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The dynamics of first-order phase transitions are studied in the context of (3 + 1)-dimensional
scalar field theories. Particular attention is paid to the question of quantifying the strength of
the transition, and how "weak" and "strong" transitions have different dynamics. We propose a
model with two available low temperature phases separated by an energy barrier so that one of
them becomes metastable below the critical temperature T, . The system is initially prepared in
this phase and is coupled to a thermal bath. Investigating the system at its critical temperature we
find that "strong" transitions are characterized by the system remaining localized within its initial
phase, while "weak" transitions are characterized by considerable phase mixing. Always at T, we
argue that the two regimes are themselves separated by a (second-order) phase transition, with
order parameter given by the equilibrium fractional population difference between the two phases
and control parameter given by the strength of the scalar field's quartic self-coupling constant.
We obtain a Ginzburg-like criterion to distinguish between "weak" and "strong" transitions, in
agreement with previous results in 2 + 1 dimensions.

PACS number(s): 98.80.Cq, 64.60.Cn

I. INTRODUCTION

The fact that the gauge symmetries describing par-
ticle interactions can be restored at high enough tem-
peratures has led, during the past 15 years or so, to
an active research program on the possible implications
that this symmetry restoration might have had to the
physics of the very early Universe. One of the most in-
teresting and popular possibilities is that during its ex-
pansion the Universe underwent a series of phase tran-
sitions, as some higher symmetry group was succes-
sively broken into products of smaller groups, up to
the present standard model described by the product
SU(3)c SU(2)t, U(1)y. . Most models of inflation and
the formation of topological (and nontopological defects)
are well-known consequences of taking the existence of
cosmological phase transitions seriously [1].

One of the motivations of the present work comes from
the possibility that the baryon asymmetry of the Uni-
verse could have been dynamically generated during a
first-order electroweak phase transition [2]. As is by now
clear, a realistic calculation of the net baryon number
produced during the transition is a.formidable challenge.
We probably must invoke physics beyond the standard
model (an exciting prospect for most people) [3], push
perturbation theory to its limits (and beyond, due to
the nonperturbative nature of magnetic plasma masses
that regulate the perturbative expansion in the symmet-
ric phase), and we must deal with nonequilibrium as-
pects of the phase transition. Here we will focus on the
last problem, as it seems to us to be the least discussed of
the pillars on which most baryon number calculations are
built. To be more specific, we can separate the nonequi-

librium aspects of the phase transition into two main
subdivisions. If the transition proceeds by bubble nucle-
ation, we can study the propagation of bubbles in the hot
plasma and the transport properties through the bubble
wall. A considerable amount of work has been devoted to
this issue, and the reader can consult the works of Ref. [4]
for details. These works assume that homogeneous nu-
cleation theory is adequate to investigate the evolution
of the phase transition, at least for the range of param-
eters of interest in the particular model being used to
generate the baryon asymmetry. This brings us to the
second important aspect of the nonequilibrium dynam-
ics of first-order phase transitions, namely, the validity of
homogeneous nucleation theory to describe the approach
to equilibrium. This is the issue addressed in the present
work.

Nucleation theory is a well-studied, but far from ex-
hausted, subject. Since the pioneering work of Becker
and Doring on the nucleation of droplets in supercooled
vapor [5], the study of first-order phase transitions has
been of interest to investigators in several fields, from
meteorology and materials science to quantum field the-
ory and cosmology. Phenomenological field theories were
developed by Cahn and Hilliard and by Langer [6,7] in
the context of coarse-grained time-dependent Ginzburg-
Landau models, in which an expression for the decay
rate per unit volume was obtained by assuming a steady-
state probability current flowing through the saddle point
of the free-energy functional [7,8]. The application of
metastable decay to quantum field theory was initiated
by Voloshin, Kobzarev, and Okun' [9], and soon after put
onto Grmer theoretical ground by Coleman and Callan
[10]. The generalization of these results for finite tem-
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perature field theory was first studied by Linde [11],and
has been the focus of much recent attention [12].

The crucial ingredient in the evaluation of the decay
rate is the computation of the imaginary part of the free
energy. As shown by Langer [7], the decay rate 'R is
proportional to the imaginary part of the Bee energy T,

where E is the negative eigenvalue related to metasta-
bility, which depends on nonequilibriurn aspects of the
dynamics, such as the coupling strength to the thermal
bath. Since ~ = —T lnZ, where Z is the partition func-
tion, the computation for the rate boils down to the eval-
uation of the partition function for the system comprised
of bubbles of the lower energy phase inside the metastable
phase. For a dilute gas of bubbles only, the partition
function for several bubbles is given by [13,7]

Z = Z(pg) + Z(&g) + Z(&y) —, +.Z(p[) 1 Z(pb)
Z [pe 2. Z (py

Z([pe) exp
Z(~~)
Z (py

where py is the rnetastable vacuum Geld configuration
and pb is the bubble con6guration, the bounce solution
to the O(3)-symmetric Euclidean equation of motion. We
must evaluate the partition functions above. This is done
by the saddle-point method, expanding the scalar field
P(x, r), such that t[[t(x, r) m [py + [, (x, r) for Z(tpy), and
P(x, w) ~ tpg(x) + q(x, r) for Z([pi, ), where [, (x, w) and
q(x, r) are small fluctuations about equilibrium. Skip-
ping details [12], up to one-loop order one obtains for the
ratio of partition functions, Z([pi, )/Z([pe),

Z([pit) 1-loop order det[ — @ +V (spit)]p

Z(yg) det[ — ~ +V"(py)]p

[det[M)p[ t—:f Dtt exp( — dv' d x-', tt[M[tt)
0

W= —T ~+V (pb)la —~s
C

d«l — ~ +V"(~x))~
(4)

We are briefly reproducing this computation here be-
cause we want to stress the importance of the assump-
tions built into it. First, that the partition function
is given by Eq. (2) within the dilute gas approxima-

and AS = S@(tpb) —S@([pe) is the diff'erence between
the Euclidean actions for the field configurations yb and

[Note that S~(tp), and hence AS, does not include
any temperature corrections. ] Thus the free energy of
the system is

tion, and. , second, that the partition function is eval-
uated assuming small Quctuations about the homoge-
neous metastable state py. It is clear that for situations
in which there are large amplitude fluctuations about
the metastable equilibrium state the above formula must
break down. Thus the breakdown of the expression for
the rate is intimately connected with the question of how
well localized the system is about the metastable state
as the temperature drops below the critical temperature
T

This question has been addressed in the context of
the electroweak phase transition in the works listed in
Ref. [14]. The common assumption of these works is that
for weak enough transitions the dynamics is dominated
by correlation-volume large-amplitude thermal Huctua-
tions, dubbed subcritical bubbles, which promote con-
siderable phase mixing as the Universe cools below the
critical temperature. Within the validity of this ana-
lytical approach it was shown that homogeneous nucle-
ation is only justifieR for Higgs masses below 70 GeV or
so, which is dangerously close both to the present lower
bound on the Higgs inass [15], and to the limit of va-
lidity of the perturbatively evaluated effective potential
[16]. Furthermore, as with any analytical treatment of
nonequilibrium dynamics, many aspects of the compli-
cated kinetics of the system are not included. For ex-
ample, even though correlation-volume bubbles may be
the dominant Buctuations about equilibrium, there will
be bubbles of diferent sizes present which may percolate
and also acquire some thermal velocity due to diffusive
processes. It is clear that a anal answer to the prob-
lem can only be given by a combination of analytic and.
numerical tools.

In order to clarify the distinction between "weak"
and "strong" Erst-order transitions, one of us has re-
cently studied the nonequilibrium dynamics of a (2+ 1)-
dimensional model of a scalar field coupled to a thermal
bath [17]. The nonlinear interactions were chosen to re-
Bect the gross properties of the electroweak effective po-
tential, although the model only deals with a real scalar
field. It was shown that there is a very clear distinction
between a weak and a strong transition, and that one
should expect a very diferent dynamics between the two
cases. In the present work, we generalize these results
to 3 + 1 dimensions and also address important issues
concerning the reliability of the numerical results. As
we will show, it is clear that the two regimes are easily
distinguishable, as in the (2 + 1)-dimensional case. Us-
ing homogeneous nucleation can easily lead to the wrong
description of the dynamics.

In passing, we note that somewhat similar results have
been obtained in the context of binary Quid mixtures,
where the (conserved) order parameter is the local con-
centration of one of the components of the mixture [18].
If the system is quenched to concentrations above the
spinodal (the inflection point in the free-energy density),
the transition evolves by spinodal decomposition; oth-
erwise, nucleation occurs. The transition between the
two regimes was shown in that case to be smooth. How-
ever, we must remember that here we are dealing with a
nonconserved order parameter and have much faster d.y-
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namics than in binary fluid mixtures. As we will show,
the transition between the two regimes is more dramatic
in our context.

This paper is organized as follows. In the next sec-
tion we introduce the model we will use in the numerical
simulations. In Sec. III we discuss details of the numeri-
cal approach used to study the dynamics of the system,
including the implementation of the code on a parallel
machine. In Sec. IV we discuss the numerical results and
their reliability. We conclude in Sec. V with a summary
of our results and an outlook into future work.

II. THE MODEL

The homogeneous part of the free-energy density is
written as

U(p, T) = —(T —T2)qP — Tp—
2 3 4

This choice intentionally resembles the electroweak ef-
fective potential to some order in perturbation theory,
although here P(x, t) is a real scalar field, as opposed to
the magnitude of the Higgs Beld. The goal is to explore
the possible dynamics of a model described by the above
free-energy density, generalizing the results obtained in
Ref. [17] to 3+ 1 dimensions. The analogy with the elec-
troweak model is suggestive but not quantitative.

Introducing dimensionless variables x = a ~ T2x, t =
ai~2T2t, X = a i~4T2 P, and 0 = T/T2, the Hamilto-
nian is

——0X + —X
3 4

82X
2 BX BU(X, 0)

where i1 is the dimensionless viscosity coe%cient, and (
the dimensionless stochastic noise with vanishing mean,
related to g by the fluctuation-dissipation theorem,

(((x, t)((x', t')) = 2ggb(t —t')8 (x —x'). (8)

A few comments are in order concerning our choice of

where n = a ~ n, and A = a ~ A (henceforth we drop
the tildes). For temperatures above gi ——(1—n~/4A)
there is only one minimum at X = 0. At 0 = 0i an infIec-
tion point appears at X;„g = ngi/2A. Below gi the in-
flection point separates into a maximum and a minimum
given by X~ = (ng/2A)[1+ gl —4A(l —1/g2)/n2].
the critical temperature 0, = (1 —2n /9A) ~ the two
minima at Xo ——0 and X+ are degenerate. Below 0
the minimum at X+ becomes the global minimum and
the Xo phase becomes metastable. Finally, at 0 = 1 the
barrier between the two phases at X disappears.

The coupling with the thermal bath will be modeled
by a Markovian Langevin equation which, in terms of the
dimensionless variables defined above, is

equation and potential. It is clear that we are assuming
that X(x, t) represents the long-wavelength modes of the
scalar field. Whenever one discretizes a continuum sys-
tem there is an implicit coarse-graining scale built in. We
encapsulate information about the shorter-wavelength
modes, which have faster relaxation time scales, in the
dissipation and noise terms. In principle, it should be
possible to derive an efFective Langevin-like equation for
the slow modes by integrating out the fast modes from
the efFective action. This is a complicated problem, and
progress has been slow. Recent work indicates that one
should expect departures from the Langevin equation
written above [19], although details are sensitive to the
particular model one starts with. For example, the noise
may be colored (with more complicated correlation func-
tions) and the coupling to the bath may be multiplicative,
as opposed to the additive coupling chosen above. Here,
we will adopt the above equation as a Grst step. We do
not expect that the nature of the noise will change the
Gnal equilibrium properties of the system, but mostly the
relevant relaxation time scales. Since the physical results
here are related to the final equilibrium state of the sys-
tem, we believe that they will not be affected by more
complicated representations of the coupling of the field
to the thermal bath. However, a more thorough exami-
nation of this question deserves further study.

The reader may also be wondering why we included
temperature corrections in the potential for the coarse-
grained scalar field. There are several answers to this
question. One is that the temperature corrections to the
potential of the coarse-grained scalar Geld come from in-
tegrating out other fields from the action. This is the
case, for example, in the electroweak theory, where tern-
perature corrections are induced in the efFective poten-
tial for P after integration over vector and fermionic (and
not scalar) degrees of freedom. Thus, in addition to the
background bath, the coarse-grained efFective potential
for P includes temperature corrections coming from other
fields coupled to P. A second answer comes from explicit
computations of efFective I angevin equations, involving
only self-interacting scalar fields, as for example was done
in Ref. [19]. As one sums over fast degrees of freedom,
the classical potential is modified by temperature correc-
tions, in addition to the noise and dissipation terms. This
makes sense because the coarse-graining procedure must
be sensitive to the length scale used in the coarsening. In
one-loop calculations, the implicit length scale is the cor-
relation length, which is temperature dependent. Thus
the efFective potential must include this dependence. (For
very weakly coupled theories, these corrections are very
small, and it is justified to take the classical potential plus
noise in the simulations. ) A third answer can be found
in the statistical mechanics literature, where this issue of
coarse graining has received considerable attention over
the years. As remarked by Langer (see Ref. [18]), the
coarse graining will induce an efFective free energy which
is temperature dependent. Due to the difIiculties in ac-
tually performing this coarse graining, one usually takes
a phenomenological free energy which is temperature de-
pendent, as in time-dependent studies of phase separa-
tion in Ginzburg-Landau systems.
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A related topic is the choice of coarse-graining scale,
which is embedded in the lattice spacing used in the sim-
ulations. It is well known that any classical field theory
in more than one spatial dimension is ultra violet diver-
gent, and that the lattice spacing serves as an ultraviolet
cutoff. This being the case, one should be careful when
mapping kom the lattice to the continuum theory. If one
is to probe physics at shorter wavelengths, renormaliza-
tion counterterms should be included in the lattice for-
mulation so that a proper continuum limit is obtained
on the lattice within the validity of perturbation theory.
This point has been emphasized in Ref. [20], where a
(2+ 1)-dimensional study of nucleation was performed for
a temperature-independent potential. Renormalization
counterterms (of order 0 lnhx for lattice spacing bx) for
a particular renormalization prescription were obtained,
and the results shown to be lattice-space independent.

Here, due to the temperature dependence of the poten-
tial, the renormalization prescription of Ref. [20] does not
work. Instead, we will use bx = 1 throughout this work.
It turns out that for all cases studied the mean-field corre-
lation length ( = V"(Xe, o,) is sufFiciently larger than
unity to justify this choice. Modes with shorter wave-
lengths are coupled through the noise into the dynamics
of the longer-wavelength modes, as described by Eq. (7)
above.

X;

where i indices are spatial and n indices temporal. The
continuum white noise ((x, t) is replaced by its dis-
cretized analogue (, by requiring that the discrete noise
be uncorrelated on all scales above the shortest simu-
lated. The discretized form of the fiuctuation-dissipation
relation of Eq. (8) becomes

((;, „,(;, „,) = 2go —b„, „, h;, „,
1 1

(10)

The discrete noise is hence approximated by

where g; is a unit-variance Gaussian random number
at each point in lattice spacetime.

Since we are modeling an unbounded system we do not
want our simulation volume to have a distinct surface;
we therefore use periodic boundary conditions. However,

III. I ATTICE FOB.MULATION

The system is now discretized onto a lattice of length
L with grid spacing bx, time step bt, and total run time
At. Using a standard second-order staggered leapfrog
approach, Eq. (7) becomes

such boundary conditions may induce errors if a sim-
ulation runs for longer than a time causally equivalent
to L/2 as the periodicity then introduces spurious long-
range correlations. Since we must run very long simu-
lations to guarantee equilibration, were this constraint
to apply we would be forced to use impossibly large lat-
tices. Fortunately, the presence of the noise term, uncor-
related at each point in lattice spacetime, has the effect
of swamping any such effect.

We must now run our simulations on large lattices (to
reduce finite size effects) many times over (to reduce sta-
tistical noise) and for long run times (to ensure reaching
equilibrium). Typically any attempt to reduce one of
these constraints is met by a corresponding increase in
another —for example, smaller grids give noisier results
requiring more runs. As a consequence, we soon find our-
selves at the limits of what is possible on a workstation.
We have therefore parallelized the code and implemented
it on a 128-node AP1000. The overall lattice is subdi-
vided into an appropriate number of sublattices, each of
which is local to a single node. These sublattices are de-
fined with an overlap, such that each edge of any node's
sublattice is included within the body of one of its neigh-
bors. At each time step each node evolves the body of its
local sublattice, but not the edges, for which insufhcient
data are locally available to calculate spatial derivatives.
Each node then exchanges the necessary data to update
the overlapping edges of their associated sublattices with
each of its neighboring nodes.

The one qualitatively different feature of the parallel
code is in the implementation of the random number gen-
erator. Computational random number generators are
required to produce the same sequence of numbers when-
ever they are given the same initial conditions. Therefore
what they actually generate, at least ideally, is a pre-
dictable, periodic sequence of pseudorandom numbers,
any sufficiently short (i.e. , substantially shorter than the
period) subset of which has statistical properties indis-
tinguishable from a genuine random sequence. In our
case we need random numbers at every point in lattice
spacetime which are uncorrelated across the entire simu-
lation spacetime; each node requires numbers which are
random not only locally at the node itself, but also across
all the other nodes too. Either each node must have a
different generator (highly impractical for any more than
a few nodes) or each node must be allocated a unique
subsequence of a single generator's full sequence. Most
generators are based on an iterative scheme, where each
number in the sequence is calculated from some of the
previous numbers in the sequence. However, if these pre-
vious numbers are not members of the local subsequence
then there is a communication cost incurred in fetching
them from the relevant node. In order to maximize the
eKciency of the code, we require a generator whose se-
quence can be broken down into subsequences with el-
ements generated by reference to previous members of
that subsequence alone. Moreover, for large lattices and
long run times we require a generator with an extremely
long period. Thus for L = 48, bt = 0.1, and a running to
At = 3000 (values used below) we require of the order
of 2 random numbers, and hence a generator with a
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period many times longer than this. A solution to this
problem, applicable across any 2 nodes, with a period of
2 —1 and with each element in each subsequence calcu-
lable completely locally, is given by a particularly elegant
parallelization of the generalized feedback shift register
algorithm [21]; this is the generator implemented here.

IV. NUMERICAL EXPERIMENT AND RESULTS

As pointed out in the Introduction, the question
as to whether a first-order phase transition is "weak"
or "strong" boils down to how well localized in the
metastable state the system is as the temperature drops
below the critical temperature. In order to address this
question, following the procedure of Ref. [17], we will
study the behavior of the system at the critical temper-
ature, when the two minima are degenerate. The reason
for this choice follows naturally from the fact that we are
interested in the way by which the system approaches
equilibrium as the temperature drops below T . The de-
tailed dynamics will depend on the relative fraction of the
total volume occupied by each phase; if at T, the system
is well localized about the X = 0 minimum, as the tem-
perature drops the transition may evolve by nucleation
and subsequent percolation of bubbles larger than a criti-
cal size. If, on the other hand, considerable phase mixing
occurs already at T, we expect the transition to evolve
by domain coarsening, with the domains of the X+ phase
eventually permeating the whole volume.

Let us call the two phases the 0 phase and the +
phase, corresponding to the local equilibrium values X
Xo = 0 and X = X+, respectively. We can quantify the
phase distribution of the system as it evolves according
to Eq. (7), by measuring the fraction of the total volume
in each phase. This is done by simply counting the total
volume of the system at the left of the potential barrier's
maximum height (i.e. , X & X = X „),corresponding
to the 0 phase. Dividing by the total volume, we obtain
the fraction of the system in the 0 phase, fp(t), such that

f.(t) + f+(t) = 1, (12)

where, of course, f+(t) corresponds to the fractional vol-
ume in the + phase. A further measure of any config-
uration is given by the volume-averaged order param-
eter (X)(t) = V J dV X(t). A localized configura-
tion (fpq ) 0.5) then corresponds to (X),q ( X
and a fully phase-mixed configuration (fpq 0.5) to
(X),q = X „,where the super- (sub-) script "eq" refers
to final ensemble-averaged equilibrium values of fp(t) and
(X)(t), respectively.

We prepare the system so that initially it is well local-
ized in the 0 phase, with fp(0) = 1 and (X)(0) = 0.
These initial conditions are clearly the most natural
choice for the problem at hand. If one has cosmology in
mind, it is quite possible that as the system slowly cools
down (we are not interested in phase transitions close to
the Planck scale), fluctuations from the high temperature
phase X = 0 to the X+ phase are already occurring be-
fore T is reached. (In this case, our arguments are even

stronger. ) However, we will adopt the best-case scenario
for homogeneous nucleation to work, in which the sys-
tem managed to reach the X = 0 phase homogeneously,
so that the initial state is a thermal state with mean at
Xo. If one has more concrete applications in mind, we
can assume that we quenched the system to its critical
temperature, making sure that the order parameter re-
mains localized about the high temperature phase. Since
thermalization happens very fast in the simulations, the
exact point by point initial conditions should not be im-
portant, and we can view the first few time steps as gen-
erating an initial thermal distribution with fp(0) 1 and
(X) 0, so that the average kinetic energy per lattice
point satisfies the equipartition theorem (1/iV)EA, = 2T.
For simplicity we take X = 0, X = 0 everywhere ini-
tially.

There are two parameters controlling the strength
of the transition, n and A. In the previous (2 + 1)-
dimensional work, n was chosen to vary while A was kept
fixed. It is really immaterial which parameter is held
fixed, or if both are made to vary, but in order to keep
closer to the spirit of the electroweak model we will fix n
and let A vary. As is well known, A is related to the Higgs
mass, while a is related to the gauge-boson masses [2].
The connection with the electroweak model is straight-
forward. If we consider as an example the unimproved
one-loop approximation, the efFective potential is [2]

VEw(P, T) = D(T —T2 ) re —ETrti + 4 Az P, (13)

where D and E are given by D = [6(Miv/o) +
3(Mz/o)'+6(Mz /o-)']/24 = 0.17 and E = [6(Miv /o)s+
3(Mz/o) ]/12ir 0.097, for Mm = 80.6 GeV, Mz
91 2 GeV, Mz = 174 GeV [22], and o = 246 GeV. T2 is
given by

T2 —— (MH2 —8Bo 2)/4D, (14)

where the sum is performed over bosons and fermions (in
our case only the top quark) with their respective degrees
of freedom g~~~~, ln c~ ——5.4 1, and ln c~ ——2.64.

Thus the correspondence with our (dimensionless) pa-
rameters is

3E A~
2D s«n = = 0.065 and A = = 1.72A~. (16)2D i/2

Once this is established, the numerical experiment pro-
ceeds as follows: (i) Choose a = 0.065; (ii) prepare the
system in the initial state described above, and measure
the value of fp( t) and (X)(t) for s'everal values of A, as

where the physical Higgs mass is given in terms of the
one-loop-corrected A as M~2 ——(2A + 12B)o2, with B =
(6M~ + 3Mz —12M&)/64m o, and the temperature-
corrected Higgs self-coupling is

) .» l l
»(M~/e~T )

f Ma'l '
16ir2 ( cr )

—) g~
~ ~

ln(M~/epT )
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the system evolves according to Eq. (7). As w'ith any nu-
merical experiment, one must make sure that the results
are independent of lattice artifacts (or at least the depen-
dence is understood), such as its finite size and choice of
time step for the evolution routine. Before we discuss
our results, we will address these issues in the following
subsection.

A. Finite lattices and the thermodynamic limit

Whenever simulating a system on the lattice, we are
faced with the hard decision of having to achieve a com-
promise between approximating the infinite volume limit
and having fairly reasonable integration times. This
problem is particularly serious in the context of phase
transitions, as it is well known that symmetry breaking
only occurs in the infinite volume limit; at finite volumes,
there is a nonzero probability that a large Quctuation
will restore the broken symmetry. Even though this is
formally true, we will argue here that this does not rep-
resent a problem to our simulations, if we make sure that
the lattice is large enough. There is a large amount of
literature on finite size efFects and how they are handled
in different contexts [23], and we do not intend to repro-
duce these results. What we want to do is to bring this
issue closer to our problem.

We are interested in studying the system given by the
free-energy density of Eq. (5), at the critical temperature
0 when the two minima are degenerate. The system is
prepared in the 0 phase, and we measure the fraction
of the volume in each phase as it evolves. We will give
a rough estimate of how large the lattice should be in
order to suppress spurious symmetry restoration (that
is, fII —+ 0.5 in our case) due to the lattice size. There
are two relevant time scales in the problem, the relax-
ation time scale for small-amplitude fluctuations within
the X = 0 well, v;,~, and the "escape" time scales for
large-amplitude Quctuations into the + phase, w, . In
terms of the rate per unit volume for each process, we
write the relevant time scales as

—1 —1VI' (17)

where p„~ is the typical relaxation time scale for short-
amplitude Quctuations in units of T, and

VI'„, - 7,„'- T exp[ —Fy/T], (18)

where I"y is the free energy of the large-amplitude Huc-
tuation. The condition for large-amplitude Quctuations
to be suppressed in comparison to typical relaxation pro-
cesses is then

)& 1 ~ exp[Fy/T] ))
arel

(19)

To estimate ~„, note that within the Gaussian approxi-
mation a homogeneous fIuctuation of volume V and am-
plitude P~ about equilibrium (P = 0, for simplicity) has
free energy

Fy (P~, V, T) = —m (T)P~, {20)

where m2(T) = V"(P = 0, T) (we neglect the gradient
contribution, as it would suppress the Quctuation even
further, making our arguments stronger). We are in-
terested in fluctuations about 4 = 0 (we now go back
to our dimensionless variables), at the critical temper-
ature 0, = (1 —2a2/9A) iy2. We expect growing in-
stabilities to be triggered whenever fluctuations probe
the nonlinearities in the free energy. This is corrobo-
rated by the results in Ref. [17] and, as we will soon
see, here also. Thus we consider fluctuations with am-
plitude equal to the nearest inflection point to X = 0,
namely, X~ = (o.o, /3A)(1 —1/~3). Writing their vol-
ume V = s (n() in terms of the correlation length

((0,) = (02 —1) iy2, with n a real number, we obtain

0. X3~&
*0 088 3

From our arguments above it is clear that p, I = (0
1) y . Let us consider an example which will be relevant
later on. Take o. = 0.065 and A = 0.020. In this case,
the correlation length is ((|l,) 4.5 and we obtain, from
Eq. (19), n » 0.91. Since the radius of the fiuctuation
is By = n(, this result implies that fiuctuations probing
the inflection point with radius By ——0.91 x 4.5 4.1
are probable within typical relaxation time scales of the
system. Thus the lattice length I should be suKciently
larger than about 2Ry (L ) 10 or so) to avoid spurious
symmetry restoration. For L = 20 the volume ratio of the
lattice to the above fluctuations is around Ls/4Ry 25,
and such processes alone cannot restore the symmetry
within time scales of interest in the dynamics. In all the
results quoted in this work we use 1. = 48.

We give two pieces of evidence supporting these argu-
ments. In Fig. 1 the equilibrium values of the 0-phase
fraction, foq, and of the volume-averaged order parame-
ter, (I) q, are given as a function of the lattice size L, for
o. = 0.065 and A = 0.020. A is chosen so that for large lat-
tices the system remains localized mostly in the 0 phase.
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FIG. 1. Equilibrium values of the 0 phase fraction fo and
of the volume-averaged field (X),s are shown as a function of
lattice length I fur A = 0.020.
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Note that as I decreases fpq ~ 0.5, representing a spu-
rious "symmetry restoration" due to the smallness of the
lattice. For small lattices, the two phases are completely
mixed. In fact, changes can be seen between I = 10 and
20, in qualitative agreement with our arguments above.
Note that for large enough lattices the equilibrium value
approaches a stable value which is independent of the
lattice size. For all practical purposes, this is the infinite
volume limit. Fluctuations large enough to restore the
symmetry are possible, but with negligible probability.

The reader may wonder why for large enough lattices
fpq g 1. The reason for this is that at finite tem-
peratures there is a nonvanishing probability per unit
volume of having thermal fluctuations populating the
+ phase. Even though these Huctuations are unstable
and shrink away, there will be an equilibrium distribu-
tion of bubbles suppressed by a Boltzmann factor. For
very strong transitions (very small A), fp 1, and a
negligible fraction of the system is in the + phase. We
refer the reader to the paper by Gelmini and Gleiser [14]
for details. In Fig. 2 we show a phase space portrait
of the system for a given point on the lattice for di8'er-
ent lattice sizes. That is, we choose a particular point
X(xp, yp, zp, t) and follow its evolution, making a plot of
X(zp, gp, zp, t) vs X(xp, gp, zp, t) . Taking n = 0.065 and
A = 0.010, Fig. 2(a) shows the I, = 4 and Fig. 2(b) the
L = 20 case. It is clear that for the smaller lattice the
system is probing both minima of the free energy (X'p ——0
and X+ ——4.55 here), while for the larger lattice the sys-
tem remains localized in the X = Xo well. As the lattice
size is increased the throat separating the two minima
becomes less and less dense until eventually the system
becomes "trapped" within one well. The time scale for
its eventual escape is much larger than any time scale of
interest in this problem, with w„, ~ oo as I ~ oo.

Finally, in Fig. 3, we show the equilibrium values of
the fraction fp(t), fpq, and of the volume-average order
parameter, (X),~, for n = 0.065 and A = 0.020, as a func-
tion of time step bt, . Note that using too large a time step
compromises the stability of the simulations, tending to
drive the system's equilibrium towards the phase-mixed
symmetric state (fp ~ 0.5, (X),q = X „).The results
detailed below are therefore obtained using a time step
b~ = 0.&.

B. Numerical results

Based on the above discussion, we choose L = 48, bx =
1, bt = 0.1, and o. = 0.065 in all simulations. The ex-
periment then consists in measuring the fraction of the
volume in the 0 phase as a function of time for several
values of A. As this involves a stochastic noise, we must
perform an ensemble average over many runs in order to
obtain physically reasonable results.

In Fig. 4 we show the evolution of the ensemble-
averaged fraction fp(t) for several values of A. It is clear
that for small enough values of A the system remains
well localized in the 0 phase with fp 1, while for
larger values the two phases become completely mixed,
with fpq —+ 0.5. Remarkably, the transition region be-

tween the two regimes is quite narrow, centered around
0.025. This can be seen from Fig. 5 where we show

fp(t) for A = 0.024, 0.025, and 0.026. [The curves are
noisier due to the fact that we must run for longer times
in order to approach the equilibrium values of fp(t), be-
ing thus constrained to perform an ensemble average with
fewer runs. ] Note that for A = 0.026, fp 0.5, while for
A = 0.024, fP 0.72. There is a pronounced change in
the behavior of the system for A 0.025. Furthermore,
we find that the numerical curves can be fitted at all
times by a stretched exponential,

fp(t) = (1 —fpq) exp[ —(t/7. q) ] + fpq, (22)

where fp is the final equilibrium fraction and r q is the
equilibration time scale. In Table I we list 0 and w q for
several values of A. Note that for A = 0.025 the fit is
obtained at late times by a power law (smooth curve in
Fig. 5),
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of both the inHection point and the maximum of the po-
tential with varying A. As can be seen from Fig. 8, the
narrow transition region is clearly delimited by

Xinf & (X)eq & Xmax & (25)

I I
I

I I I I
(

I I I I
(

I I I I

where X;„g and X „are the inHection point and the
maximum of the potential barrier, respectively. Note
that for A ) 0.026 fo ——0.5 and (X),q ——X „.Recall-
ing the information from Fig. 7, we conclude that there
is a clear distinction between the "strong" and "weak"
regimes. The existence of a potential barrier between the
two phases at T, does not imply the system begin local-
ized in the 0 phase, for large enough values of A. This efB-
cient thermal mixing of the phases will acct the dynam-
ics of the phase transition as the temperature drops below
T . For A & 0.025, if the cooling is slow enough, there is

FIG. 8. Comparison of the equilibrium value of the vol-
ume-averaged field (X) q (circles) with the location of the
nearest inHection point to X = 0, X;„f, and the poten-
tial barrier X „, as a function of A. Note the existence
of a transitional region for 0.021 A ( 0 026. For
A ) 0.026, (X),q ——X

no reason to expect that the system will approach its final
equilibrium by nucleation of bubbles larger than critical.
Rather, the mechanism will resemble spinodal decompo-
sition, where domains of the two phases will compete
for dominance, with the + phase eventually dominating
the volume. We stress that the value A = 0.025 is a
weak lower bound; even if the system starts localized in
the 0 phase at T for a smaller value of A, the potential
barrier will also decrease for lower temperatures, and we
should expect departures from nucleation settling in even
for A & 0.025. (Of course, the decrease in temperature
will also suppress thermal Huctuations. ) The evaluation
of the exact value of A for which nucleation theory will
break down depends on the asymmetry of the potential,
the temperature, and on the cooling rate, requiring fur-
ther study. However, we can assert that this value will
be at least lower than A .

0.8 V. CONCLUSIONS AND OUTLOOK
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FIG. 7. Fractional equilibrium population di8'erence AFEg
for several values of A. Note the sharp discontinuity about the
critical value A 0.025.

In this paper we investigated the possibility that ther-
mal Buctuations may induce considerable phase mixing
for systems which exhibit two degenerate phases at their
critical temperature. By modeling the nonequilibrium
dynamics by means of a Langevin equation with the sys-
tem initially localized in one phase, we showed that com-
plete mixing of the two phases can occur, despite the
presence of a potential barrier between the phases. These
results are of importance in the context of cosmological
phase transitions, in particular, when the cooling rate
is suKciently slow compared to the equilibration time
scales of the system. This limit is implicit in our sim-
ulations, as we held the temperature fixed at T, while
the system equilibrated. Our results should also be of
importance for systems studied in the laboratory. As we
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mentioned in the Introduction, binary fluid mixtures sep-
arate by spinodal decomposition if the system is initially
quenched with concentrations above the spinodal. The
dynamics in that case is much slower though, and the
transition between nucleation and spinodal decomposi-
tion is smoother [18]. However, we believe the essential
physics to be the same, as we found that considerable
phase mixing occurred precisely as the equilibrium value
of the volume-averaged scalar field (the equivalent of the
concentration in the binary Quid case) traversed within
the "transitional" region delimited by the locations of
the inflection point and the maximum of the potential
barrier. Also, as mentioned in previous publications [14],
this phase mixing is characteristic of pretransitional phe-
nomena found in the isotropic-nematic transition of liq-
uid crystals, which is known to be "weakly" erst order
[25].

Inspired by the effective potential of the electroweak
model, we measured the degree of mixing with respect
to the value of the quartic self-coupling of the scalar or-
der parameter. However, as mentioned before, this is
not a simulation of the electroweak transition, as our or-
der parameter is a real scalar field. . In fact, the critical
value above which we found that the two phases mix,

0.025, is below the value of A which corresponds
to a physical Higgs mass. Using the equivalence relation
between the two models obtained in Eq. (16), a Higgs
mass of MH = 50 GeV would correspond to A = 0.0518,
which is well within the "weak" regime. For this value
of A, the equilibrium value of the volume-averaged Beld
(X),q = X „,and the two phases are indistinguishable.

The results presented here are in qualitative agreement
with a previous work in which phase mixing was investi-
gated in 2+1 dimensions [17]. As in that case, we suggest
that the distinction between "weak" and "strong" first-
order transitions be quantified in terms of the equilibrium
fractional population difference between the two phases,
AFEq = fo —f+ Within .the limits of a finite lattice,
we observed a sharp change in the behavior of AFEq with
respect to A (see Fig. 7), which we suggest characterizes a
second-order phase transition between the "symmetric"
("weak" ) phase AEEcl = 0 and the "broken-symmetric"

("strong") phase ZI"Ecl = 1. In order to study the de-
tails of the transition, a more thorough analysis of fi-
nite size effects in the determination of the critical value
A, 0.025 and of the critical exponent P, obtained from
the relation AI'Ecl = (A, —A)l in the neighborhood of
A, must be performed. But, taken together, the sharp
change in LEEg and the presence of critical slowing down
about A provide substantial evidence for the existence
this transition. In fact, the symmetry restoration we ob-
serve reflects the breakdown of mean Beld theory in the
presence of thermal fluctuations, in exact analogy with
Ising models.

Finally, our work also calls for a more detailed anal-
ysis of the role of noise with spatiotemporal memory in
simulations of the dynamics of phase transitions in field
theories. The Markovian I angevin equation used here
is certainly an approximation to more complicated cou-
plings between the system and the thermal bath. It re-
mains to be seen what role colored noise will play in the
nonequilibrium dynamics of field theories. It is, however,
hard to imagine that the nature of the noise can affect fi-
nal equilibrium properties of the system, although it may
affect the equilibration time scales. In this connection, we
note that recent results by one of us show that at high
enough temperatures colored noise becomes white [19].
Given our present level of understanding of the nonequi-
librium dynamics of field theories it is only fair to expect
many surprises in the coming years.
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