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Nonlinear instability of Kerr-type Cauchy horizons
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Using the general solution to the Einstein equations on intersecting null surfaces developed by
Hayward we investigate the nonlinear instability of the Cauchy horizon inside a realistic black hole.
Making a minimal assumption about the free gravitational data allows us to solve the field equations
along a null surface crossing the Cauchy horizon. As in the spherical case, the results indicate that
a diverging influx of gravitational energy, in concert with an outflux across the Cauchy horizon, is
responsible for the singularity. The spacetime is asymptotically Petrov type N, the same algebraic
type as a gravitational shock wave. Implications for the continuation of spacetime through the
singularity are briefly discussed.

PACS number(s): 04.20.Dw, 04.70.—s, 97.60.Lf

I. INTRDDUCTIDN

What are the generic features of gravitational collapse?
We do not, as yet, have a complete answer to this ques-
tion; however, most relativists are con6.dent that gravi-
tational collapse leads to the formation of black holes (at
least within the astrophysical context). Furthermore it
is plausible that the external Beld of such a black hole
settles down to a member of the Kerr-Newman family,
since these are the unique stationary solutions of the
electrovac Einstein equations (see for example [1]). Ex-
ternally, deviations from these solutions are expected to
die away with an inverse power-law in advanced time
leaving only the mass, charge, and angular momentum
observable. A question which one might hope to answer
is whether such a property continues to hold inside the
black hole —that is, does the internal geometry also ap-
proach Kerr-Newman form'? It seems not [6—8].

The known exact black-hole solutions possess Cauchy
horizons —null hypersurfaces which are the boundary of
the future domain of dependence for Cauchy data of
the collapse problem. These horizons exhibit highly
pathological behavior; small time-dependent perturba-
tions originating outside the black hole undergo an in-
finite gravitational blueshift as they evolve towards the
Cauchy horizon (CH). This blueshift of infalling radia-
tion gave the first indications that these solutions, which
so well describe the exterior geometry at late times, may
not describe the generic internal structure. Penrose [2]
pointed this out more than twenty-five years ago, and
since then linear perturbations have been analyzed in de-
tail [3]. These observations led to the conjecture that a
scalar curvature singularity would form either at or before
the CH once back reaction was accounted for.

Poisson and Israel [6), generalizing work of Hiscock [5],
have shown that a scalar curvature singularity forms
along the CH of a charged, spherical black hole in a
simplified model. This singularity is characterized by
the exponential divergence of the mass function with ad-
vanced time. The key ingredient producing this tremen-

dous growth of curvature is the blueshifted radiation Aux

along the CH, although it is also necessary that some
transverse energy Hux be present. In [6] it was argued
that the physics underlying the analysis was suKciently
general that similar results should hold for generic col-
lapse (i.e. , upon relaxation of the assumption of spher-
ical symmetry). Further calculations support the con-
jecture that the singularity inside a generic black hole is
null [8,10].

The aim of this paper is to present a detailed analy-
sis of the CH inside a nonspherical black hole by taking
advantage of the recent result due to Hayward [ll]. He
showed how to obtain the general solution of the Einstein
equations on a pair of intersecting null surfaces. We be-
gin by recasting the results of Poisson and Israel [6] in
a suggestive form which more closely resembles the ap-
proach taken to the general problem. Our purpose in
Sec. II is to stress the main points which must be taken
as assumptions in the later calculations. We also feel
that the analysis highlights the nonlinear nature of the
eKect and the merely precipitous role played by the out-
flux in this model [6]. With this preliminary review of the
mass-inflation phenomenon out of the way, Sec. III begins
the analysis of the CH singularity inside a realistic black
hole. The assumptions which we make about the na-
ture of the CH are discussed, and following Hayward [ll]
we formally integrate the first order Einstein equations
of Appendix A. Using these results we can show that
the divergences which arise are integrable, and obtain
the leading behavior of all quantities of interest near to
the CH. The asymptotic expressions for the Weyl scalars
show that the spacetime is Petrov type N near the CH,
the same algebraic type as a gravitational shock wave.
These results (which are also suggested by the previous
work [10]) once again raise questions about the classical
continuation of spacetime through the singularity.

The equations and curvatures are relegated to the Ap-
pendixes in an effort to maintain the clarity of the pre-
sentation. Appendix A gives a summary of the notation
and lists the dual null Einstein field equations in their
first order form, as derived by Hayward [11].Appendix B
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lists the components of the Riemann tensor necessary to
analyze the algebraic type of the spacetime.

II. SPHEH. ICAL HLAGK HOLE INTERIOR. S

A. The Poisson-Israel xnodel

It is convenient to use null coordinates on the "radial"
two spaces so that the spherical line element is

ds = 2e "d—udv + r (dx + sin xdy ), (2.1)

In this section we review the mass-inQation phe-
nomenon in the context of charged, spherical black holes
as studied by Poisson and Israel [6]. The presentation dif-
fers slightly from that in the literature [6,7] and closely
parallels the method used later to discuss the nonspher-
ical problem. In this way the limitations of the later
analysis and of the approximations used should be more
apparent.

The physics behind mass inflation is relatively simple.
The CH inside a Reissner-Nordstrom black hole is a null
hypersurface corresponding to infinite external advanced
time. Time-dependent perturbations which originate in
the external universe are gravitationally blueshifted as
they propagate inwards near to the CH. Thus a charged
black hole which deviates only slightly from Reissner-
Nordstrom in the exterior is expected to have a barrier
of radiation, with an exponentially diverging energy den-
sity, streaming along parallel to the CH. Generically some
of this ingoing radiation scatters ofI' the gravitational po-
tential inside the black hole, leading to a Aux of energy
crossing the CH [12]. It is the nonlinear gravitational in-
teraction of these two fluxes of radiation which generates
a divergence of the local mass function. It is important to
realize that the gravitational blueshift of time-dependent
perturbations is the key ingredient producing this mass
inflation.

0:=r '(r')„,
0:=r (r )„,

where a comma denotes partial differentiation.
there are two evolution equations

(2.5)

(2.6)
(2.7)
(2.8)

Along S

(r'0),- = „, (~'-r')

(0 —2v),„= (r' —3g'),

(2.9)

(2.10)

and a focusing equation which describes the behavior of
the null cones with vertices at r = 0:

(r2 0) „+r (v —0/2) 0 = —2Lo„t(u) . (2.11)
The complete set of Einstein equations, including those
which hold on S+, may be obtained from the above equa-
tions (2.9), (2.10), and (2.11) via the symmetry operation

(u;0, v, 0, v) m (v;0, v, 0, v),
(2.12)

Lout ~ Lin.

It is convenient to imagine that the inflow (outflow) is
turned on at some advanced (retarded) time v = vp (u =
up). In the pure inflow regime the spacetime is described
by a charged Vaidya solution

p;„and p „t represent the energy densities of the inward
and outward fluxes. Each term in Eq. (2.3) is indepen-
dently conserved so that

I.;„(v) I..„,(u)
4vrr2 ' "'

4vrr2

The functions L;„(v) and L „t(u) are determined by the
boundary conditions; however, it is important to note
that they have no direct operational meaning since they
depend on the parametrization of the null coordinates.

The field equations can now be written in a first order
form by defining the extrinsic fields

where A = A(u, v), r = r(u, v) and the coordinates are
such that u is a retarded time and v an advanced time.
The stress-energy tensor for a radial electromagnetic field
is

ds = dw(2dr —fdtu) + r (dx + sin xdy ),
where f is given by

2m(zv) q~

r r2

(2.1S)

(2.i4)
E~ =- (q /87rr ) diag( —1, —1, 1, 1), (2.2)

where q is the electric charge on the black hole. Pois-
son and Israel used crossfIowing null dust to model the
perturbations of the geometry, arguing that the large
blueshift near to the Cauchy horizon should make the
Isaacson [13] effective stress-energy desciption valid for
the ingoing radiation. They also pointed out that the
nature of the outfIux is not important; its only purpose
is to initiate the contraction of the Cauchy horizon. The
stress-energy tensor is therefore

1 dm
+tD tU 4' r dao

(2.15)

In the outfIow region the solution is of the same form
with advanced replaced by retarded time. The structure
of the spacetime is shown in Fig. 1.

and m is the standard external advanced time coordinate.
In particular it is infinite both on future null infinity and
the CH. The only nonzero component of the stress-energy
tensor is

T„~ = p;„l„l~+p~„tn„n~, (2 3) B. The solution

where l„= —0~v and n~ = —B~u are radial null vec-
tors pointing inwards and outwards, respectively, and,

As mentioned above our treatment difI'ers from that in
the literature [6,7]. We consider the solution to the Ein-
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The first assumption is that there should exist a sta-
tionary portion of the CH in the spacetime. This is
achieved by turning on the outflux at some retarded time
(uo) inside the event horizon of the black hole (see Fig.
1); thus set

(2.20)

FIG. l. A spacetime diagram showing the spherical Pois-
son-Israel model. The influx (out8ux) of lightlike dust is
turned on at advanced (retarded) time vo (uo). The surface
S coincides with the Cauchy horizon, CH. S+ is parallel to
the event horizon, EH, and intersects the Cauchy horizon at
S, onwhich f =Oandr=r

e =r (2.i6)

8 =ir 0 —2 (2.17)

stein equations only on the two intersecting null surfaces
S and S+. By choosing S to coincide with the CH
we can show that a scalar curvature singularity must be
present on the CH in the cross-flow region.

We first integrate the equations on the CH. This is
readily achieved by making an appropriate choice of the
retarded time coordinate u, in (2.1), such that v = 8/2
along S . Then (2.8), (2.11),and (2.6) can be integrated,
in that order, to give

where P is a constant, and II(u) is a Heaviside step func-
tion. This is probably the most contentious issue in the
Poisson-Israel [6] and subsequent analyzes [8]. It presup-
poses that the CH begins at finite radius, and essentially
assumes that the singularity at the CH will be null. Some
arguments have been advanced to suggest that this issue
is important [14]; however, no convincing evidence has
emerged to refute its correctness. Indeed preliminary nu-
merical results [15] support this assumption, in contrast
to the claim in [16].

The second assumption pertains to the influx of radi-
ation; it is taken to decay with an inverse power law of
advanced time. This was initially based on an extrapola-
tion of results due to Price [9] to the event horizon of the
black hole. Recently it has been verified numerically [17].
This decay is correctly reproduced by the ansatz

(2.21)

where v is the surface gravity of the inner horizon, o;
is a dimensionless constant which depends on the lumi-
nosity of the collapsed star, and p & 12 is an integer
(the numerical value derives from Price's analysis which
shows that the radiative tail of the collapse decays as an
inverse power p & 4l + 4 of advanced time, where l is the
multipole order of the perturbation). Both linear [3,4]
and nonlinear [8] perturbation analyses suggest that this
inverse power-law decay of perturbations is also correct
near the CH inside the black hole.

r =r +r 0 u —2 du (2.i8)
D. Mass inAation

The (sub-) superscript (—) is used to indicate that these
equalities hold only on S, while an (o) indicates the
value of the function on the two-sphere S = S 0 S ~.
Of the remaining two equations we only need (2.9) which
gives

dr 1 ( 2m(m) q

r') ' (2.22)

Along S+ the radius obeys the first order equation

r 0 =r 0
t'q' 1)

du (r r (2.i9) where m(m) is given by (2.21). We are interested in cal-
culating

Equation (2.10) could be integrated in the same way.
The same construction works on S+ (we will use this

as our primary tool in the nonspherical case); however, it
is more convenient to work with the exact solution (2.13)
to determine 0, 0, and ro here.

C. Assumptions

y dr+ GQ)

de dv
(2.23)

where v is the coordinate which appears in (2.1) chosen
so that A = lnr along S+. It is a straightforward matter
to calculate dm/dv provided one notes that Eqs. (2.5)—
(2.11) are form invariant under functional rescalings of
the coordinates u and V. Therefore r also satisfies

The two essential features of this model will be adopted
in the nonspherical case with only slight modification.
We wish to emphasize them at this point.

d~
2 d ( dm ) d 2 dmr)+ ~ln r = —2

du) du) I, du ) dm d~ (2.24)
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v= —e" (1+ ) (2.25)

on S+ in view of (2.12) and (2.11). Solving (2.22) for r,
(2.24) can be integrated to get

to a member of the Kerr-Newman family at late times.
(Our analysis focuses on such a situation when there is
no electromagnetic field. )

The Kerr solution can be written as

as m m oo. Thus

(2.26)

as v + 0. This result means that, while the radius of
the two-sphere S is finite, 0 is actually infinite (in these
coordinates) .

Using the invariant definition of the mass in a spherical
geometry

2m(x ) q'
+ —:=g P~Ppr r2

r2e~00
(2.28)

we know that 0+0+ —+ 0 as v ~ 0, which means that
0 = 0. Substituting (2.20) into (2.17) and using 0 = 0

and

0+ = ' ( '" l" l)
"

(I+&(- I l.l)-'+ . ) (2.27)
roKo v

ds = ——(dip —ad/sin 8) + ([r + a ]dp ad—lv)
sin 0 2

p2 p2

+2dr(dlv ad—/sin 0) + p de, (3.1)

where 4 = r —2m, p + a, p = P2 + a cos20, and
to is standard advanced time. The CH, located at
r = m —v m2 —a2 and Iv = oo, is a stationary null
hypersurface its lightlike generators have zero rate of
expansion. Moreover, these generators are shear free
since Raychaudhuri s equation implies that shear pro-
duces contraction. This is not a generic situation; a linear
perturbation analysis shows that there is usually a flux
of backscattered radiation crossing the CH, along with
the blueshifted inBux parallel to it [4]. Based on this ob-
servation and using the spherical case as a guide, we will
show that the CH is the locus of a scalar curvature sin-
gularity. The leading divergence may be associated with
propagating modes of the gravitational field, manifesting
itself in the form of a diverging Weyl curvature of Petrov
type N.

r' 0 = —2(u —up)@II(u —up) . (2.29) A. Formalism

The radius of the CH is then

r' = r' —(u —up)'PH(u —up), (2.30)

and finally 0 is given by (2.19). The square of the Weyl
curvature on the CH is

C =C psC ~~ =12l —— + —0(1
t, r2 r4 2 )

(2.31)

III. NONSPHEHICAL BLACK HOLES

from which we can immediately see the reason for the
Cauchy horizon singularity. The product 0 0 = 0 at
S (see Fig. 1) and heIlce C ls flIllte; however, lf P ls
nonzero C jumps to infinity at u = uo when the outflux
is turned on [see Eq. (2.29)]. Furthermore Eq. (2.30)
shows that the radius remains finite for some amount of
retarded time, so it must be the mass function which
becomes infinite at u = uo.

This analysis emphasizes that the nature of the out-
flux is largely irrelevant; it simply serves to initiate the
contraction of the CH. It is this contraction which is at
the root of mass inflation [6].

We employ the dual null formalism of Hayward [11]
which is based on a 2+2 null decomposition of space-
time [18]. In terms of coordinates u and v which label
the intersecting null hypersurfaces that foliate the space-
time, the line element can be written as

ds = 2e "dudv—+ (s s )du + 2s dx du+ h~bdx dx

(3.2)

~ab ~ hah (3.3)

Thus k b has unit determinant. Each of the quantities
defined here depend on all four variables u, v, x

The vacuum Einstein equations (A7) —(A23) are writ-
ten in a erst order form in terms of the fields

where the lower-case latin indices range over (1,2).
There remains freedom to rescale u and v, and to trans-
form the coordinates x so that 8 vanishes on a chosen
v = constant surface, we take this to be the CH located at
v = 0 (see Fig. 2). 6 b is the tlvo metric, s a-shift tlvo
vector, and A a scaling function on S(u, v), the spatial
two-surface which is the intersection of the null surfaces
labeled by u and v. The two-metric can be decomposed
into a conformal factor 0 and a conformal two-metric k b

so that

Charged spherical black holes have served as a useful
model in which to investigate the nonlinear instability of
the CH inside a black hole; however, the question needs
to be addressed in the more realistic nonspherical con-
text. Here one expects that a black hole settles down

0 = 0 CtO,
O. b ——AZ)k b,

v =- C)A,

= —e Ok bd)8
1 A b

2

0 =0 l. 0,
O. b

——Od„k b,

v =Z„A,

(3.4)

(3.5)
(3.6)

(3.7)
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We cannot evolve generic initial data from the event
horizon of a nonspherical, rotating black hole so we make
an ansatz for this conformal two-metric. It is inferred
from the work of Ori [8] that the conformal metric may
be written as

k+b = k b(x ) + K+b(ln~v~, x )

where det(k b) = 1 and asymptotically

K+b = X b(x ) (—ln
~
v~)

(3.12)

(3.13)

FIG. 2. A schematic representation of the generic black
hole interior. The null surface S coincides with the Cauchy
horizon, CH. The other null surface S+ is at u = 0 and inter-
sects the Cauchy horizon at S before a caustic forms. Initial
values of the fields are specified on the intersection between
the hypersurface v = vo and S+. Also indicated is the ingoing
gravitational wave tail, and its scattered component.

where 2 indicates the Lie derivative, and

t9

BV
(3.8)

are null vectors. The notation and the equations are
given in Appendix A; more detail may be found in Hay-
ward [11].

Our aim is to calculate the Weyl curvature scalars on
the intersecting null hypersurfaces S+ and S by making
an ansatz for the free gravitational data (k b) on these
surfaces. S is taken to coincide with the CH at v = 0,
while S+ is an outgoing null hypersurface, parallel to
the event horizon, crossing S near to P in Fig. 2. The
choice of the data is motivated by our understanding of
the spherical situation and by the nonlinear perturbation
analysis of Ori [8].

as v -+ 0. The functions W b(x') are well behaved for
all x, and n is an integer. (The value implied by Ori's
work is n ) 6.) This form is based on the observation
that nonlinear metric perturbations decay according to
an inverse power-law of advanced time [8], and the expec-
tation that Hayward's coordinate is related to external
advanced time by

v= —e" (1+ .) (3.14)

as v ~ 0 (or io ~ oo). While this cannot be proven to
hold, it seems reasonable as long as the surface S+ does
not encounter a caustic (0 = 0) at or before the CH—
this condition is satisfied a posteriori implying, at least,
a self-consistent treatment.

As in the spherical analysis, we give no detail of the
gravitational data on S save to point out that the grav-
itational energy Aux crossing the CH should not diverge.
In fact, on physical grounds, it is expected that any radi-
ation from the star will be exponentially redshifted near
P in Fig. 2. Furthemore once the incoming radiation gets
scattered by the gravitational potential inside the black
hole, it should only produce a slow contraction of the
CH [12].

To summarize, we assume that a portion of the CH ex-
ists which is caustic &ee near to P in Fig. 2. Furthermore,
the gravitational perturbations propagating into the hole
decay according to an inverse power law of advanced time
which is related to v by (3.14).

B. Assumptions C. Solution on S+

The focusing equation on S+ is [Eq. (A7)]

gg 1 ab——0 —PO ——~ah~
19V 4

(3.9)

Hayward noticed that making use of coordinate freedom
on S+ (rescaling v), this equation may be linearized.
Thus choosing v such that

~+ g+1

2
(3.10)

it is possible to obtain the solution to the Einstein equa-
tions on S+. Each of the equations (A7) —(A15) can be
integrated (in the order they appear) provided one knows
k ~ on this hypersurface, since

With this aspect in hand we can proceed to the solu-
tions of Eqs. (A7) —(A15). Integrating (3.9)

V

0+ = 0 (x ) —— dv o+bo+b.
Vo

(3.15)

A (sub-) superscript o indicates the initial value of the
function at vo in S+ (see Fig. 2). On this two-surface we
expect all the fields to be well behaved, bounded (and in
some cases nonzero) functions of x

Based on the assumption (3.12) and (3.13) about k+b

we can estimate the behavior of this integral near to the
CH. First note that the inverse of the conformal metric
can be written

o bcr+ —(k+ O„kb )(k+ B„k„). (3.11) =k +~ ~ "K+ o cd~ (3.16)
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where e" is the two-dimensional, antisymmetric matrix
with e = 1. The functional form of K+b implies that

1
dv (v K+&) ~ W p( —ln ~v~)

+ (3.2i)

1 BK+
g ~+ ab

v Bln/v)

will diverge since

6K+b

Oln /v/

= nX g (—In)v/)

(3.i7)

(3.i8)

as v ~ 0, and remains bounded at the CH. Each of the
equations must be treated in turn, examining the diver-
gent part of the source and its integral near the CH. We
quickly see that 0 is bounded at the CH, and so all the
intrinsic quantities on the two-dimensional surfaces of fo-
liation remain finite all the way to the CH. To see this,
first integrate (A8) to get

as v —+ 0. Since o.~bo. is v times a slowly varying
function (near the CH), 9+ is asymptotically

dv0
2

(3.22)

2@ah g.cd ~
+ 0 n 0 Ao

4v( —ln ivy)'&"+'1
(3.ig)

then substituting in the asymptotic form for 0+ we find
V n2 'U

dve+ = k—k'"W X dv v '(—ln~v[)O O

which diverges at the CH for the same reason that B„K+b
does.

It is now straightforward to formally integrate the re-
maining equations; however, our main objective is to
show which quantities diverge and which remain bounded
at the CH. Observing that the integral

is finite as v ~ 0 (provided n ) i), it is clear that

(3.23)
and hence A~ ~ const as v -+ 0. The gauge choice (3.].0)
implies that

—2(X+ —W. ) (3.24)
and so 0 and k b are both bounded at the CH. Now
continuing the integration

~+ = ~ e'('+-'-~ -'e"+(db = c0be ~2e dv e +(E cr+ —-E 8+ —0+& A ) (3.25)

s~ =8 +2 dv e +4)+
0

(3.26)

0+ 0 2(Ap —A ) ~ 2A~ dv e-"+&—-'(2~a~~ ~+ —-'n W AA +
O

y4D %~A A~ y (u~D, A~ —E (u~), (3.27)

o.+s (finite) ——e"+h+, (3.28)

from which it is clear that only Gnite terms appear in the equation for 0, which therefore cannot diverge on CH.
V

dv e +86 odb,

the shear of the ingoing null rays orthogonal to S(u = 0, v), is also bounded at the CH. Finally
V

v = v ~ dv -o-+o. —-0+0+ ~e + —— A~3~+u) —-A A A A —~ L A
'Uo

(3.29)

which is finite despite the presence of divergent terms
in the integrand [which look like v ix inverse powers
of (—ln ~v ), see Eq. (3.20)]. This analysis implies that
0+ and o+b diverge inside the black hole, and the diver-
gence is of the same nature as in the spherical model once
o bo is interpreted as the gravitational energy crossing
8+.

IV. THE CAUCHY HORIZON SINGULARITY

on the CH due to the blueshifted influx of radiation. On
S the shift vector 8 is set to zero by a coordinate trans-
formation 2: = x (u, x ) without altering the form of the
metric (3.2). [These coordinates exist provided s is reg-
ular on S in the original coordinate system. Equation
(3.26) suggests that this is true. ] It is assumed that this
transformation was made in Sec. III; this in no way alters
the previous analysis.

Hayward's scheme to integrate the equations on S
can now be completed. Making the gauge choice

The solution obtained in the previous section can be
used to show that a scalar curvature singularity is present v = ——02 ) (4.i)
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Eq. (A16) implies that

0 =0+ du (k 8„k-~ )(k'"c)„k-„). (4.2)
m=0 4

As mentioned in the introduction 0 (and all other quan-
tities) are formally known once k &(u, x') is specified.
Our analysis assumes that k b is a slowly varying function
of u which tends to a nondegenerate value as u —+ —oo;
that is, near to P (in Fig. 2) k i, should approach the
value obtained on the CH in Kerr spacetime. Pi~rther-

more 0 —+ 0 and the spacetime should be asymptotically
Kerr in the limit u ~ —oo. It is not a generic situation
to have 0 = 0 and/or cr

&
—0 on the CH, since some

radiation (both from the star, and from backscattering
of the gravitational wave tail inside the black hole [8,12])
will usually be present. This discussion implies that there
should exist a caustic &ee portion of the CH near to P
on which our analysis is valid.

The integration now proceeds as it did for S+, and. in
particular we arrive at expressions for 0 and 0 b

0
— 2A —2A+ 0+ + 2A

- v=O du e (
—

2 R+w cu —2A E A + —E pE p —~ ~ p+ ~ ~ ) (4.3)

tl

hy e h+ ops 2 hy e du (e gh oui, —4e h (~(g ~i,)e=O 0

2 n(gAs) A + 4 A(d AD$) A —(AJ(gai) p + ~(g(Jli ) ))

h&e— du e (w'w, —zQ, A'P+ 4Q pQ'p —u Q,A+ A, w ) (4 4)

We saw in the previous section how

lim g
v —+0

g+
ab

&Moo; (4.5)

thus 0 and 0.
b are generically unbounded on the CH. Of

the remaining fields, only v contains divergent quantities.
From Eq. (A23) we see that

where these leading contributions arise due to the pres-
ence of terms involving the shear (o+&) of the surface S+.
A little more work shows that 43 is finite on the CH; no-
tice that Eq. (3.26) combined with the choice s —+ 0 on
S, and knowledge that A+ and u+ are fi.nite on S+AS
implies that 8+ v as v ~ 0, hence 8+2+ 8+ ~ 0 on
S . Finally @4 is independent of 0+ and 0+b and there-
fore is Gnite. These results imply that the square of the
Weyl tensor is dominated by Cp,(I, 1

du
l

—a~a ——0 0
l

+.
q4 2

(4.6) C p~(C ~~ = 8(4'p ~IJ4+ @p @4) + '

= (finite) x (v (—lnlvl)"+') +
which is actually infinite on CH. Imposing the field equa-
tions on the Weyl scalars one finds that all but 44 contain
divergent quantities, and hence the CH is singular.

It is possible to say a little more about the nature
of the singularity by examining the rate of growth of
the curvature along S+. Once again, imposing the field
equations in Eq. (Bll) gives

as v~0.

V. DISCUSSION

(4.11)

= 4e m m (28io'~g+ 2&o'og —& ~h o~b)l+

(4.7)

Using 0 b, etc. , the asymptotic expression is

(finite) x (v (—ln lvl)"+') (4.8)

@+, = (finite) x (v (—ln lvl) "+')
ilJ2+ = (finite) x (v (—lnlvl)"+')

(4.9)

(4.10)

as v ~ 0. This is the contribution from Czo b, which is
damped by the smallest number of powers of (—ln lvl). In
a similar manner the leading behavior can be extracted
from 'kq and 42 giving

The treatment of the nonspherical gravitational col-
lapse is generally very diKcult; however, it seems likely
that the external field settles down to that of a Kerr
black hole. Inside the black hole some progress may also
be made by advancing two assumptions: (1) There exists
a caustic free portion of the CH, which is a null hyper-
surface. (2) There is an ingoing gravitational wave tail
which gets blueshifted by an infinite amount at the CH
(this is achieved here by our ansatz for k+&). Indeed us-
ing Hayward's formalism the nature of the CH can be
investigated in some detail.

Following from the analysis in Secs. III and IV we con-
clude that the CH is the locus of a scalar curvature sin-
gularity, and the curvature is an integrable function of
the advanced time. Ori [7,8] has argued that the latter
property of the curvature sug;gests an extension of the
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spacetime through the singularity may be possible. It is
worth commenting a little further on this point. We have
demonstrated the asymptotic values of each of the Weyl
scalars; in particular, it has been shown that 40 contains
the leading divergences. The algebraic classiGcation of
the Weyl curvature is obtained by solving the quartic

C,a'+ 0 &o,'+ 02a'+ C3a+ @4 ——0

for a and examining the degeneracy of its roots [19].
Based on Eqs. (4.8)—(4.10) there is a fourfold degeneracy
as v ~ 0 implying that the gravitational field is asymp-
totically type N, with repeated principal null direction
k = n+arn+a*~+ca*I (where a —i 0 as v ~ 0).
It is worth noting that gravitational shock waves are of
this algebraic type (and are the only curvatures which
may be conGned to a thin skin without a surface layer
of matter being present [20]); therefore, the intuitive pic-
ture of the singularity which emerges is that of a gravi-
tational shock propagating along the CH. These results
might be taken to support arguments for the existence of
a classical continuation of the geometry beyond the CH
singularity. However, this is a highly speculative point
and it should be noticed that the Weyl curvature con-

tains contributions which are not present in an exactly
type N spacetime. Indeed these contributions diverge at
the CH and are manifest in the square of the Weyl ten-
sor (4.11) (which vanishes for a pure gravitational shock).
Thus a classical continuation is unlikely, as pointed out
in [21], since nonclassical matter is needed to confine the
divergent curvature to a thin layer along the CH.

To conclude, the hairy singularity inside a generic black
hole is dominated by the propagating gravitational wave
tail of the collapse (which decays in the exterior of the
black hole).
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AP PENDIX A: NOTATION

In this appendix we summarize the dual null formalism of Hayward [ll]. The reader is referred to his articles for
more technical details. This approach, based on a 2+2 decomposition, assumes that the spacetime can be foliated
locally by compact orientable two-surfaces S. Therefore given a Lorentzian manifold M (with signature —+ ++)
we assume that there exists a smooth embedding p: S x [0, U) x [0, V) i M with the induced metric, h b, on S
being spatial. Latin indices range over (1,2). In terms of a basis which is Lie-propagated along 0/Ou and 0/Ov the
spacetime line element may be written as in Eq. (3.2). The Lie derivative along a vector ( is denoted Zg. The natural
covariant derivative of the metric 6 b is L, and the Ricci scalar is denoted by B. Tensor valued quantities on
the two-surface S are denoted A b[som"'etimes we will include a superscript (2) to emphasize the two-dimensional
covariant nature). Introducing the null vectors

I" = (1,0, 0, 0), n" = (0, 1, —s ) (A1)

we deGne

~ab = ~noah ~ (A2)

To write the Einstein Geld equations in a first order form Hayward introduces the extrinsic fields:

o.
b ——Zb —Ohb,
v = Q)A)

~. = —,'e~h..bc)8b .

0 = —,'n'Z. „
O ab —~ab 0~ah)

v = Z„A,

(A3)

(A4)

(A5)

(A6)

These quantities are readily interpreted geometrically; (8, 8) are the expansions in the null directions normal to the
foliation S. The tensors (o b, cr b) are the shears, which are traceless by definition; the vector w is the twist. The
two functions (v, v) are called the inaffinities and measure the nonaffine quality of the coordinates u and v. Then the
Einstein equations and contracted Bianchi identities are the l equations,

Z(O = 00,

(A7)

(A8)
(A9)
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k

Cl Cda

l'. l s

l.le
~l O ab

0 Oab,
—our. + ,'a—bob.+ —,'Z. (v —e) ——,'ga. A,

2e

—gg+e "(—-'(2)R+(u w —iD & A+ EAR-A+(u E A —Z ~ ),
cd 1 1

c(a+b)d~ + 2~ &ab 2~ &aby

+ 2e ((u~(db —2&(a&b)A + 4+(aA+b)A + (u(a+b)A +(aldb))~
—e "h b (~,~' —

2
A'E, A + 4 E,A E'A + (u'E, A —E,~'),

4o. bo —2Ã+ e "( 2—( )R+ 3(u (u —4A AE A —(u E A),

(A10)
(All)
(A12)

(A13)

(A14)

(A15)

and the n equations,

l'.„k b

l:n(da

1 2 — 1 — —ab—-0 —vo —-o. bo.
2 4 a

v)

00,
0 'o-b,
—0~ —2E ob —2E (. v —0) + 208, A,

—ee+e "(—-,'(2)Z+~ ~ —-,'Z Z A+-'Z AZ A —~ ~ A+& ~ ),

Oc(aOb)dk + 20Oab —20Oab

+ 2e (cd (db —
2 A( Eb)A + 4&(~A&b)A —(d(~Lb)A + A(~chub))

—e "h b (ur, (u' —2E'E,A+ 4&,AE'A —(u'A, A+ A,~'),

4o bo —288+ e "(—2( )B+3~ ~ —4E AE A i ~ A A).

(A16)
(A17)

(A18)

(A19)

(A20)

(A21)

(A22)

(A23)

APPENDIX 8: RIEMANN TENSOR AND WRY L SCA LARS

1. Riemann tensor

Here we list all the components of the Riemann tensor for the metric (3.2):

R„„„

vua

R"„b

R

R"
d

Ravb

R"

Ravb

—Ql v —s Lav+ 2e s Z bs v+ 2s l-l u —e "u L A+ 3e ~ ma+ s Zab~

+ leAsa (g y ) sb + lsag ~bA le —A~aA ~ A leAsag hbcg sd

2e ~l~ b+ 2e v~ b 4e ~ h ~ b

~rn[b+a] ~ + e S +[a~b]m, ~vn[a~b] + +[a~b] + 2 ~n[a~b]m, h

+[b~d] 2 s ~ [d+b]A + 2 h (~ [d ~b] ~ [d ~b] ) ~ [d~b] + + bd

1 A A A+[c~~d]a + e +[c~d]a + e ~a[d~c])
— "Z„Z b+ - " (Z Z b

—KbZ )+ D&bA — DA&bA —-Eb-
+ 2e Z be Sc + 4e S LcA Lab —4e Zm, bh ~na + 2~a+b~ + 2~b+a~ ~a~b

—2e u)bs Z —4e AbAZ s

2e"s Z„Z + l:„(u + 2e"s (s"D„)Z —2e"Z h "Z„gs~ + 2D v + 2 (s D ) A A

+ 2s A A(u —4Z E A —2e" (s Z „s")td + 4e"s 2 „h"~Z ~+ 2 (s (u ) A A

+2e" (s"(u„)s 2 —(s (u )~ +2' 2 +s
2 ~ bv+ 4 s + ~~ b+ 2 l ~ b+ 2e + ~ b 4 +b~s ~ 2 s +b

—2e (s m )Zb —4e Zb h Z„+2e s Z

(B1)
(B2)

(B3)

(B4)

(»)
(B6)

(B9)
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a:„b = —,'l-{a.z b
—a z.b) —h, "s ' a b.„—-', e's c„z.b —

—,'e's s-z z.b
—-', s &b~.A

+ —c 8 AbA8 Z + —c 8 s LbE +8 Lb& + —8 L ALgA ——8 MbA A+ —A Ah Z b

+-'"-Z '- --'"-Z 6-E --'"-LA+"-- --'6-Z-

(BIO)

2. The Weyl scalars

We choose a complex-null tetrad (e I, n, ~, rn) such that 2m("m ) = h"" and I and n, are given by (3.8). In this
tetrad the Ave Newman-Penrose Weyl scalars are in a Ricci Hat spacetime

yo = ~e2" (2g) g b+ 2b E b
—Z h. "Eb„)m m,

@, = -'e( —2h v+ 2~ Z + 4&~~ + & A& )m,
@2 = '(2—e"-Z„Z b + 2A AbA —A A&bA —4&b~ —e ~~bh "~~~ + 2~a&bA

+ 2~b& A —4~ ~b + e AbAs E + 2e s Z~mwb)m m,
I(—4Q a —2E v+ e s E~~s A~A+ 6 A+~&+ 2e s ~m~s ~a 2~ ~ma)m3

ip4 = —~( 2g —b~ —2Q„K b+ K h™1Kb„)mm

(Bll)
(B12)

(B13)

(B14)

(B15)
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