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Extended family of the electrovac two-soliton solutions
for the Einstein-Maxwell equations
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The complex Ernst potentials for a family of two-soliton solutions of the Einstein-Maxwell equa-
tions in which 6 arbitrary complex constants correspond to 12 arbitrary relativistic multipole mo-

ments are constructed. Two new asymptotically Hat members of this family are pointed out repre-
senting the exterior 6elds of binary systems of identical Kerr-Newman masses and of Kerr magnetized
masses.

PACS number(s): 04.20.Jb

I. INTRODUCTION

The construction of exact axisymmetric solutions of
the Einstein-Maxwell equations possessing the prescribed
physical properties means the obtaining of solutions in
which the arbitrary parameters would correspond to the
arbitrary relativistic multipole moments determining the
physical structure of space-time. That this objective is
not always achieved by the known solution-generating
techniques may be illustrated, e.g. , by Aleksejev's elec-
trovac solution [1],where 12 arbitrary parameters do not
represent 12 arbitrary multipole moments, so that the
solution is only valid for the description of the exterior
field of two superextreme Kerr-Newman sources and not
of charged stationary black holes. An analogous solu-
tion was obtained by Guo and Ernst [2] by application of
two successive Cosgrove transformations [3] to Minkowski
space, in which the multipole moments are subjected to
the same restrictions as iii Ref. [1].

On the other hand, the problem of the physical inter-
pretation of the parameters does not appear if the start-
ing point in the construction of an electrovac solution is
the axis behavior of its Ernst complex potentials Z and
4' [4], since the arbitrary parameters introduced in this
way guarantee the arbitrariness of the respective rela-
tivistic multipole moments, thus allowing a priori justifi-
cation of the search for that particular solution. Among
the difFerent pseudopotential approaches [1,5—7] devel-

oped up to now on the basis of the Kinnersley-Chitre
transformations [8] for the Einstein-Maxwell equations it
appears that Sibgatullin's integral method has one "in-
born" advantage with respect to other techniques, since
it admits to know from the very beginning which physi-
cal situations will be describing electrovac solutions to be
constructed with its help because it is exactly the choice
of axis data for a solution, i.e. , the introduction of the
parameters representing certain arbitrary multipole mo-
ments, that constitutes the first necessary step in this
method. In a series of papers [9,10] Sibgatullin's method
was used to obtain the first known physically meaning-
ful asymptotically flat solutions representing the exterior
field of a magnetized spinning mass, and a common fea-

ture of the solutions &om Ref. [10] is that all these are
characterized by the axis data of the form

2z + aiz+ u2

"+6,.+6,

e(p = o, z) = z'+ b, z+ 62

p and z being the Weyl-Papapetrou cylindrical coordi-
nates, and ap, bp, cI„k = 1, 2, being six arbitrary com-
plex parameters, a particular choice of which leads to
particular solutions from Ref. [10].

Since some other known solutions (among which are
those from Refs. [1,2]) are defined by axis data of the
form (1.1) with some restricted values of the parameters,
it is the aim of our paper to give the general expressions
of the potentials E(p, z) an'd 4(p, z) satisfying the Ernst
electrovac equations [4] and reducing at the symmetry
axis to expressions (1.1). As two new particular exam-
ples obtainable from the general formulas, which may
exhibit physical interest, we give the electrovac solutions
for the exterior fields of the simplest binary systems of
the identical Kerr-Newman masses and of identical Kerr
masses endowed with magnetic dipole moment.

II. THE COMPLEX POTENTIALS
OF THE EXTENDED TWO-SOLITON

SOLUTION

The construction of the complex Ernst potentials cor-
responding to a given axis data is a straightforward pro-
cedure in Sibgatullin s method, the details of which can
be found in Refs. [7,9]. In what follows, we restrict our-
selves by only giving a compact determinant form of the
electrovac solution resulting after the application of this
method to the particular axis data (1.1). The solution
was found to be
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r„= "I/p2+ (z —n„)2, n = 1, 2, 3, 4, (2 2)

whereas the remaining constant coeS.cients are intro-
duced in the following way.

The constants n are the roots of the fourth-order al-
gebraic equation

S(() = ( + Re(ai + bi)(
+[cici + Re(aibi + a2 + b2)](
+Re(aib2 + a2bi + 2cic2)(
+Re(a2b2) + c2c2 ——0, (2.3)

where an overbar denotes complex conjugation, and Re
() stands for a real part of the respective complex ex-
pression. Parameters Pi and P2 are the two poles of the
common denominator of 8 (p = 0, z) and 4'(p = 0, z) in
(1.1), thus being the roots of the quadratic equation

D(() = ( + bi(+ b2 ——0 . (2.4)

The f (a ) are given by

a2 + bye„+ b2
(2 5)

and H~(n ) are defined by

HH~ Q~) = I = 1, 2
A'~

(2.6)

where

where the dependence on the coordinates (p, z) is deter-
mined by the functions

f ( 1)l+i 1Pl + 2

Pi -P2 (2.7)

e~ and f~ being the coefBcients in the simple fraction de-
compositions of the functions f(p = 0, z) and 4(p = 0, z),
respectively.

Formulas (2.1)—(2.7) fully determine the electrovac so-
lution satisfying the Ernst equations [4] and correspond
to the axis data (1.1). The latter axis expressions are
recovered from (2.1)—(2.7) by setting r = z —n [i.e. ,

p = 0, z & max(Re(n ), n = 1, 2, 3, 4j].
Some remarks regarding Eqs. (2.1)—(2.7) might be rel-

evant. First of all, the above determinant form for the
potentials E' and 4 was obtained assuming that all four
roots a of Eq. (2.3) are of multiplicity one. If this con-
dition is not satisfied, the numerators and denominators
in the expressions for E and C may become zeros. Nev-
ertheless, the general formulas still work, but then the
application of I'Hopital's rule is required to take the ap-
propriate limits [such a situation arises for some specific
relations between the parameters in the axis data leading
to multiple roots of Eq. (2.3)]. L'Hopital's rule also allows
in principle treating the case of the double pole (Pi ——P2),
as well as some special cases when a may coincide with
one of the poles Pi or P2. Then it is only necessary to
make a common denominator in the expressions for E'

and 4, and apply this rule to obtain the limit. However,
because such a procedure turns out to be an extremely
complicated and tedious one, it is by far easier to repeat
the derivation of each particular solution not obtainable
directly from the above general formulas, starting from a
particular axis data, since Sibgatullin s method provides
a straightforward recipe applicable to any special case (in
the second and third papers of Ref. [10] the solutions had
only one double pole).

It is not diKcult to show that six arbitrary complex
constants in the axis data (1.1) de6ne 12 arbitrary rel-
ativistic Simon s multipole moments [ll], namely eight
gravitational and four electromagnetic multipoles. In-
deed, using the notation of Hoenselaers and Perjes [12] for
the gravitational moments m, , i = 0, 1, 2, 3 [Re(m;) and
Im(m;) represent, respectively, the mass and angular-
momentum multipoles] and electromagnetic moments
q~, j = 0, 1 [Re(q~) and Im(q~) stand, respectively, for
the electric and magnetic multipoles], the axis expres-
sions (1.1) can be rewritten in the form

Z(p = o, z) = (. -. ,/-. )(.+,/ .-M.—,/M„)-
(z + mo —mi/mo) (z + mi/mP —Mso/M2P) ™/mo

(2.8)

qp(z + mi/mo —Mso/M2o) + qi —qo(mi/mp)
(z + mo —mi/mo) (z + mi/mp Msp/M2Q) —M2Q/m



EXTENDED FAMILY OF THE ELECTROVAC TWO-SOLITON. . . 4189

where

2
M2p = m2mp —mi lvI3p: m3mp —mimi (2.9)

It is clear that some physical restrictions may be im-
posed on m; and q~, which decrease the number of ef-
ficient arbitrary parameters. Indeed, by demanding the
asyinptotic flatness of solutions (2.1) i.e. , Im(mo) = 0,
the absence of the magnetic monopole moment [Im(qo) =
0] and choosing the origin of coordinates in the center
of mass [Re(mi) = 0], we already have nine arbitrary
multipoles and consequently nine efBcient parameters in
(1.1). If, for instance, one is interested in solutions pos-
sessing the equatorial symmetry, then one should further
set Re(ms, qi) = 0, Im(m2) = 0, so that solutions (2.1)
with such additional symmetry are defined in general by
only six arbitrary real parameters corresponding to six
arbitrary multipole moments.

Let us mention some known solutions that are included
in formulas (2.1)—(2.7) as particular cases.

(A) To see how solutions obtained by Aleksejev [1] and
by Guo and Ernst [2] are contained in our formulas, we
should first make a remark on the admissible values of
the parameters n„ in (2.1). These, being the roots of the
algebraic equation (2.3) with real constant coefficients,
can assume real values or be pairs of complex conjugate
roots. So the following three general cases are possible:
(i) all four n are different real roots of Eq. (2.3); (ii)

are two real roots and a pair of complex conjugate
roots; (iii) n are two difFerent pairs of complex conju-
gate roots. It is the third case that corresponds to the
Aleksejev and Guo-Ernst solutions. Because o.„are com-
plex, these solutions do not represent the exterior fields
of black holes but of superextreme objects (the interpre-
tation given by Aleksejev to his solution was the super-
position of two superextreme Kerr-Newman sources). It
is clear then that 12 arbitrary real parameters entering
the above-mentioned solutions do not represent 12 ar-
bitrary multipole moments, the solutions not reducing
to the axis expressions (1.1) with six arbitrary complex
constants (but with some restricted values of al„bg, cq).
Therefore, it is natural to call the solution defined by
Eqs. (2.1)—(2.7) the extended electrovac two-soliton solu-
tion.

(B) In the absence of an electromagnetic field (ci
c2 ——0) we coine to the vacuum solution, which is equiv-
alent to the double Kerr solution constructed by Kramer
and Neugebauer [13] with the aid of the Backlund trans-
formations [14]. In this case 4 = 0, and the expres-
sions for E+ simplify considerably since now Hi(n ) and
H2(n ) can be replaced by

(C) The recent new solutions &om Ref. [10] are also
particular cases obtainable &om the general formulas
(2.1)—(2.7). Some of these solutions, being the electrovac
generalizations of the Kerr [15] and Kerr-Newman [16]
black-hole solutions, admit a very simple representation
due to the additional equatorial symmetry they possess.
In the last paper of Ref. [10] a five-parameter solution
for a charged, magnetized, deformed, spinning mass was
constructed; it follows &om the above remarks on the
multipole structure of solution (2.1) that the former so-
lution can be generalized to include only one additional
parameter standing for an arbitrary angular-momentum
octupole moment without breaking the equatorial sym-
metry.

III. THE PARTICULAR ELECTROVAC
TWO MASS SOLUTIONS

Formulas (2.1)—(2.7) from the preceding section admit
solutions representing the exterior fields of a single com-
pact source or binary systems of compact objects. The
mell-known vacuum two mass solution contained in these
formulas is the double Kerr solution [13] the detailed
analysis of which was given in Ref. [17] (see also refer-
ences therein). In what follows we shall point out two
electrovac two-body solutions contained in the general
formulas and describing the systems of two Kerr-Newman
objects and of two magnetized Kerr's masses.

A. The simplest solution for a binary system
of identical Kerr-Newman sources

This solution is defined by the axis data of the form

(z —k —m —ia) (z —k + ~ —io, )E(p = O, z) =
(z+k —m —ia)(z+k+m —io,)

'

(3.1)

C(p = O, z) = 2q(z —ia)
(z —k+ m —ia)(z+ k+ m —ia) '

Hi(n„) = 1 1
H2(n„) =

o.„—Pi
' —P2

(2.10)

It follows then that the constants n„and P~ may be
considered as arbitrary real or complex parameters, pro-
viding in the general case eight eKcient real parameters,
since o. can occur only in the complex conjugate pairs.

where the parameters I,, a, q, and A: are associated, re-
spectively, with the mass, angular momentum per unit
mass, electric charge, and distance of each source from
the origin of coordinates.

Equations (2.1)—(2.7) then lead after rather laborious
calculations to the following elegant expressions for the
complex potentials 8 and 4 written in Kinnersley's form
[18]:
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A —B C''- A+B A+B
A = r+{[a (k —4m + a + 3q2) —d(m2 —a2 —q2)](R r+ + R+r )

+i aK (3m —k —a —2q —d) (R r+ —R+r ))
([a (k —4m + a + 3q ) + d(m —a2 —q2)](R r + R+r+)

+iaK+(3m —k —a —2q + d)(R r —R+r+)) + d(m2 —k2)(m2 —q2)(R+R + r+r ),
B = mK+v (2d[(m —q )(R+ + R —r+ —r ) —&+K (R+ + R + r + r )]

+iad((r+ + K )(R+ —R ) + (~+ —~ )(r r+)]
+ia(5m —k —a2 —4q2)[(r+ + K )(r+ —r ) + (K —& )(R R )])

C = qB/m,

R~ = gp + [z+ (K++K )], r~ ——gp + [z+ (K+ ~ )]2

"+ =—~(m'+ "' —a' —2q' + d) /2, d —= g(k' —m'+ a')'+ 4a'(q2 —m2) .

(3.2)

This solution, with q=O (the absence of electric field), represents the nonlinear superposition of two identical Kerr
objects. With k = m, formulas (3.2) reduce to the usual Kerr-Newman solution [16] possessing the total mass 2m,
total charge 2q and total angular momentum per unit mass a.

The first four relativistic multipole moments of solution (3.2) have the form

mo = 2m, mi ——2ima, m2 ——2m(k —m —a ), ms ——2ima(3k —3m —a ),

qo = 2q, qi ——2iaq, q2 ——2q(k —m —a ), qs ——2iaq(3k —3m, —a ),
(3.3)

whence it is seen that the solution is asymptotically Qat and symmetric with respect to the equatorial plane. Formulas

(2.1)—(2.7) also contain as a particular case a more general solution representing the superposition of two arbitrary
Kerr-Newman sources (without any restrictions on the multipole moments), which does not possess, however, the
equatorial symmetry in general.

B. The simplest superposition of two magnetized Kerr solutions

This solution is determined by the axis data

(z —k —m —ia) (z + k —m —ia)
E'(p = 0, z) =

(z —k+ m —ia) (z+ k+ m —ia)~ ~

2ib
4(p = O, z) =

(z —k + m —ia)(z + k + m —ia)

(3.4)

where the parameters m, a, and k again stand, respectively, for the mass, angular momentum per unit mass, and

location of each source on the symmetry axis, while 6 is the magnetic dipole parameter.
The corresponding potentials E' and 4 can be shown to have the form

A —B C
A+B ' A+B

A:—K+([a2(k —4m + a ) + b —d(m —a )](R+r + R r+)
+iaK (k —3m + a + d)(R+r —R R+))
r{[a (k —4m —+a )+b +d(m —a )](R+r++R r )

+iav+(k —3m + a —d)(R+r+ —R r )) + d(b —k m + m )(R+R + r+r ),
B = 2mv+r. (d[m (R+ + R —r+ —r ) —e+v(R+ + R + r. + + r ))

+ia[(r++ K )(k —2m —K+r. )(r —r+) + (~+ —r. )(k —2m + ++K )(R+ —R )]),
C—:2b~+v. {i[(r++ K )(k —a —K+~ )(r+ —r )

+(r+ —K )(k —a + r+K )(R —R+)]+ ad(r+ + r —R+ —R ))
R~ = Qp'+ [z + (v+ + ~ )]', r~ =—Qp'+ [z + (~+ —K )]',
r~ = Q(m2 + k2 —a2 + d)/2 d = Q(k2 —m + a )2+ 4(b —a2m, )

(3.5)
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In the absence of magnetic field (6 = 0) this solution, like solution (3.2), represents a nonlinear superposition of two
identical Kerr masses. Because of the additional parameter b, formulas (3.5) describe a binary system of magnetized
Kerr objects, which is symmetric about the equatorial plane. The first four multipole monients of solution (3.5) have
the form

mo ——2m, mi ——2ima, m2 ——2m(k —m —a ), ms ——2ima(3k —2m —a ),

qo ——0, qi = 2ib, q2
———4ab, qs ——2ib(k —m —3a ),

thus supporting the above interpretation of the parame-
ters m, a, k, and b in the axis data.

Formulas (2.1)—(2.7) are also appropriate to treat the
case of two arbitrary Kerr masses possessing an electric
charge and magnetic dipole moment. However, the more
general case does not admit a simple representation sim-
ilar to Eqs. (3.2) or (3.5), since the latter have been ob-
tained supposing an additional, equatorial symmetry of
the respective solutions which is absent when the sources
are not identical.

IV. CONCLUSIONS

Therefore, the extended family of the electrovac two-
soliton solutions defined by Eqs. (2.1)—(2.7) is a rather
vast family of exact solutions of the Einstein-Maxwell
equations, which contains the particular members with
already very well-established physical reputation (the
Schwarzschild, Reissner-Nordstrom [19], Kerr and Kerr-
Newman black-hole solutions, the double Kerr solution of

Kramer and Neugebauer), as well as some other solutions
recently obtained, which may exhibit potential physical
importance. The exterior fields of charged spinning su-
perextreme compact objects are described by particular
solutions from Refs. [1,2]; at the same time; the general
formulas also allow treating the "normal" case due to the
correspondence of the parameters in the axis data (1.1)
to arbitrary relativistic multipole moments.

In our future paper Sibgatullin's method will be ap-
plied for the construction of the extended N-soliton elec-
trovac solution, which will involve already 6N arbitrary
real parameters corresponding to 6N arbitrary multi-
pole moments (the solution will generalize the known
¹oliton solution [1,20] which is characterized by a re-
stricted set of multipoles). We believe that the extended
%-soliton family may become a powerful tool in treating
the problem of the correct description of exterior fields of
real astrophysical objects, even though the "extraction"
of particular physically interesting solutions out of the
general formulas will need much more eKorts than in the
% = 2 case.
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