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Past-instability conjecture and cosmological attractors
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We conjecture that all homogeneous and isotropic physically reasonable cosmological solutions
of general relativity theory are in general past unstable in the generalized framework of higher
order gravity theories. In this respect we provide a detailed perturbation analysis of the most
interesting of these solutions and Gnd that the results support our conjecture. We show that, in
general, radiation solutions of higher order gravity are nonperturbative (bouncing or singular) as
we approach the singularity in the past. A well-known Hat radiation solution of quadratic gravity
is shown not to be an attractor as t —+ 0. We prove that the quasiexponential phase in higher
order gravity theories cannot be an attractor to solutions which may describe prein8ationary stage
in these theories. However, this last conclusion may be altered if additional conditions are imposed
and this situation is similar to the stability properties of the Starobinski inHationary solution. Other
examples of nongeneric-type in accordance with our conjecture are discussed and these include the
Milne universe.

PACS number(s): 98.80.Hw, 04.20.Jb

I. INTRODUCTION

There has been an extensive number of investigations
relating to classical properties such as the existence and
stability of cosmological models of theories of gravity
with quantum corrections (higher-derivative theories of
gravity) and in particular in the framework of a subset
of these theories, the so-called higher order gravity the-
aries (see below for definitions). These analyses showed
that interesting solutions describing the early history of
the Universe exist as self-consistent solutions in the "ex-
tended" solution space of higher-derivative gravity theo-
ries.

For example, in the context of inflationary cosmology
(see [1] for a review), it is well known that Starobin-
ski's infiation [2], which historically preceded Guth's in-
fiation [3], implies that in theories with quantum one-loop
contributions the corresponding field equations admit a
certain class of nonsingular, homogeneous, and isotropic
solutions which are in particular of the de Sitter-type.
However, one has to add that, as in all known forms of
inflationary cosmology, for Starobinski inflation to be-
come a viable inflationary model some sort of fine-tuning
must be made of the type v1 )) vq, i.e. , of the numeri-
cal coefFicients appearing in the quantum corrections of
the stress-energy tensor for free, massless, conformally
invariant fields (see [4], Sec. II).

The problem of ending the complete spectrum of phys-
ically realistic solutions in higher order gravity theories
is a diKcult one, owing partly to the wide choice of pa-
rameters involved and partly to the mathematical com-
plexity of the field equations. In particular, restricting
to four-dimensional homogeneous and isotropic cosmo-
logical models of constant curvature 0. taking the values
o = +1,0 and with a perfect Quid stress tensor with an
equation of state p = pp, p C [

—1, 1], we see that for the

natural choice of gravitational Lagrangian corresponding
to higher order gravity theories,

where a„are constants and B is the scalar curvature,
there is a three-parameter solution space denoted here
as (p, o, m). [Observe that the solution space of general
relativity without a cosmological constant corresponds to
the simplest choice (p, o', 1).] Since it is almost impossi-
ble to solve the general (p, o, m)-field equation obtained
by varying the action associated with (1), cosmological
solutions are known only for some special choices of the
parameters p, o., and m.

Consequently very few physically realistic classical so-
lutions are known. The special case of dust, p = 0,
m = 4/3, and o = +1,0, provides an example of a
set of solutions which are regular near the singularity
and approach the corresponding Friedmann-Robertson-
Walker (FRW) solutions of general relativity for large
times [5]. Breizman et aL [6] found another interest-
ing set of regular solutions corresponding to the choice
p = 1/3, m = 4/3, and o = +1,0. For higher values of m
the general situation is less well understood. Barrow and
Ottewill [7] (see also [8]) showed that there is a quasi-de
Sitter solution for 0 = 0, p = —1, and m = 2. This
result established the possibility of inQation in theories
of the general Lagrangian form (1). The regular solution
of Ruzmaikina and Ruzmaikin [9] lies at the point (1/3,
0, 2) in the three-space (p, o., m). A recent rediscovery of
the last two solutions together with a more complete and
rigorous stability analysis covering essentially the previ-
ously unknown cases cr g 0 was given in [10] (see also be-
low). This is probably all that is currently known about
the existence of special exact homogeneous and isotropic

0556-2821/95/51(8)/4160(8)/$06. 00 51 4160 1995 The American Physical Society



51 PAST-INSTABILITY CONJECTURE AND COSMOLOGICAL. . . 4161

solutions in higher order gravity theories.
The only alternative source of information about the

solution space of higher order gravity theories comes from
the so-called conformal equivalence theorem [ll]. This
has the simple consequence that all solutions of general
relativity plus a scalar field matter source are necessar-
ily solutions of higher order gravity theory derived from
(1) (but not vice versa, cf. [12]). However, (probably all)
stable solutions of general relativity are generally unsta-
ble in the enlarged solution space of higher order grav-
ity [7,9,10], and so it becomes relevant to be able to find
directly solutions to the higher order gravity field equa-
tions and analyze their stability properties.

The issue of whether or not cosmological solutions in
the generalized framework of higher derivative theories of
gravity are stable in the future has generated much con-
troversy (and also some interesting mathematical prob-
lems of a singular perturbation character, cf. [7]) over
the past d.ecade and is still far from being solved. The
picture that emerges is that FRW, flat, radiation-filled
solutions of the generalized theory tend to become future
stable and approach the corresponding FRW solutions of
general relativity, while nonflat, radiation-filled solutions
are generally future unstable and may have very difFerent
global behavior for large times from the corresponding
familiar case met in general relativity (cf. [9,7,10]).

There are two things for the "viability" of the extant
cosmological solutions in the higher order field equations
which are often quoted in the literature or assumed im-
plicitly: First, since higher order quantum corrections
are assumed to come from (an as yet nonexistent) quan-
tum theory of gravity, physically interesting solutions of
higher order gravity theories are expected to become reg-
ular (i.e. , bouncing) near the "singularity" as t ~ 0. Ex-
amples of regular solutions include the Ruzmaikin and
Ruzmaikina solution and the Gurovich solution cited
above. It is unknown whether or not inflation in higher
order gravity starts oK regularly, and we note that this
subtle issue is not completely settled even in general rel-
ativity (see, for example, [13]). The second property for
viability is of course stability or more accurately, the ex-
pectation that physically realistic solutions of higher or-
der gravity must asymptotically approach the general rel-
ativistic FRW solutions as t -+ oo [10].

However, one thing that is almost never mentioned is
the issue of whether or not cosmological solutions of gen-
eral relativity are past stable, i.e. , whether they are stable
as t —+ 0, in higher order gravity theories. This is closely
related to the question of whether the perturbation anal-
ysis used in proving stability breaks down near the singu-
larity so that nonperturbative solutions of higher order
gravity exist near t = 0. Stated simply, past instability of
a cosmological spacetime in higher order gravity theories
means that the Universe is not expected to behave in a
manner known in general relativity and consequently new
patterns of early evolution are generally to be expected
in these &ameworks.

Finally, another open issue which in our opinion de-
serves attention is the question of whether or not the
known particular exact cosmological solutions of higher
order gravity theories are attractors for all other solutions

in the solution space of these theories as t —+ 0. This is
equivalent to investigating whether the above exact solu-
tions are generic solutions of the respective theory.

In this paper we show four things. First, we provide
a detailed. perturbation analysis for all solutions of the
type (1/3, o, m) as t —+ 0, i.e. , general (flat and nonfiat)
rad. iation solutions of higher order gravity. The results
indicate that these solutions are in general nonperturba-
tive (bouncing or singular) as t i 0, but they may be,
in particular, singular (perturbative) as t ~ 0 if addi-
tional conditions are imposed. This analysis reinforces
and extends previous studies of the problem (see [9,7])
and completes the stability analysis program announced
in [10]. The important result deriving from the above
perturbation analysis for t ~ 0 is that it is sensible to
attempt to construct particular exact solutions of higher
order gravity since they are in general nonperturbative
for t —+ 0 and, hence may reveal as yet unknown features
of the early Universe.

Second, we prove by a simple perturbation analysis
that the solution (1/3, 0, 2) first discovered in [9] is not
an attractor on approach to the singularity at t = 0. This
result indicates that the behavior towards the singularity
of flat, homogeneous, and isotropic radiation cosmologies
may be completely difFerent to that imagined in [9].

Third, we find a solution which has p = 0 and lies at
(p, —1, 2) of the solution space (p, o, m, ), i.e. , it describes
a Milne-type universe in quadratic theories of gravity.
(Of course, this solution is expected in view of the con-
formal equivalence theorem [11].) In this case too we find
that the solution (p, —1, 2), p = 0, is not generic in the
neighborhood of t = 0.

Fourth, we show that the Barrow-Ottewill inflation-
ary universe [7] which corresponds to a quasi-exponential
early phase is not an attractor of solutions which may de-
scribe a preinflationary phase. However, this interesting
solution may become an attractor if additional conditions
are imposed. This situation is similar to the stability
properties of the Starobinski infiationary solution [2].

The organization of the paper is as follows. In Sec. II
we briefly review the perturbation formalism d.eveloped
in [10] and establish notation. In Sec. III we give a de-
tailed stability analysis of radiation solutions of higher
order theories of gravity which establishes the fact that
these solutions are in general of a nonperturbative char-
acter as t —+ 0 and may describe regular universes
which cannot be found. explicitly by means of pertur-
bation expansions. In Sec. IV we examine via pertur-
bation the (only known) fiat and radiation-filled solu-
tion in quadratic gravity of Ruzmaikin and Ruzmaikina,
the Barrow-Ottewill solution, and the Milne-type solu-
tion and conclude that all three aforementioned exact
particular solutions are in general not generic in the so-
lution space of the respective theories. We summarize
and discuss our results in Sec. V.

II. BASICS OF THE PERTURBATION
FORMALISM

In the following we consider a higher order gravity the-
ory given by a generally covariant Lagrangian density of
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the form

LHO~ = [f(R) + KL ](—g) (2)

where f (R) given by (1) is assumed to be an analytic
function of the scalar curvature B and I represents
possible matter couplings.

By varying the action associated with IHoc with re-
spect to the metric tensor g b one obtains the field equa-
tions

f R b
—2fg b

—7 ')7bf +g b f +KTb=0, (3)

dp
ds = dt +a (—t) +r (dg +sin 8dg)1 —0 7'

where = g bV t7b, V is the usual covariant diÃer-
ential operator, a prime denotes 0/BR, and we identify
the stress-energy tensor T b with the variational deriva-
tive (2/g g)b(g—gL )/—bg b. We shall make the as-
sumption that T b represents the stress energy tensor
of a perfect fluid with density p and pressure p. Thus
p = pp = prop and so p = Too = poa

—3(9+1) with pp
constant. Our analysis will focus on o = +1,0 FRW
solutions to the field equations (3).

The standard FRW metric in polar coordinates is

a
Bpp ——3—,a' (5)

a a oBp ——— —+2 +2 gp,

(a a'B= —6
(a a2 a2

Note that R = —(R + 3 —R), and the overdots denote
derivatives with respect to t.

Then the only necessary field equation is the (00) com-
ponent of the field equations (3). This reads

f'Rpp + f+ 3-f" R+—Top ——0,2 a

or, using (5)—(7),

f"[a a a +aa''a —2a —2a a] + i f'asa + i fa4

a(t) = ap(t) [1+e(t)] le(t) I
«1 .

+ aToo =—0 (9)

To write down the general stability equation for solutions
of Eq. (3) we let ap be a particular exact solution of (3)
and look for perturbed solutions of the form

where the values o = +1,0, —1 correspond to closed, flat,
open three-surfaces (and o., P = 1, 2, 3). Below we follow
the sign conventions of [14]. For this metric,

Substituting the perturbed solution (1) in the (00) com-
ponent of the field equations (9) and linearizing about the
exact solution ap(t) = (t —at ) ) we obtain a differential
equation for the perturbation e(t) (see [15]):

2o fl 3vi 5v
e(t) + ——+ —+ ——e(t)—

p Iv pj 2p
3fIII v2 ) f I

o») o

20 + + + I( + 8' t 0 11
(3fp v p p v fo p ) 9fopv

where p = t —ot and v = p. This third-order, lin-
ear equation describes the behavior of homogeneous,
isotropic perturbations to radiation solutions of general
relativity in closed (o = +1), Hat (o = 0), and open
(cr = —1) FRW universes in the context of higher or-
der gravity theories derived from the gravitational I a-
grangian (2). By solving this equation for the pertur-
bation e(t) we can decide whether or not the o. = 0, +1
FRW radiation solutions of general relativity are stable
against homogeneous and isotropic perturbations in the
context of the f(R) theory. Note, in particular, that
Eq. (11) is valid for every t ) 0.

Let us briefly review the main picture that emerges for
the stability properties of the solutions as t —+ +oo closely
following [10]. For the open universe (o. = —1), the gen-
eral analytic solution for the perturbation e'(t) with three

(as required) arbitrary constants ci,c2,cs, and(-~) (-~) (-~)

~(—i) ~(—i) ~(—~) .
is

e(t) = c, t j t I*I~),)At)dt

+&2 t t K3/2 At dt+c3 t, A ) 0,

r(t) = I:, t jt I'I3i, (kt)dt

+&,' '«-'~' J „,(A:t) dt + C&-'&t,

A' = —k' &0,

with A = fo/3fo' (A ) 0 without loss of generality) and
I, K, and J denoting the modified Bessel functions and
Bessel function, respectively, thus yielding the asymp-
totic behavior of e'(t) as t ~ oo as follows (cf. [10], Ap-
pendix):
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e(t) c te o. + c te + c t,
A' & 0, t -+ ~, (14)

e(t) - t(C,' "+ C,' "sin kt + C3( "),
A (0,

taboo,

(15)

ns being a bounded constant [10]. It is clearly seen from
the last two equations that the perturbation e(t) is in
general unbounded at t + oo. This means that the cor-
responding homogeneous and isotropic o = —1 solutions
given by (4) are generally future unstable in higher order
gravity irrespective of the sign of A .

The analysis of the 0 = +1 case is completely analo-
gous to the o = —1 case, and we obtain the asymptotic
forms [10]

e(t) - c(+')~,t'+ c,'+'t'(P, —sin At) + c,""t,
A' & 0, t + oo, (16)

whereas if A & 0 we find

(t) C(+i)t2 r t + C(+i)t4 r:lp + C(+i)t

A2 & 0, t ~ oo, (17)
where we have again set k = —A (k & 0) and
o3 ck4 P3 P4 are finite constants. The net result is that
the 0 = +1 solutions are in general future unstable in
our theory. Last, in the case of a Hat FRW metric we
find [10], where now the constant po

——3fo/4,

III. STABILITY OF RADIATION UNIVERSES
FOR ARBITRARILY SMALL TIMES

I et us first assume that a = —1 (open FRW model).
Consider the exact perturbation equation (cf. [10])

8' + ——+ — E'—
t3 t)

)48f. 1

o)f ll t4 3fll

+
(3fo' t t3

2po 36fo"
9fII f ll

—2 ~a=0, t &0,

(22)

where e = e(t) We. see that terms that involve third
derivatives of f (R) are the dominant terms and are cou-
pled to terms that grow like t or t for arbitrarily
small times t on approach to the singularity. Keeping
only such terms asymptotically as t ~ 0, we get the
equation

13.. 21 . 21
c —A —e. —A —a=0,t3 & t4 2t3 (23)

where we have set Ai ——48fo"/fo', A2 ——36fo"/fo'—
2po/9fo' —2.

The treatment of (23) is rather lengthy, and the details
are given in the Appendix. The essential result consists in
the asymptotic behavior as t ~ 0 of the general solution
e (t) which is

e(t) = ' + ,(o)
t'~'Is&4(At)dt + t

e(t) Ait" + A2+ A3, t -+ 0, (24)

t ~ I 3(4(At)dt, A & 0,

/(o) /(o) (o)

e(t) = i + t ~ J3/4(kt)dt+t t

x t'i'J 3i4(kt)dt, A' = —k' & 0, k & 0 .

(19)
Then, as t ~ oo the asymptotic behavior of the pertur-
bation e'(t) (cf. [10], Appendix) takes the form

(o) (o) & (o)

t3 4

(o) (o) (o)
c t +Ci ~2C2 + P2C3 2

A &0,t t3/4 (21)

with ni, n2, Pi, P2 finite constants.
These results review the fact [10] that, as already

pointed out in the Introduction, nonfat radiation FRW
solutions of general relativity are generally unstable with
respect to perturbations in our generalized gravitational
theory in the large time limit. In the case of a Hat
FRW universe in higher order gravity, however, the re-
gion A & 0 includes regular solutions at the singularity
which approach the corresponding ones in general rela-
tivity (cf. [9,10]).

with the necessary three arbitrary constants A~, A2, A3,
while n is a real number depending on Ai.

The conclusion from this analysis is that solutions
which describe open FRW radiation-filled universes in
higher order gravity are in general of a nonperturbative
character irrespective of the sign of n, since in general
A2 + A3 g 0. Hence, they may be singular, but not
obtainable from the FRW radiation solutions of general
relativity via perturbation theory, or bouncing at the sin-
gularity. The analysis of (22) for t + 0 in conjunction
with the results obtained for t —+ oo in [10], i.e. , Eqs. (14)
and (15), lead for o = —1 in this kind of perturbation
formalism to the general pattern: future-unstable and
past-nonperturbative (bouncing or singular) solutions.

There exist, however, some special cases which a priori
cannot be ruled out and, furthermore, allow us to extract
rather interesting results. In particular, we deduce for
A & 0 from Eq. (14) the existence of future-stable so-

lutions, provided cz ——c3 = 0. On the other hand,(-~) (-i)
from (24) we can obtain singular universes from pertur-
bation theory if Aq ——0, A2 + A3 ——0. Consequently, we
may conclude that there exists a one-parameter family of
solutions, ai(t), in the three-parameter solution space of
the fundamental equation (9) (rr = —1), which is future
stable and a one-parameter family of singular solutions,
a2(t), which is past perturbative. Evidently, these two
families of solutions ai(t) and a2(t) cannot, barring of
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course exceptional circumstances, have a common mem-
ber, a, (t), since to determine a, (t) completely one needs
four conditions, according to the results of the analysis of
Eq. (22) for t ~ 0, t ~ oo, whereas the general solution
of (9), or (22) for that matter, contains three constants.
Similar results hold for A ( 0 [cf. Eqs. (15) and (24)].

The important conclusion that can be drawn from the
above reasoning and which concerns the central issue
of viability of cosmological solutions to the higher or-
der gravity equations, as noted in the Introduction, is
that there exist nonperturbative, singular or bouncing at
t = 0 solutions which are future stable, i.e. , the family
ai(t). Therefore it is sensible to attempt the construction
of particular exact solutions to (9), of this "viable" type,
for example, for quadratic gravity, as already pointed out
in the Introduction of the present paper.

We proceed in the following to the 0 = +1 case in
precisely the same manner as for the case o. = —1. We
obtain, for the relevant perturbation equation [10], that
the asymptotic behavior of e(t) for t —+ 0 is

e(t) - B,t' + (B, + B,)t '/", t ~ O,

Bq, B2, and B3 being arbitrary constants. Evidently,
from (25), it is obvious yet again that in general we have
higher order gravity solutions which are of a nonpertur-
bative nature and bouncing or singular at t = 0.

Now, from Eqs. (16) and (17), a fact emerges which
is probably worth mentioning, in particular if it is con-
sidered in connection with (25). Indeed, from (16) and
(17) we observe that in both cases A ) 0 and A ( 0
all three constants have to be set equal to zero to force
e(t) ~ 0 as t -+ oo. This implies that at the most only

,(O)

e(t) +c3, t~o, A )0,
&(o).(t) - ' + c,", t ~ o, ),2 ( 0,t

(26)

(27)

thus deducing, in general, the nonperturbative features
of the respective solutions. By invoking (20), (21), (26),
and (27) we can easily prove the existence of the physi-
cally interesting past nonperturbative and future-stable
solutions in this case too.

IV. COSMOLOGICAL ATTRACTORS

Let us concentrate on the case of a quadratic I.a-
grangian theory given by L2 ——R+ nB . In this case
and for the metric (4) the field equation (9) becomes [7]

one future-stable solution a(t) of (9) exists in each one of
the cases A & 0 and A ( 0. This contrasts the case of an
open universe, where a one-parameter family of future-
stable solutions exists and might be expected in view of
a(t) -+ 0 as t + oo. Such as future-stable solution most
probably wiH be nonperturbative as t ~ 0.

In general we have future-unstable and nonperturba-
tive, singular or bouncing at t = 0, solutions of (9). The
special case B2+Ba ——0 simply shows the existence of a
two-parameter family of singular solutions a(t) which are
perturbative as t + 0 and future unstable (with the one
exception mentioned earlier) for t + oo. In conclusion,
we have shown the existence of nonperturbative solutions
near the beginning which are, however, future unstable.

Finally in the flat FRW case we get [cf. (18) and (19))

1
n( ) + —3/3( )

—2/3 2 —i/3( )
—4/3 + —i[ —i/3( )

—2/3 —3/3( )
—P —i/3 + 2~3 —3/3(

3

(28)

where y / = aa x(t) = ka, k = (2~3) /, and pi ——

[2&' —3»/']3 —3&&+'&/'po. Now setting

y(x) = (v —O.a ) /, v = v(a) (29)

and o = —1 the field equation (28) gives, by requiring
also that pi = 0 for a Milne universe [16],

where C is a constant. This describes the radius of a
Milne universe in higher order gravity.

We now turn to the issue of whether or not this Milne
universe is generic on approach to the singularity in the
sense that it attracts neighboring spacetimes as t ~ 0.
Substituting

V 1 v'+ 2a+
12A;2a4 6k2as 6k 2a5

v' +4a +4v'a
48k2a4(v + a2)

v = ~(a) l~(~)l «1
in (30) we find the following perturbation equation, with
b = S(a):

1+ + + =0.
k2/3a2(v + a2) 4~3 a2 v+ a2

(3o) This has the solution

$12 =0.
4a2 (33)

a(t) = t+ C, (31)

A particular solution of (30) is v = 0; therefore, be-
cause of y / = aa and Eq. (29) we find

8(a) = c2 —4a —32ci ln la —8cil,

where cy and c2 are constants.
Equation (34) implies that 8 is generally nonzero on
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approach to the singularity at t = 0, and so the Milne
kinematical universe is not generic on approach to the
singularity in higher order gravity and does not attract
neighboring universes in the small time limit.

Next we consider (28) which by means of the substitu-
tions (29) becomes, for o = 0, p = 1/3,

1/

12k2a4
v

6k2a5
v 2 a '

48k2a4v k2/3a2+ CI Py =0.
a vk/'

(35)

Equation (35) possesses the particular solution v = pi,
thus due to (29) and y ~ = ao, we obtain

(~) =(2te~ +C)"

~ = ~ [1+b( )], lb( )I «1 (37)

with C a constant. Solution (36) is none other than the
Ruzmaikin and Ruzrnaikina solution [9] which, being ob-
viously bouncing at t = 0 and future stable, is one of the
physically important solutions, as we have pointed out in
the o = 0 case in Sec. III. Upon inserting

H2 6~2~ ~2
2 36o.2 (40)

To write down the general stability equation for the
Barrow-Ottewill infIationary solution, we set Ho ——B—
(1/6n)t which corresponds to the ao(t) above via II =
a/o, , for the unperturbed phase and look for solutions of
the form

and, therefore, (36) is not an attractor in the space of
solutions of the difFerential equation (35). Let it be noted
here that by choosing Cq to satisfy the condition Cq ——

a (0) —1 and ~C2~ && 1 we conclude that there exists
a two-parameter family of solutions remaining close to
(36) for small times precisely as for the solution found by
Starobinski [2].

Finally we look into the possibility of the infIation-
ary stage in the quadratic theory L2, which is described
by the quasiexponential solution [7] ao(t) = exp(Bt-
tz/12n), being an attractor. This solution is obtained
as a self-consistent solution of the Beld equation (9) for
o = 0, p = —1, n ( 0, where B is an integration constant.
In terms of the Hubble parameter H = a/a, (4) can be
written as

in (35) we obtain, with b = b(a), II = II,[1+b(t)], b(t) « 1,

This has the solution

2b' /&2 =0. for some small perturbation b(t). Substituting this into
(40) we arrive at the perturbation equation

2b+ 6Hob —b = 0, IIo = B —(1/6n)t, b = b(t) .

b(a) = C2 —4 in ~a —Ci~,

Ci and C2 being integration constants. From (39) it
becomes obvious that b'(a) is in general nonzero as t -+ 0

We can solve this equation after some manipulation
and we present the final result which is

b(t) = b(0)+
e l "l'& ~f(B, n) —Q—n) 2 (7 —A) + /[(2Q —a.)

+ (2n+ 1)!!]
(43)

with A = 6Bn and

f(B )
—18B ng ) ( /V ). 2"+'(2n+ 1)!!n=O

(44)

Ci being an integration constant. We note that for t ~ 0 the integrand in Eq. (43) apart fram speciflc values
of the arbitrary integration constants B and C is finite, and therefore the integral exists for t ~ 0. Hence, we
see that the perturbation cannot be naively set to zero as we approach the singularity at t = 0 because of the
presence af the generally nonvanishing integration constant b(0). We thus arrive at the interesting conclusion that
the quasiexponential solution ao(t) = exp(Bt —t /12n) is clearly not a transient attractor as t ~ 0. This, at first
may seem surprising (and probably even discouraging) since it puts doubts on a generic birth of the inflationary
universe in higher order gravity theories. However, setting b(0) = 0, which is tantamount to imposing an initial
condition for t = 0 on the solution of (40) [or (9) for that matter], implies that there exists a two-parameter family of
solutions a(t) attracted as t —+ 0 by the Barrow-Ottewill quasiexponential solution ao(t). In our perturbation setting
the above result implies that generic infIation is "improbable, " but we believe that this result could be improved if
quantum efI'ects are taken into account and one studies the associated Wheeler-DeWitt equation. On considering
now the large time limit and noting, as it can be easily shown, that the integrand in (43) for t ~ oo behaves like
exp((7. —A) /4a. )w, a. & 0, we observe that the integral in (43) exists. Hence by setting now
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b(0) =— d7.

e l~ ~l'&4~f(B, n) —i/ n—) 2 (w —A)
+ /[(2Q —n) + (2n+1)!!]

n=O

(45)

I denoting the integral in (45), which is yet again equiv-
alent to requiring that the solution of (40) [i.e. , Eq.
(9)] satisfy an initial condition, the Barrow-Ottewill so-
lution becomes an attractor of a two-parameter family
of solutions in the three-parameter solution space of (9)
(cf. [17]),precisely as in the t —+ 0 case. We may conclude
from the above that there exists a one-parameter family
of solutions of Eq. (9) generated by two appropriate ini-
tial conditions, corresponding to b(0) = 0 and I = 0 [by
virtue of (45) I = 0 is simply a defining equation for the
constant Ci included in f(B,a)], which is attracted by
oo(t) = exp(Bt —t2/12n) for both t —+ 0 and t —+ oo.

V. DISCUSSION

(3) Study solutions of the Wheeler-DeWitt equations
for B+o.R actions and anisotropic metrics and analyze
their stability and attractor properties.

In conclusion we remark that the problems discussed
in this paper constitute a Beld which certainly deserves
further investigation and which could lead to new and
interesting results. We leave these matters to future pa-
pers.
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We have analyzed the past-stability properties of ho-
mogeIleous and isotroplc radiation cosmologies ln the
generalized framework of higher order gravity theories.
The conclusion that follows clearly from this analysis is
that, in general, the relevant solutions are past unstable
or, in other words, of a nonperturbative nature and there-
fore may provide new insight into the early evolution of
the universe in f(B) gravity. The stability analysis of
Sec. III confirms this and leads us to suspect that this
situation is even more general and so we propose the fol-
lowing.

Conjecture. All homogeneous and isotropic, physi-
cally reasonable cosmological solutions of general relativ-
ity are, in general, past unstable against perturbations in
higher order gravity.

Furthermore we have shown that all the known-up-to-
now exact particular solutions of higher order gravity, the
Ruzmaikin and Ruzmaikina solution [9] and the Barrow-
Ottewill solution [7], are not attractors as we approach
the singularity in the solution space of the relevant Beld
equations. This result implies the nongeneric character
of the aforementioned solutions and justifies future at-
tempts aimed at the construction of new particular ex-
act solutions of higher order gravity. We note that the
Milne-type solution [16] of general relativity, which is,
according to the conformal equivalence theorem [11,15]
and as verified here, a solution of the higher order grav-
ity theory, is also not an attractor on approach to the
singularity.

If one insists on continuing this type of research, some
next steps could be as follows.

(1) Past and future (in)stability and attractor prop-
erty of homogeneous and isotropic solutions against
anisotropic or inhomogeneous perturbations.

(2) Past and future (in)stability and attractor prop-
erty of inhomogeneous and anisotropic solutions against
perturbations in higher order gravity. The first obvious
candidate here should be the Bianchi type-I solution dis-
covered in [18].

APPENDIX

In this Appendix we provide the necessary details for
the derivation of (24). To effect the solution of (23) we
make the ansatz

(A2)

Azi(169 —Ai)
169

1 13/2

Condition (A3) simply implies that [cf. after (23)] the
constant po has to be Bxed accordingly. Therefore no loss
of generality is incurred through the requirement that
(Al) be a solution to (23). Setting now

e(t) = t"y(t), y(t) = P'(t),

(23) yields

t'P" (t) + ~(3nt' —l3)P'(t)

—(26n+ A —3n(n —1)t )P(t) = 0 . (A5)

Further, by means of a change of variables

P(t) = u(z), z = (A6)

(A5) becomes

z u" (z) + z(ai + biz)u'(z) + (az + b2z)u(z) = 0, (A7)

where

(A1)

and find that (A1) is a particular solution of (23) pro-
vided
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aq ——3(1 —n)/2, bq ——26, az ——3n(n —1)/4, Equation (A10) is the confluent hypergeometric equa-
b, = —(26n+A', ) . (A8) tion [19] with the general solution

Finally, on inserting the substitutions

u(z) = z"vu(z), to(z) = v(zg), zg ———biz,

k + (a,g
—l)k+ a2 ——0,

(Ao)

t' b, s
v(zq) = Az qP'q k+ —,1+ —;zx

b,

,/, ( b
+A3z ' pe k+ ———,1 ——;zi~,1

b 2' 2 )
into (A7) we obtain

t'
zqv" (zj) + (2k+ aq —zq)v'(zq) —

~

k+ —v(zz) = 0 .')
(A10)

s = g—3nz + 6n + 1 . (All)

Hence, by utilizing (A4), (A6), (A8), (A9), and (A11) we
deduce

E(t) = A, t" + A, t"
(~)

(j—37K—S}//2
—3 + 8 2 + 8 —13

1 1
4

(~)

4 '
2 2x2 (A12)

where yE~ [ +, +, 2, ] is the con8uent hypergeo-
metric function. Since now [19]

n —3+8 2+8
1 1 4 )

2
)

s(t) Apt" + A2+ As, t -+ 0, (A14)

and all numerical factors have been absorbed into the
integration constants A2, As. Consequently, Eq. (24) of

- r(-"+'+ )/', ~ ~ -~, (A13)

where v = —13/2x and 2: —+ 0, we conclude from (A12)
and (A13) that

Sec. III has been proved. It is perhaps interesting to note
here that a straightforward numerical investigation of
(23) shows clearly that without assuming (Al) be a par-
ticular solution of (23), i.e. , by droping condition (A3),
which fixes the arbitrary constant po, the general solu-
tion of (23) is not determined at t = 0. This evidently
shows that the perturbation in general breaks down at
t = 0, as noted in Sec. III, and this is predicted by (A14)
for all n ( 0.

The proof of Eq. (25), as well as the respective numer-
ical investigation, runs precisely along the same lines as
for the case of an open universe, whereas the verification
of (26) and (27) is immediately carried out by introducing
the series expansions of the Bessel functions into (18) and
(19) and letting t ~ 0 after carrying out the elementary
integrations.
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