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Cusmulagical models with a time-dependent A term
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Institute of Physics, Maria Curie Sklodotuska University, pl. Marii Curie Sklodomskiej 1, 20 081-Lublin, Poland
(Received 20 May 1994)

Cosmological models with a time-dependent A term of the form Aq + A2B are considered
for both dust and noncoherent radiation source terms. A general expression for the age of the
Universe in the matter-dominated case is presented and some of its consequences are analyzed. The
relevance of constraints imposed by the observed p-ray Bux, the extragalactic background light, and
the gravitational lensing phenomena are brieBy considered. The I andau-Lifshitz Huctuation theory,
as presented by Pavon, is applied to obtain constraints on the allowable set of parameters in the
radiation-dominated model.

PACS number(s): 98.80.Hw

A lesson given by the history of cosmology is that the
concept of the cosmological term revives in the days of
crisis. Over 60 years ago Eddington wrote [1] "...A-term
is the strongest pillar of the theory of relativity and I
would as soon think to reverting to Newtonian theory
as of dropping the cosmical constant. ..." And though the
motives for which Eddington was so strong a supporter of
retaining the cosmological constant are not so persuasive
now as they were in his times (at least for him), today we
have more reasons than ever to belive that the cosmolog-
ical term is the necessary ingredient of any cosmological
model.

The possibility of adding a cosmological vacuum en-
ergy density to the Einstein Beld equations raises the
question of empirical justification of such a step. A posi-
tive cosmological constant helps overcome the age prob-
lem, connected on the one side with the high estimates
of the Hubble parameter and with the age of the globu-
lar clusters on the other. Further, it seems that in order
to retain the cold dark matter theory in a spatially Hat
Universe most of the critical density should be provided
by a positive cosmological constant [2,3].

Observational data indicate that the cosmological con-
stant, if nonzero, is smaller than 10 cm . How-

ever, since everything that contributes to the vacuum
energy acts as the cosmological constant it cannot just be
dropped without serious considerations. Moreover, par-
ticle physics expectations for A exceed its present value
by the factor of order 10 that is in a sharp contrast to
observations.

To explain this apparent discrepancy the point of view
has been adopted which allows the A term to vary in time
[4—12]. The idea is that during the evolution of the Uni-
verse the energy density of the vacuum decays into the
particles thus leading to the decrease of the cosmological
constant. As a result one has the creation of particles
although the typical rate of the creation is very small.

In the models proposed so far the variability of A is
generally of the form

&a
'

A(t) = nR +P
i B)

where B is a scale factor; n, P, m are constants and an
overdot denotes differentiation with respect to the cosmic
time coordinate. Though different in assumptions Ozer
and Taha [4] and Chen and Wu [7] concluded that the
tixne dependence of A should have P = 0 and rn = 2. The
law of Gasperini [6] involves P = 0 and s ( m ( 4,
whereas Freese et al. [5] advocated the law of variation
with P = 0 and m = 4(r, —1), where r is a phenomenolog-
ical constant parameter. We remark here that Herman
[11]proposed explicit time dependence A oc t

In the other approach to the problem Peebles and Ra-
tra [14] considered a spatially flat cosmological model
with a scalar field with the power law potential. Such
a model produces a A-like term decreasing in time. It
should be noted however that the resulting equation of
state approaches the A equation of state in the limit of
vanishing power. In the Peebles-Ratra model there is no
creation of particles; all potential energy is converted into
the kinetic energy of the scalar field.

Since the (xnodified) Einstein field equations do not
specify models completely additional assumptions have
to be made. Pavon [13] proposed to analyze the models
from the point of view of their thermodynamic correct-
ness by studying the fluctuations of fluxes around their
mean value within the framework of the Landau-Lifshitz
fluctuation hydrodynamic theory. Unfortunately the ap-
plications of this theory without the detailed knowledge
of the particle content of the Universe and their mutual
interactions are limited to the radiation-dominated era.
Pavon's analysis extended later by Salim and Waga [10]
to the P g 0 case provides definite constraints on the
admissible features of such models.

Cosmological models with a time-dependent A term or
its analogue have been subjected to numerous tests. Ob-
served p-ray Hux [5], extragalactic background light [15],
the number count of faint galaxies [16], the cosmic back-
ground radiation anisotropies [17], and the gravitational
lensing phenomena [18] have been successfully applied to
constraint the allowable set of parameters of the models.

The purpose of this work is to analyze general features
of the solutions of the Einstein Beld equations with a
different time dependence of the "cosmological constant:"
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where A1, A2, and m are constants. Special emphasis is
given to the problem of the age of the model Universe.
We consider also the relevance of the constraints imposed
on the model &om the observed p-ray Qux, the extra-
galactic background light, and the gravitational lensing
phenomena.

To avoid great negative values of the A term in the
past, we shall assume that A2 ) 0, placing no additional
requirements on A1. Such a cosmological term allows
changes of a sign of the effective cosmological constant.

For the Friedmann-Lemaitre-Robertson-Walker cos-
mologies the Einstein Field equations with the variable
cosmological constant and a source term given by a
stress-energy tensor of a perfect fluid read

B2 k3, +3, =8~(A+@), (3)

2 —+, +, = 8~(A —p),
B B2 k

B (4)

where p is the Quid energy density and p is its pressure.
The equation of state is taken in the form

P = o'p) (5)
where n is a constant satisfying 0 ( n ( 1/3. From
Eqs. (3) and (4) one obtains

dpB dB3 3 dA

dt dt dt
Eliminating the source terms and putting p = 1 +
3n, b = 1 + o., and a; = 8vrA;, the First integral may be
easily obtained:

~

2
B2 g2 —rn

' ~+2 7 —m+2
and

R = B + SagA ~lnB+ b2B ~ —k, (8)p+2
for p g m + 2 and p = m + 2, respectively,

Assuming that all considered models evolve from a sin-
gular state it could be easily shown that the above equa-
tions place a general limit on the value of m, namely,

0 & m & p + 2, (9)
provided b1 ) 0. If o. = 3 one has m & 4. Similar restric-
tions follow, as we shall see, from the thermodynamic
considerations.

Equation (7) may be easily integrated in terms of ex-
ponential, trigonometric, or hyperbolic function for the

I

special choices of parameters. As such solutions are self-
evident we shall not treat them separately.

Leta1) 0, a2) O, andb1) O, thenfork &Othe
model expands forever. The particular case k = 1 is more
complicated. Let r = V(B „) be a maximal value of
the effective potential

B g2 —m
V(B) = —ag8 —a2h —b~R ~ (.10)p+2 p —m+2

If r & —1 the model expands forever. If r = —1 there is
a singular solution corresponding to the Einstein static
universe. Moreover, there are solutions either asymp-
totically tending to or asymptotically starting from the
Einstein universe. The condition r ) —1 leads to the
oscillatory solutions.

Let a1 & 0, a2 ) 0, and b1 ) 0. Since for great val-
ues of B the first term is always dominant there exists a
maximal value of B regardless of the sign of k. However,
whether the model has an oscillatory character or there
exist singular and asymptotic solutions depends on the
exact values of the parameters. For m & 2 one has only
the oscillatory solutions, whereas for 2 & m & 2 + p
the effective potential has a local maximum, and hence
if r = —1, the singular and asymptotic solutions are
admissible.

To this end let us consider the special case of b1 ——0.
If a1 ) 0, a2 ) 0, and 0 & m & 2, only oscillatory
models with k & 0 are admissible. In the case with 2 &
m & m+ p the basic features of solutions are similar to
the case with nonzero b1. If a1 & 0 only the oscillatory
solutions may be constructed.

It should be noted that though the condition a1 & 0
is allowed it does not mean that the "observed" effective
cosmological constant is necessarily negative. In fact it
may be positive and smaller than 10 cm, or even be
zero now due to a fine cancellation. Moreover, since the
model with the negative a1 either recollapses or has sin-
gular or asymptotical solutions the effective cosmological
term may be always non-negative. It might be, of course,
negative as well.

For the matter-dominated universe, i.e. , when p = 0,
Eqs. (7) and (8) could be rewritten in terms of the ob-
served quantities, such as the present value of the Hubble
constant Hp, the deceleration parameter qp, and the cos-
mological density parameter Op, to yield the age of the
Universe:

for m g 3 and

1

tpHp ——

p —.'a~(*' ——.') + ." (*'-- ——.') + p2(-.' —1) + —.
'

1

tp Hp
p —,'a, (~2 ——') + x'in(a)P, + P2{—' —1) + —' (12)

for m = 3, where

a2 3
gm

—Ap —ay —3@0 = P],

k 3
a2H2 = —0 — —1 =

p p
(14)

and a, = a,Hp . Note that our definition of the effective
cosmological constant is three times O~.

It should be noted that when m = 2, Eq. (11) does
not explicitly depend on Ao. On the other hand, (11)
does not depend on m, if Pq

——0.
A straight consequence of Eq. (14) is the possibility of
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expressing the present value of the scale factor by observ-
able parameters provided k is nonzero. We have

(ki'
&o = Ta

/

—
/

(15)

where TH ——Hp . However, if A: = 0, the scale factor
cannot be determined without knowledge of the exact
values of the normalized cosmological constants and the
power m. In this case we have instead of standard Op ——

2qp a little more complicated Op ——
~ qp + ~ ~ Note that

for the critical density both models give qp ——

Before preceding further we shall evaluate the rate of
particle creation (annihilation) n, that is defined as

—127& qp &2. (19)

Various methods place the age of the Universe between
10 and 20 Gyr [22]. Though it seems unlikely that To is
less than 12 Gyr. Analyses of the age of the oldest stars
in our galaxy and adding realistic incubation time yield
Tp ——15 Gyr.

The Hubble parameter is usually taken to be h, 100
(km sec Mpc ), where 0.4 & h & 1. Since the Hub-
ble time T~ ——9.778 h i (Gyr) is related to the Hub-
ble parameter it follows then that it would be necessary
to introduce modifications in the standard cosmology to
satisfy requirements that follow &om observations if the
exact value of Ho exceeds the Sandage-Tammann [23]
value and is equal to these advocated by Jacoby et al.
[24], or van der Bergh [25], i.e. , h = 0.8 and h = 0.76,
respectively.

We now turn to the discussion of constraints imposed
on the model from observational data. Provided the
baryon number is conserved, decay of the cosmological
term into baryons may be constrained by the observed
p-ray Rux. Integration of Eq. (6) and comparison with
the observations [26] yields the condition

(16)

Making use of (6), (13), and (15) yields

mHoPgn
8mAp

Since we have chosen a2 ) 0 we have particle creation
only.

It is believed. that luminous matter contributes only a
small &action of Op, and the luminous matter plus the
dark matter give Op ——1.However, recent estimates from
observations of galaxy clustering and their dynamics in-
dicate that the mean mass density is about one-third
of the critical value [19]. Madsen et al. [20] indicate
that the critical value of the cosmological density pa-
rameter favored. by numerous workers is not generically
connected with inQation, thus allowing low energy cos-
mological models. All that is known for certain about
the present value of Op could be exhibited by means of
the inequality [22]

003(Op (2 (18)
Observational evidence does not rule out the negative

deceleration parameter and the tightened limits on the
present value of qo are [21]

Pgh (1 —x, ) & 2.6 x 10, (20)

where x,q ——R(t,~)/Ro is a normalized scale factor when
matter and radiation were equal. Since z q is expected to
be small and since it seems unlikely that m && 1, it follows
that the adiabatic relation of the matter-dominated era
is satisfied and. consequently the density of matter scales
as B

Therefore one has

4 —m) 3n, ' (»)
and Op and Op are the energy density of radiation and
matter, respectively. From (21) it follows that Pi cannot
exceed 3 (4 —m) Oem . Numerically for m = 2 that
is expected to be a best candidate condition (20) yields
Pgh2 & 1.3 x 10

Let us assume that photons created during the vac-
uum decay have Planckian spectrum and are in equilib-
rium with those already present. Using the method of
Valle, Wesson, and Stabell [27] in the present context
the intensity of the extragalactic light I(A), where A is
the wavelength, may be computed and compared with re-
cent data provided by the Cosmic Background Explorer
(COBE) [28]. As in [15] we assume that matter decoupled
from radiation not much earlier t q. Unfortunately the
method invented by Overduin et al. and applied to the
model proposed by Freese et al. cannot be applied here.
In our model the fraction of the radiation energy density
to the vacuum energy density is necessarily a function of
the scale factor. Therefore we have calculated the I(A)
for observed parameters, starting &om x,q to the present
epoch. In the calculations three massless neutrino species
have been assumed. From

m H2 302O~m zap 4 30pnp
8vr(4 —m) 8~

where p~ is photon energy density and Op —— 0,', it
0

follows that Pi & '. Note that neutrinos after
decoupling redshifts as x . The calculations of the ex-
tragalactic background light for Op ——0.2, m = 2, and
h, = 0.5 are presented in Fig. 1, and indicate that if the
above condition holds calculated I(A) does not exceed

3

-2

-3

-4

FIG. 1. Comparison of intensity of the extragalactic
background light I(A) in units 10 cm calculated for
Oo ——0.2, h = 0.5, and m, = 2 to the actual intensity of
the cosmic microwave background as measured by COBE. (a)
COBE; (b) Pi = 5 x 10; (c) P& = 2 x 10
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the observed flux. as expected.
The behavior of Tp as a function of parameters

m, ai, qo, and Bo may be easily inferred from Eq. (11).
The general rule is that decreasing the deceleration pa-
rameter the present age of the Universe becomes greater.
Recall that if Pi ——0 then Tp does not explicitly depend
on m. and therefore any (p, m. ) section, where p stands
for Op, qp, or aq is divided by p = p, where parameters
with superscript c satisfy the condition

3
2

Opc —3qpc + +1cr (23)

into two regions in which exclusively particle creation or
annihilation takes place.

Consider at first the (Oo, m, ) sections; by (23) for each
qp and aq there exists a critical value Op such that for
Op ( Op Tp is a decreasing function of m, and the
particle annihilation takes place, for Op ——Op has its
minimum, whereas for Op, & Op it is an increasing func-
tion of m and the creation occurs. The general tendency
is that Op increases with qp and a~. Since, as we have
remarked before, Tp is independent of Op when m = 2,
one has the following qualitative picture: for m & 2, Tp
decreases with Op, while for m & 2, Tp is an increasing
function.

The (qo, m) sections show that To is always a decreas-
ing function of qp. By (23) there exists a critical value

qp, such that for qp ( qp, Tp increases with m, while for
p ) qp, Tp is the decreasing function. The general ten-

dency is that q increases with Op and decreases with aq.
To this end we remark that by (23) the qualitative be-

havior of (m, o,i) sections are similar to the cases treated
above.

Since a primary goal of introducing a cosmological
term is, in addition to its presence in the particle physics
considerations, to increase Tp, it is interesting to evaluate
expected age of the model universe as a function of Op
and ai for chosen values of Pi and m. The results of such
calculations for Pi ——10 and m = 2 are presented in
Figs. 2 and 3.

It has been pointed out that in the A-constant models
the gravitational lensing optical depth, ~, i.e. , the proba-

1.4

1.2

0.

11
FIG. 2. The age of the Universe Tp as a function of 00 and

ai for m = 2 and Pi ——10

1.6

0. 8

I . & « I ~ ~ ~ I (g

0. 5 1 1.5 2 2. 5 3 3.5

FIG. 3. Tp as a function of ai for rn = 2 and Pi = 10
Tp is presented for (a) Bp = 0.1; (b) Qp ——0.2; (c) spatially
Hat model; (d) Op ——1.
bility that quasar is multiply imagined by a gravitational
lens along the line of sight of an observer is a sensitive
indicator of the value of the cosmological constant. The
general tendency is that 7 increases with A in spite of un-
certainity with the notion of a distance [29]. It is there-
fore natural to examine our model from the point of view
of this test. The normalized optical depth is given by the
expression [30]

where D is a proper motion distance, and the subscripts
0, I, and S represent the observer, lens, and source,
respectively. Since the probability that a quasar is lensed
is the prod. uct of its optical depth, its magnification bias,
the selection effect and presumably other factors, it is
evident that the large w are strongly disfavored.

As we have remarked before, the main difference be-
tween the present and the Peebles-Ratra model stems
from the fact that in the latter model the ordinary
A equation of state is approached in the limit of van-
ishing power and that only spatially flat cosmologies are
considered. Nevertheless, it is interesting to compare
its predictions. Ratra and Quillen have shown that for
Op ——0.2 and reasonable choice of the power, say, 4 in
the Peebles-Ratra model, f(z) at z = 2.5 is approxi-
mately factor 1.8 smaller than in the flat, constant A-
dominated mod. el with the same value of Op. Numerical
calculations of f (z) in the model at hand have been car-
ried out for Pi ——10 . In our model, for a given value of
the baryonic density parameter, reduction of the optical
depth is necessarily connected with k = —1 models, i.e. ,
with decreasing of aq. Inspection of Fig. 4 shows that
f(z) strongly increases with ai. Numerically, the ratio
w(z) j7Egs, where apts denotes the optical depth in the
Einstein —de Sitter model, for Op ——0.2 at z = 2.5 is ap-
proximately 4.3 for a flat model (a), 3 for the case (b),
2.2 for (c), and 1.7 for (d). Since the high estimates of
the Hubble constant require the greater a~ one concludes
therefore that there would be a problem with a matching
the age of the model with the reasonable optical depth.
One possible way to cure the situation is to assume the
dust obscuration, as it was proposed by Fukugita and
Peebles [31].

Let us consider more closely the special case of the
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