis is
now logarithmic, and shows ln(1+ v). (a) The complex func-
tions Q(iv), P(iv) which represent the scalar field P. They
oscillate infinitely many times in approaching the future sim-
ilarity horizon. (b) The metric functions v(z) and u(z), plot-
ted as ln(1 + v) and ln(u), both of which approach 0 on the
future similarity horizon.

tion in the scalar field, would see such a signal coming
from the threshold gravitational collapse.

Consider again the evolution of the solution to the
future of the future similarity horizon. In view of the
boundary conditions, we are allowed to choose an arbi-
trary irregular part just to the future of this horizon. The
choice of zero irregular part gives flat spacetime to the
future of this horizon. Any other choice will give a nega-
tive mass in this region, and will create a negative mass
naked singularity along the future time axis t ) 0, r = 0.
Because we are attempting to evolve across a Cauchy
horizon, the choice is not obligatory. However, the most
sensible choice is clearly the one that gives flat spacetime.
We therefore conclude that the complex Choptuon leaves
behind a flat spacetime to the future of the singular point
at (t, r) = (0, 0), to an accuracy of 1 part in 10s.

0.5 V. DISCUSSION AND OUTLOOK

La J L i i ' i i I I i 2 l l L l . L . i l J
0 5

FIG. 3. Behavior of the complex Choptuon, the solution
for ~ = 1.9154446, over the domain —0.8 & m & 10. The
future similarity horizon is located at the value z4 of z where
v(z) = —1. (a) The complex functions Q(iv), P(iv) which
represent the scalar field @. They oscillate infinitely many
times in approaching the future similarity horizon. (b) The
metric functions v(z) and u(z). Note that u(z4) = 0 to nu-
merical accuracy, showing that the solution matches onto Hat
spacetime at the future similarity horizon.

In Fig. 5, we show the interpretation arrived at for the
complex Choptuon. In region I, there is a collapsing ball
of a scalar field, bound by its own self-gravity; it acts
as a near zone for scalar radiation. The ball collapses
toward the spacetime singularity at the origin, shown as
a single point. As the ball collapses, the scalar Geld is
partially trapped by spacetime curvature, but also con-
tinually leaks out of the gravitationally bound region,
across, the past similarity horizon at v = +1, and radi-
ates outwards through regions IIa and IIb. The boundary
between regions IIa and IIb is the surface t = 0 in Chop-
tuik coordinates or z = oo. However, this is merely a
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coordinate singularity, and there is no physical boundary
between the two regions; they should be considered as a
single region II, which acts as a transition zone between
the near and far field for scalar radiation. Spacetime is
curved in region II, and in general some backscatter of
outgoing radiation to ingoing radiation is to be expected.
However, the numerical miracle discussed in Sec. IV in-
dicates that the backscattered ingoing radiation vanishes
exactly at the future similarity horizon v = —1, for rea-
sons that we do not understand. In any case, an irregu-
lar pulse of outgoing radiation propagates outwards, with
an infinite number of wave fronts piling up at the future
similarity horizon. This is the nature of the pulse that a
distant observer sees.

This irregular pulse originates in the "echoing" behav-
ior of the collapse in region I. Choptuik found the "echo-
ing" scale factor

in his real Choptuon, Eqs. (2). In the complex Choptuon
the echoing behavior is somewhat diferent, but the com-
parable scale for the solution to recur is measured by 2'
rad in the phase oscillation of P, so that

e = e ~ = 26.583086 + 0.000005,

a value which clearly divers from Choptuik's. Therefore,
this critical exponent 4 is not universal between the two
solutions.

There is an exact self-similar solution for a collaps-

FIG. 5. Interpretation of the complex Choptuon. The sim-
ilarity horizons lie at v = +1 (past) and v = —1 (future).
Dotted lines show peaks and valleys of one function represent-
ing the scalar 6eld [q for v ( —1, Q for v ) —1], to indicate
its oscillations; however, the U(1) phase rotation [(—t)' for
v ( —1, r' for v ) —1] is not shown. Region I is a collaps-
ing sphere of gravitationally bound scalar field; in regions IIa
and IIb this blends smoothly into an outgoing scalar wave.
The outgoing scalar wave oscillates infinitely many times, ap-
proaching the future similarity horizon at v = —1. Region III
is Hat.

ing pulse of real scalar Geld P in spherically symmetric
general relativity [18,20,3,4,7], found independently by
at least four groups. It would not be surprising to learn
of further independent discoveries. This solution, which
we shall call the Maithreyan-Christodolou-Brady-Oshiro-
Nakamura- Tomimatsu (MCBONT) solution, exhibits the
critical behavior of the black hole mass at threshold
[3,4,7]. However, the MCBONT solution appears differ-
ent from the Choptuons in important respects. It does
possess a past similarity horizon; however, the scalar field
P is not regular but irregular there, having a step in its
derivative. A closely related issue is that the MCBONT
solution does not evolve from regular initial conditions
for gravitational collapse. It remains to be seen whether
or not the MCBONT solution is an intermediate attrac-
tor. We shall return to this solution in a future paper.

In this paper we have worked exactly at the thresh-
old for black hole formation, and have not addressed the
critical behavior of the black hole mass, Eq. (1). This
critical behavior can be determined by first-order pertur-
bation theory around the complex Choptuon, just as it
can be addressed for the Evans-Coleman hot-gas Chop-
tuons [12,19]. Perturbation theory can also determine
whether or not the solution is an attractor. We will re-
turn to these issues in a future paper.

Region III, to the future of the singular point, is flat in
our solution, to our numerical resolution ( 10 ). Since
the future similarity horizon is a Cauchy horizon, evolu-
tion cannot be unique; according to classical relativity,
anything could come out of the singular point. However,
it is remarkable that the solution admits an evolution into
singularity-free and approximately Hat spacetime, and we
have argued that this is the preferred evolution.

Thus our solution provides one possible answer in clas-
sical gravity to the following question: What is the end
state of gravitational collapse at the threshold for black
hole production? The end state is an outgoing, irregular
pulse of radiation from the singular point in the wave
zone, together with a most conservative end state in the
near zone: approximately Bat spacetime.

Further physical insight about this question must ulti-
mately come from quantum gravity or string theory, since
strong curvatures comparable to the Planck value occur
near the singular point.

Note added. After this paper was submitted, Horne
[21] carried out new and more precise numerical work on
this problem. His early results show that spacetime is
not precisely Rat in region III; rather, u —8.49 x 10 on
the future similarity horizon, and P has a small regular
part ( 10 ) there. Horne also 6nds that the resultant
weak fields within region III can be constructed under
the assumption that spacetime is smooth along the future
time axis, as discussed in Sec. IV above. Physically this
means that backscatter into region III is very weak, but
does not vanish exactly.
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APPENDIX

In Table I we present all numerical solutions returned
by our algorithm. As explained in Sec. IV, accuracy is
lost near the past similarity horizon z = z2, because of
decay of the irregular part of P there, Eqs. (23). Physi-
cally we would like the solution P to be C at z = z2.
However, our numerical algorithm cannot distinguish be-
tween the degree of smoothness, C and C, because
Taylor expansions of the regular solution around z2 were
carried out only through second order. (If we had car-
ried them to nth order, the algorithm could distinguish
C" from C, but could not distinguish C +x.) In turn,
the degree of smoothness of the irregular solution de-
pends on K, Eqs. (23), in such a way that our algorithm
is reliable for K ( 1, but loses reliability for r 1/3.
The solutions marked "Reliable'? No" in Table I all have
K 1/3 and therefore we do not know whether P is irreg-

TABLE I. Numerical solutions found. The solution is
started at z = 0 with values (d and P. The past similarity
horizon appears at z = z2. All solutions marked "Reliable?
No" have gc 1/3 there, and hence may have lost accuracy.

0.0

0.0
0.15265
0.29825
0.43076
0.55509
0.68307
0.81757
0.94825
1.04980
1.91544

P zq Reliable?
0.16286 1.10668 Yes

0.21412
0.23468
0.24502
0.25919
0.27670
0.29923
0.32998
0.37269
0.44740
0.67217

1.24793 No
1.35664 No
1.40583 No
1.47793 No
1.57717 No
1.72316 No
1.97453 No
2.49240 No
4.56352 No
5.00354 Yes

Interpretation
Robertson-Walker
solution
Black Hole?
Black Hole?
Black Hole?
Black Hole' ?

Black Hale?
Black Hole' ?

Black Hole?
Choptuon?
Choptuon'?
Complex Choptuon;
see Sec. IV

ular and C or regular and C, at z = z2 for them. The
"Interpretation" depends on the behavior of the solution
outside the past similarity horizon at z = z2. Solutions
marked "Black Hole" encounter a numerical singularity
that appears to be an apparent horizon. Such an appar-
ent horizon probably means that the solution represents,
not a Choptuon, but a black hole that is growing by
self-similar accretion of scalar fields. Solutions marked
"Choptuon" encounter no such apparent horizon, but do
encounter a future similarity horizon.
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