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Self-similar scalar field collapse: Naked singularities and critical behavior
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Homothetic scalar Geld collapse is considered in this article. By making a suitable choice of vari-
ables the equations are reduced to an autonomous system. Then using a combination of numerical
and analytic techniques it is shown that there are two classes of solutions. The first consists of
solutions with a nonsingular origin in which the scalar field collapses and disperses again. There
is a singularity at one point of these solutions; however, it is not visible to observers at a finite
radius. The second class of solutions includes both black holes and naked singularities with a criti-
cal evolution (which is neither) interpolating between these two extremes. The properties of these
solutions are discussed in detail. The paper also contains some speculation about the significance
of self-similarity in recent numerical studies.

PACS number(s): 04.20.Dw, 04.40.Nr, 04.70.Bw

I. INTR.ODUCTION

That gravitational collapse leads to black hole forma-
tion is widely accepted, yet comparitively little is known
about the generic features of collapse. This is well exem-
pliGed by the lack of a precise formulation of the cosmic
censorship hypothesis [1]. The reason for this is sim-
ply our lack of the mathematical tools necessary to ana-
lyze the evolution of generic initial data, although some
progress is being made on this front [2]. Moreover the
complexity of the Einstein Geld equations counsels retreat
to a more tractable system which may capture the essence
of the physics. Spherically symmetric general relativity
coupled to a massless scalar Geld is one such system. In-
deed this model has been studied in great detail both
analytically [3] and numerically [4,5]. Christodoulou has
rigorously established the global existence and unique-
ness of solutions to the Einstein-scalar Geld equations
and has discussed the general properties of these solu-
tions [3]. He has even established a sufficient condition
for the formation of a trapped surface in the future evo-
lution of a given initial data set [6]. Numerical investi-
gations have also provided useful insight into black hole
formation. The most recent of these studies, by Chop-
tuik [7], has revealed several intriguing phenomena which
were hitherto unknown.

Choptuik considered the numerical evolution of initial
data sets characterized by a single parameter (p say).
The resulting families of solutions, 8[p], include both ge-
ometries containing black holes, and geometries with only
slight deviations from flatness, depending on the value of
p. Between these two extremes lies a critical evolution
with p = p, which signals the transition between com-
plete dispersal and black hole formation. His most inter-
esting results pertain to near critical p p* evolutions
which exhibit a particularly simple strong field behav-
ior. In fact, his results strongly suggest that near critical
evolutions may be described by a single, universal solu-
tion of the Geld equations. Two quantitative features also
emerge from his work. (i) Near critical evolutions contain

echoes in the strong field region [if a(r, t) is some form in-
variant quantity then a(e r, e t) a(r, t) where n
is an integer and E 3.4]. Based on his extensive inves-
tigations Choptuik has conjectured that the exactly crit-
ical solution has an inGnite train of echoes in the strong
field region approaching the singularity. (ii) When black
holes form in near critical evolutions the mass scales as
Ms„~p —p*~~, where P is an apparently universal con-
stant determined numerically to be about 0.37.

Obtaining analytical results about solutions which ex-
hibit a discrete self-similarity of the type discussed by
Choptuik has proved to be extremely difficult [8]. On
the other hand, by assuming the existence of a continuous
self-similarity some progress can be made [9]. Therefore
this paper is concerned. with homothetic spacetimes; it is
assumed that there exists a vector field ( such that the
spacetime metric satisfies Egg = 2g, where Zg denotes
the Lie derivative with respect to (. The homothetic
collapse of perfect fluids has received a great deal of at-
tention during the past few years [10], where the main
thrust of work was to search for naked singularities [11].
The problem of homothetic, scalar Geld collapse has re-
ceived comparitively little attention [5], and no examples
of naked singularities which evolved from regular initial
data were previously known for this form of matter.

The reduction of the homothetic scalar field equations
to an autonomous system allows me to give a detailed
description of all the solutions. Two interesting features
emerge from the analysis: first the existence of solutions
with naked singularities, and second the occurrence of
phase transitions in the system. The critical point behav-
ior is of two distinct forms. The first is a phase transition
from solutions which (roughly) represent dispersal to ge-
ometries representing black holes. It has been suggested
elsewhere [12] that the critical solution, the existence of
which is implied by the numerical results, may be both
on the verge of black hole formation and being a naked
singularity. We will see below that the second phase tran-
sition corresponds to such a situation the critical evolu-
tion lies at the boundary between black holes and naked
singularities. In this article the term black hole is used
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rather loosely to mean that an apparent horizon exists
and precedes a central singularity. Of course it is possible
to obtain an asymptotically Hat solution to the Einstein-
scalar equations by cutting ofI' the self-similar evolution
at some advanced time and matching it to a less sym-
metric (not self-similar) exterior, in this way one would
obtain an asymptotically Hat, black-hole spacetime.

The paper is arranged as follows. In Sec. II the field
equations for the self-similar collapse are derived in terms
of a retarded time coordinate u and a radial coordinate
r. These equations have already been derived in [5] and
used to provide initial data in a search for naked sin-
gularities. A field redefinition transforms the equations
into a nonlinear autonomous system which is amenable
to standard techniques [13]. The properties of solutions
representing collapse are discussed in detail in Sec. III,
while a summary of the salient features is presented in
Table I. Section IV contains some discussion of the re-
sults, and, their possible significance.

The notation of [14] is adopted throughout the paper,
and detailed calculations which might distract from the
main line of thought are relegated to the Appendices.

(lng) „=4~r(g, )

(ry), = g,
(y/g), „=8mrg '

[(vp „) —y@ „g„

(2.3)
(2.4)

(2 5)

where a comma denotes partial difFerentiation.
@(u, r) is a massless, minimally coupled scalar field sat-
isfying

(yr vt) „)„=2r@ „+2r @„„. (2.6)

Spherical symmetry allows the introduction of a local
mass function m(x ) [15] defined by

2m(2: ) p g1— .—g T OPPr g
(2 7)

A. Self-similar ansatz

where r is the function which determines the area of
the two-spheres. This mass function agrees with both
the Arnowitt-Deser-Misner (ADM) and Bondi masses in
the appropriate limits, and is equivalent to the Hawking
quasilocal mass in this case.

II. THE FIELD EQUATIONS
The existence of a homothetic symmetry in a spherical

spacetime implies that the metric depend only on x =
r/~u~, and that the scalar field evolve as

Using retarded Bondi coordinates (u, r, 0, Pj the spher-
ical line element may be written @ = K(z) —v. in oui, (2.8)

ds = —ggdu —2gduf& + p dO (2.1)
where h, is some function to be determined and K is con-
stant (see Appendix A for a proof of this fact). Writing

where g = g(u, r), g = y(u, r), and dO is the standard
line element on the unit two sphere. The origin is singular
unless g = g when r = 0. Furthermore it is convenient
to normalize the coordinate u so that it represents the
proper time for an observer at the origin; thus, we write

(2.9)

the self-similar equations derived from (2.3)—(2.5) are

y(u, 0) = g(u, 0) = 1 .

The Einstein-scalar field equations are then

(2.2)
(*g)' = g,

Tg' = 4~g(p)',
g —y = 47r [2K x —(y —22:)(p + 2vp)

(2.10)
(2.11)
(2.12)

TABLE I. Properties of the self-similar solutions satisfying (2.2) and (2.15), and classified according to the value of r. .

Range of K Class Uniqueness Description

4m+ Unique for each K Solutions have topology B x B. They are singular at
the point u = 0 on r = 0. This singularity is never
visible to an observer at Gnite radius.

0&4~K'&1 One parameter family
of solutions. For each
value of tc, there may be
as many as three sub-
classes.

(a) Solutions which contain an apparent horizon which
precedes a spacelike singularity at r = 0.
(b) Critical solutions with a null singularity at u = 0,
r = 0. See Fig. 3.
(c) For sufBciently small values of r there also exist so-
lutions with a naked central singularity. The Cauchy
horizon is at u = 0.

47rm = 0 One parameter family
of solutions

The equations may be integrated in closed form. The
solutions include both black holes and dispersal of the
scalar Geld, along with a single critical evolution which
interpolates between these two extremes [9].
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where a prime denotes differentiation with respect to x.
In deriving (2.12) from (2.5) it is necessary to use (2.10)
and (2.11) to eliminate derivatives of g and g. The scalar
Geld evolution is determined by

x(y —2x)p' = 2rx —p(g —2x) . (2.13)

(2.i4)

Clearly the solution can have a nonsingular origin only if

q(0) = o. (2.i5)

This completes the specification of the initial conditions
for Eqs. (2.10)—(2.12).

B. An equivalent autonomous system

The analysis of the above equations is facilitated by
the field rede6nitions

It is now a straightforward matter to show that (2.10)—
(2.12) imply (2.13) provided p g —K. These equations
have been derived previously by Goldwirth and Piran [5]
and used to provide boundary conditions in a numerical
search for naked singularities.

At the origin (2.2) and (2.12) imply either p(0) = 0 or
p(0) = 2K. D—irectly evaluating the trace of the stress-
energy tensor for the scalar field one finds

(1+ 47rv. 2) —y &0.
1 —2Z

(2.22)

z = 1/2, y = 1/(1+ 47rr ), (2.23)

thus invalidating the usual existence and uniqueness the-
orems for systems of ordinary differential equations at
this point. This has the important consequence that in-
tegral curves of the differential equations may intersect
at (2.23). Furthermore, the continuation of such solu-
tions is not always uniquely defined, in some cases there
exists an infinite family of possibilities. This is discussed
in more detail below and in Appendix C.

The system (2.18)—(2.20) has two stationary points,
one on either leaf of (2.21), given by

1 1 1
y~ = —

) Z~ )
1 6 /4vrK v'4vr

(2.24)

The nature of these points depends on the value of K. It
is discussed below and in Appendix B.

Black hole formation is signaled by y ~ 0 (technically
this is the condition which locates an apparent horizon
in the spacetime). The continuation of the solution to
negative values of y will not be considered in the sequel,
thus the integral curves of interest lie in the strip 0 &

y & 1.
It should be noted that p is not continuous at

y=y/g, z=x/y,
and the introduction of a new coordinate

(2.i6) III. SELF-SIMILAR SOLUTIONS

= lnx. (2.17)

Upon substitution into (2.10), (2.11), and (2.13) one ob-
tains the three-dimensional, nonlinear autonomous sys-
tem

z=z(2 —y '),
y = 1 —(4vrp + 1)y,

(1 —2z)j = 2rz —p(y —2z) .

(2.1S)

(2.i9)
(2.2o)

The system is electively two dimensional, however, since
p is determined by the algebraic relation

(1 + 47rr. 2) —y
—~

4~(1 —2z)
(2.21)

provided y g 1/(1 + 47rr, ). Further discussion is there-
fore couched in terms of a projection into the yz plane.
Consistent with the initial condition (2.15) the positive
square root is taken in (2.21); however, it must be em-
phasized that solutions may still evolve continuously onto
the other leaf of the surface defined by taking the nega-
tive square root above. Indeed it is solutions of this type
which have naked singularities.

Requiring that the mass function, defined in (2.7),
should be positive or zero implies y & 1, while p is real
only if

A. Class I: 4m~2 & 1

For v in this range only the stationary point
(y+, z+, p+) is of interest. This exact solution is equiva-
lently written as

g = 2x(1+ /4~r. ), y = x(1+ /4~r. ) . (3.i)

The character of the solutions shows a strong depen-
dence on the value of K. Solving (2.10)—(2.13), subject
to the regularity conditions on r = 0, gives rise to two
distinct classes of solution according as 4vrK is greater
than or less than unity. Class I solutions are neither black
holes nor naked singularities although they are singular
at one point on r = 0. The critical evolution (47rr = 1)
also belongs to the first class. The transition from one
class to the other as one adjusts r is similar to the behav-
ior discussed by Choptuik [7]. For each value of r in the
range 0 & 4vrK & 1 there exists a one-parameter fam-
ily of solutions. For sufEciently small v a second type of
phase transition &om solutions representing black holes
to naked singularities occurs. A single critical evolution
having a null singularity (which is not naked) interpolates
between these two extremes. A similar phenomenon has
been observed in Tolman-Bondi collapse [16]. For com-
pleteness, at the end of this section it is shown how the
results of [9] fit into the overall picture.
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It has a singular origin (r = 0), in fact there are two
sheets of this singularity. Future directed, ingoing light
rays terminate on the sheet located at u = 0, while out-
going light rays originate on the past sheet (the solution
may be obtained by setting n = P = 0 in Eq. (9) of [9]).

Locally, (3.1) is a positive attractor (see Appendix B).
The global structure of the class I solutions is easily de-
termined by examining the behavior of the integral curves
in the region

A = (1/(1+ 4~K ) & y & 1, 0 & z & 1/2) . (3.2)

Noting that integral curves enter A across the lines

y = 1/(1+ 4aK ), y = 1, and (z = O, y ) 1/2j it is
evident that the solution originating at z = 0, y = 1 ei-
ther terminates at the stationary point or leaves A across
z = 1/2. In Appendix C it is shown that integral curves
only cross z = 1/2 at y = 1/(1+4vric2), and that the solu-
tion passing through this point is unique when 4vrK ) 1.
A direct consequence of this is that the solution with a
nonsingular origin approaches the asymptotic form (3.1),
its evolution being characterized by a sequence of decay-
ing oscillations in y about the value y = 1/2. (See Fig. 1.)

These solutions do not contain black holes, yet there is
a singularity at the origin when u ~ 0. Is this singularity
naked? Consider ingoing, radial null geodesics

(3.4)

where x~ is the radius at the point of intersection be-
tween the ingoing geodesic and. the null cone u = —1.
Since z = x/y & 1/2 throughout the entire evolution the
integrand in (3.4) is always bounded, and x decreases
with increasing u. Thus ingoing light rays must reach
r = 0 before u = 0, and they never reach the singularity
provided x~ & oo.

In view of the asymptotic solution (3.1) one also finds
that an observer at a (large) fixed radius takes an infinite
proper time to reach u = 0. A central observer, on the
other hand, reaches the singularity at u = 0 in Gnite
proper time. It is, however, only after he has seen the
entire history of the Universe in a tremendous flash. Thus
these spacetimes have trivial topology, with a singularity
onlyat r =Oasu~0.

Similar arguments apply when 4m' = 1, although in
this case g —2x ~ 0 as x ~ oo. It must be emphasized
that this solution is unstable, in the sense that an arbi-
trarily small change in the value of K, drastically changes
the character of the resulting solution. In particular, for
smaller values the spacetime contains a black hole.

dp—= -y/2 .
8u

(3.3) B. Class II: 4m' & 1

Since x = —r/u the geodesics are given by

1.0

0.8—

0.6—
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0.2—

0.0

0.0
I

0.2
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0.4
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0.6
I

0.8 1.0

FIG. 1. Integral curves when 4~~ = 2.25. The solu-
tions are seen to spiral towards the stationary solution. The
dot-dashed curve from y = 1, z = 0 is the solution with a
nonsingular origin. The dashed integral curve is on the neg-
ative leaf of (2.21) and is the continuation of the solid curve
which reaches y = 1/(1 + 47rr )

Containing two subclasses of solutions and ofI'ering an-
other example of a phase transition in gravitational col-
lapse, from black hole spacetimes to naked singularities,
these solutions are more interesting than those in class I.
In fact for each v in the range 0 ( 4mr ( 1 there ap-
pears to be a continuous inanity of solutions with a regu-
lar origin. This is due to the failure of uniqueness at the
singular point (2.23). Naked singularities develop only
for sufFiciently small values of v.

Solutions with a nonsingular origin contain a null hy-
persurface, I' say, on which x = const. This corresponds
to the point y = 1/(1 + 4nr. ), z = 1/2 in phase space.
As mentioned earlier the standard uniqueness theorems
break down at this point, and there is a one-parameter
family of self-similar continuations beyond it. More gen-
eral extensions which produce asymptotically flat space-
times have been considered in [5].

Figure 2 shows various solutions to the system (2.18)—
(2.20) when 4mr, = 0.49. It is clear from the diagram
that all solutions (except one) evolve into black holes (sig-
naled by the formation of an apparent horizon, y —+ 0).
Some of the solutions evolve onto the negative leaf of
(2.21); y undergoes a single oscillation before decreasing
monotonically to y = 0. While I have no analytic proof
that all of these solutions contain black holes, the nu-
merical results (as illustrated in Fig. 2) suggest this is
true. The single exceptional solution exhibits a behav-
ior which has been discussed elsewhere [9]; beyond I' no
black hole forms, instead the solution asymptotically ap-
proaches one of the stationary points (2.24). The space-
time is singular at the null surface u = 0, r = 0 where
y = 1/2. This singularity lies at infinite redshift for ob-
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Only as r m 0 is this quantity singular, indicating the
existence of a naked singularity at u = 0, r = 0 in these
solutions. The Cauchy horizon is also a null orbit of the
homothetic Killing vector; therefore, the work of Lake
and Zannias [17] implies that the singularity is strong in
the sense that tidal forces diverge at it. Notice also that
the metric can be made manifestly regular at the Cauchy
horizon by transforming to the new coordinate given by

1.0

0.8—

0.6—

dU=( —u) "du.
These spacetimes conGrm that naked singularities, which
evolve &om regular initial data, also exist for scalar field
sources. Whether they are stable to nonhomothethic,
not to mention nonspherical, perturbations is an open
question although the work of Goldwirth and Piran [5]
suggests that they are not.

There are two critical points where phase transitions
are observed. Each of the exactly critical solutions,
which interpolates between naked singularities and black
holes, asymptotically approaches one of the stationary
points (2.24) . Therefore these spacetimes have the struc-
ture shown in Fig. 3, with a null singularity at u = 0,
r=0.

As K decreases further, the topology of the phase space
changes slightly; only a single phase transition occurs go-
ing from black holes to naked singularities. The solutions
(including the single critical evolution) are the same as
those already discussed.

0.2—

0.0

0.0
I

0.2
I

0.4
I

0.6
I

0.8 1.0

FIG. 5. The exact expression for the solutions when m = 0
is given in the text, however, this diagram is for comparison
with the other cases. Note that y=1 is now a solution to the
equations and corresponds to Hat space. For this reason no
naked singularities exist for any value of p when e = 0.

C. The Roberts solution: e = 0

y = {(p'+z')'~' —2p')/x,

g = 2y
~

1 + 1 —4p'(2xy —y')

(3.10)

When K = 0 the scalar field is a function of x = —r/u
only and Eqs. (2.10)—(2.12) can be exactly integrated [9].
The resulting solution was first discovered by Roberts [18]
and may be written as

in the asymptotic approach of the integral curves to the
line y = 1. As discussed in [9] the natural continuation
past u = 0 is Minkowski space since there is no material
Aux across this surface on which m = 0. Notice however
that there is no self-similar extension of these solutions
to r = 0 which is nonsingular.

This discussion places the results obtained in [9] within
the more general context of self-similar spacetimes with
scalar field matter sources.

IV. DISCUSSION

and

(3.12)

The integral curves are plotted in Fig. 5. The solu-
tions are labeled by p and exhibit critical point behav-
ior. When p = 1/2 the integral curve leaves z = 1/2,
y = 1 and approaches the stationary point (2.24). This
exactly critical evolution lies between solutions which
contain black holes (y ~ 0, z + 1/2 along the inte-
gral curves) and those which evolve back to Rat space
[y ~ 1/(1 + 4vrv2), z m oo along the integral curves].
Since this is a saddle point we see that near critical evo-
lutions (sub- or supercritical) can approach this point
arbitrarily closely before moving away in their respective
directions.

The case v. = 0 is therefore exceptional because the
subcritical evolutions have zero mass on the Cauchy hori-
zon, u = 0, as is readily seen by taking the limit x ~ oo
in the above solution. This behavior is also apparent

Spherically symmetric, homothetic spacetimes have re-
ceived a great deal of attention over the last few years due
to the ease with which it is possible to construct naked
singularities in such spacetimes. Recent numerical stud-
ies of spherical collapse [7,19] suggest that self-similarity
may play an important role in describing the approach
to the singularity in gravitational collapse. This study
of scalar field collapse was in fact motivated by the work
of Choptuik, where he observed discrete self-similarity in
solutions on the verge of black hole formation. However it
is not clear how a continuous self-similarity, as discussed
here, could be at the center of the results which he has ob-
tained. Nevertheless some interesting features do emerge
from the study of spacetimes with a homothetic symme-
try; the properties of the solutions are summarized in
Table I.

One of the most intriguing results obtained by Chop-
tuik was the scaling law for black hole mass, unfortu-
nately self-similar spacetimes cannot have Gnite mass
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black holes. In order to obtain an asymptotically Hat
spacetime it is necessary to cut ofF the self-similar evo-
lution at some advanced time, and consider a suitable
continuation (which is not self-similar). Goldwirth and
Piran [5] did exactly this, although they did not exam-
ine the behavior of black hole mass as the critical point
4m@ = 1 was approached. This question is currently
under active investigation [20], and it will be interesting
to see if the mass exhibits the same behavior which has
been observed elsewhere [7,19,21].

We have in self-similar scalar field collapse further ex-
amples of spacetimes which violate cosmic censorship.
One might be surprised about this were it not for the
plethora of examples which now exist. What emerges
from these examples (generally) is that there do exist
initial data sets which when evolved according to the
Einstein equations lead to naked singularities; however,
the genericity of these data is far from clear. It there-
fore seems that the thrust of any attempt to formulate
(and prove) cosmic censorship must address this issue
directly. Some interesting preliminary results have been
obtained by Lake [22] where he has shown that (spher-
ically symmetric) spacetime in the neighbourhood of a
naked singularity may be approximately self-similar. It
therefore seems that future work on naked singularities
must consider deviations from the symmetric situations
treated to date.

Finally in searching for a theoretical understanding of
the results obtained by Choptuik [7] and Abrahams and
Evans [21] one might consider the obvious generalization
of hometheticity to a conformal symmetry; that is to
suppose the existence of a vector field ( such that

CgB„=0. (A2)

Before examining the implication of this for a self-similar
spacetime which satisfies Einstein's equations with scalar
field matter, let me show that (Al) can be recast into the
form used in Sec. II.

Introduce new coordinates r and u defined by

r = exp(t + z), u = rG(z), (A3)

where G(z) is to be determined. Substituting them into
the line element (Al) and requiring u to be null one ob-
tains the ordinary differential equation

dG =G —1+ -g2 x gg x (A4)

which determines G(z). Furthermore the line element
reduces to

ds' = g(r/u) g—(r/u) du' —2g(r/u) dude + r'dO', (A5)

where r/u is related to z by (A3). Clearly this means
that g and g are functions of r/u as stated in Sec. II.
The similarity vector is

where dQ = d8 + sin 8 dP, and the similarity vector
is ( = 0/Bt.

The exponential dependence of the metric on t guar-
antees that the ChristoÃel symbols and hence the Ricci
tensor B„are independent of this coordinate. This may
be expressed covariantly as

Ztg = O(z)g . (4 1) (A6)

If the dependence on position in 0 is weak, solutions
might behave like self-similar solutions with some sort of
superimposed periodicity. It would seem interesting to
investigate this possibility. R„„=Sar@ „g (A7)

the scalar field must satisfy

in these coordinates.
Now in view of (A2) and the Einstein field equations
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8@ p(r/u)
(A9)

ojv/r —p (r/u)
0'll (A10)

Assuming that g is independent of 8 and P, Eq. (A8) is
readily integrated to

APPENDIX A: SCALAR FIELD EVOLUTION IN
SPHERICAL) SELF-SIMILAR SPACETIMES

where p is an arbitrary function of r/u. (Integrability
was used to reduce the number of arbitrary functions to
one. ) The general solution of these coupled equations is,
therefore,

Results of Defrise-Carter [23] imply that a spherical
spacetime with a homothetic symmetry (i.e. , there exists
a vector ( such that Etg = 2g) can be written in the form

@ = h(r/u) —r. ln)u( —Pin)r( . (All)

ds = e '[g, (z)dt + g2(z)dz + e *dQ ], (Al)
In particular P may be set to zero by absorbing P(ln ~u~—
ln ~r~) into h, thus reducing (All) to (2.8).
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APPENDIX B: THE STATIONARY POINTS

1 1 1
g~ = —

) Zg ) Y+=+I+ g4~~ '
g4~

Provided 4vrr g 1 it is straightforward to linearize
about each of these points and hence to analyze the topol-
ogy of the phase space in their neighborhoods. The eigen-
values are

1 —z~ (1 —z~)2 + 4(2z~ —1)
Ai 2

——

2z+ 1 (2zg —1)2 (B2)

where z~ may be chosen independently of the sign of the
square root.

When 4vrK ) 1 only z+ is relevant for the discussion
in Sec. III. Both eigenvalues are real and have the same
sign, Aq 2 & 0, when 1 & 4vrK & 4/3 so that the station-
ary point is an attractive node. Once 4vrIr, ) 4/3 the
eigenvalues become complex conjugate, and since

The discussion in Sec. III relies on the properties of
the stationary points of Eqs. (2.18)—(2.20). In general
there exists two such points given by

derive the solution in the neighborhood of z = 1/2,
y = 1/(1+ 47rr ) The analysis is split into two cases.

(i) Suppose an integral curve crosses z = 1/2 at
yo g 1/(1 + 4vrK ). Writing z = 1/2 +. ( and consid-
ering the g —+ 0 limit of (2.18), (2.19), and (2.21) it is a
straightforward matter to derive

dy (1 + 4vr~2) y' —y

dj (2y —1)( (C1)

Integrating this equation gives

1 —4~~2
ln [g[ const + ln ~(1+ 4vrlr, )y —y[ . (C2)

(1 + 47r~2)

1
+g, (C3)

Examining this expression shows that yo
——0 is the only

place where integral curves may intersect z = 1/2.
(ii) It is necessary to treat the case when

z/(&+4 „,) ——0 separately since the limit z ~ 1/2
in (2.21) is more delicate. For this purpose we introduce
( as above and write

2z+ —1(0, 1 —z+ &0
where rl « 1/(1 + 4vrK ); thus,

(»)

2zg —1)0, 1 —z+ &0, 1 —z (0 (I'-l4)

the discussion of both is easily combined. Clearly the
eigenvalues are real and have opposite signs since

[1 —z~ [
& g(1 —z~) 2 + 4(2z~ —1) .

Thus they are saddle points.

they have a negative real part. This is a positive attrac-
tor, with spiral behavior.

When 0 & 4' ~ ( 1 both stationary points are of
interest. Simply noting that

1 + 4vrv.
Ir, +-

8m
(C4)

drl 1 + 47rr ~/2 KV 8m

d( 2((1 —4vr K2) (—()~/2 (1 —4mK2)

and find

1/2
( q)1/2 + ( q)(1+4wr )/(1 —4mv ) (C6)4+K

Substituting this approximate expression for p into
(2.19), and using ( as the independent variable we ar-
rive at the equation

APPENDIX C: THE SINGULAR LINE S = 1/2

In the above analysis it is important that integral
curves cannot cross z = 1/2 except at y = 0 or at
y = 1/(1 + 4vr+2). We now show that this is so, and

where c is a constant of integration. Now the initial con-
dition is rl = 0 when ( = 0 so that there are two dis-
tinct possibilities; when 4mK ) 1 the integration con-
stant must vanish, implying that a single integral curve
passes through this point. On the other hand if 4vrK ( 1
the constant is not fixed. by the initial conditions and
there is a one-parameter family of curves passing through
rl = 0 = (. It is exactly this fact which gives rise to the
variety of solutions in class II.
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