
PHYSICAL REVIEW D VOLUME 51, NUMBER 8 15 APRIL 1995

Cosmic microwave anisotropies from topological defects in an open universe
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We present a general formalism for computing cosmic background radiation (CBR) and density
Huctuations in open models with stiK sources. We decompose both the metric Quctuations and
the Buctuations in the stress-energy tensor into scalar, vector, and tensor modes. We find analytic
Green's functions for the linearized Einstein equations in the presence of stift' sources and use this
formalism to estimate the amplitude and harmonic spectrum of microwave background Quctuations
produced by topological defects in an open universe. Unlike in8ationary models that predict a Hat
universe and a spectrum of CBR Huctuations that are enhanced at large angular scales, defect models
predict that CBR Buctuations are suppressed on angular scales larger than that subtended by the
curvature scale. In an 0 = 0.2 —0.4 universe, these models, when normalized to the amplitude of
CBR fiuctuations observed by COBE, require a moderate bias factor, 2—3, to be compatible with
the observed Huctuations in galaxy counts. In these models, accurate predictions can be made which
are testable through CBR experiments in the near future. A CBR measurement of 0 would then
be possible, up to the limit imposed by cosmic variance. We discuss some of the philosophical
implications of an open model and propose a solution to the Batness problem.

PACS number(s): 98.80.Cq, 11.27.+d

I. INTRODUCTION

In recent years, most theoretical work in cosmology
has assumed that the universe is Hat and matter domi-
nated. This assumption is nearly inevitable in inflation-
ary scenarios that predict that 0 should be close to unity.
However, defect models make no such predictions for the
density of the universe.

There is a host of astronomical evidence that suggests
that the universe may be open. White et al. [1] argues
that x-ray observations of clusters imply that at least 20%
of their mass is baryonic. When combined with standard
hot big-bang estimates of the baryon density [2], Bbh2
0.0l5, this implies that the total density in nonrelativistic
matter is much less than unity. Observations of galaxy
random velocities [3] find that os ——317 km/s, a factor of
4 below the predictions of Cosmic Background Explorer
(COBE) normalized flat scale-invariant cosmologies. The
matter density inferred from comparisons between the
galaxy correlation function in redshift and real space is
also much smaller than unity and is compatible with 0
0.3 [4].

Over the past decade, observational cosmologists have
devoted much eÃort to measuring the spectrum of density
Huctuations and have found significant evidence for more
large-scale structure than predicted in Hat universe mod-
els. As the predicted spectrum of density Huctuations is
peaked on the physical scale corresponding to the hori-
zon size at matter-radiation equality, 32/Ah Mpc, mod-
els with 0 = 1 predict less large-scale power than low
0 models. For example, the standard cold dark matter
(CDM) model underpredicts the ratio of galaxy fluctua-
tions observed on the 30/h Mpc scale in the 1.2 Jy survey
to galaxy fluctuations inferred on the 1/li Mpc scale in
the same survey by nearly a factor of 5. On the other

hand, CDM models with Oh 0.2 are remarkably suc-
cessful at fitting observations of large-scale structure [5].

In a flat universe, topological defect models also fail
to produce the observed large-scale structure. Albrecht
and Stebbins [6] found that the predicted spectrum of
density Huctuations in a cosmic string model is peaked
on the string coherence scale, which is even smaller than
the horizon size. Because of this lack of large-scale power,
they concluded that a string-seeded CDM model was not
compatible with the observed large-scale structure and
failed more dramatically than the inflationary scenar-
ios. Pen, Spergel, and Turok (PST) [7] explored global
defects such as global strings, monopoles, texture, and
nontopological textures. The rich dynamics of these non-
Gaussian isocurvature Huctuations have provided a chal-
lenge and stimulus to the Geld of cosmological perturba-
tion theory [8], where the gauge invariant formalism has
been refined for that purpose [9]. Microwave background
predictions have recently also been calculated by Borrill
et al. [10] and Bennett and Rhie [11].

While monopoles, texture, and nontopological textures
all predict a power spectrum of density Huctuations with
more large-scale power than the cosmic string model,
these models still fail to produce the observed level of
galaxy Huctuations by nearly an order of magnitude on
the 20/h Mpc scale. This failure is due to the defect co-
herence scale at equality being too small. As this scale
is proportional to Oh, this problem will be alleviated in
a low 0 universe.

In the excitement following the announcement [12,13]
that COBE has detected thermal Huctuations in the cos-
mic microwave background (CBR), many cosmologists
declared that the detection was evidence for a Hat uni-
verse and the inflationary scenario. This, however, need
not be the only interpretation of the COBE results. The
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two-year COBE results [14] are also consistent with open
universe models with either adiabatic density fIuctua-
tions [15,16] or equation-of-state density fluctuations [17].

Inflationary scenarios predict either a scale-invariant
spectrum of CBR Buctuations or a spectrum of Auctua-
tions that has more power on large angular scales [18].
In models with significant gravity wave contribution and
in power law inBationary models [19], the low multi-
pole fIuctuations are enhanced relative to fluctuations on
small angular scales. InHationary models with cosmo-
logical constant [20] also predict enhanced contributions
on large angular scales. On the other hand, analysis of
COBE's two-year data set [22,14] suggest that the low
multipoles are not enhanced but suppressed relative to
the fluctuations on smaller angular scales. While there
is still a significant statistical uncertainty in the two-year
COBE data, the Tenerife CBR observations [23] and the
FIRS results [24] also hint that the slope of CBR Auc-
tuations may be steeper than that predicted in any in-
fIationary models. This steep CBR ftuctuation spectrum
is one of the predictions of open universe models [17]. If
the suppression of the low multipoles is still seen in the
four-year data, then the COBE data may turn out to be
incompatible with most inflationary scenarios.

If the universe is open, then topological defect models
are particularly attractive. The basic concept of infIa-
tion lies in solving the monopole and. horizon problems
through an extended de Sitter phase. As other authors
[25] have pointed out, the curvature of spacelike section
in a de Sitter and also an empty universe depends on
the choice of coordinate systems, and could be either Hat
or hyperbolic. The prime reason for considering a Bat
universe a generic prediction of infIation is the presence
of the fIatness problem. In this paper we will propose a
solution along the lines of Linde, by using the weak an-
thropic principle as a selection eÃect. It hinges on the
huge photon to baryon ratio (approximately 10 ), and
gives a natural scale to the problem. The weakest point
of inflation has been the fine tuning of parameters re-
quired to generate the observed potential fIuctuations.
So even within the framework of inflation, topological
defects may still be desirable as they explain this fine
tuning more naturally.

But quite independently of the existence of infIation, if
we are left to find another route for explaining the large-
scale homogeneity of the universe, it would be most nat-
ural to assume that the universe started with smooth ini-
tial conditions and that causal physics generated density
fluctuations. Spergel [17] presents analytical arguments
that suggested that defect models are likely to be com-
patible with observations of large-scale structure in an
open universe. In this paper, our numerical calculations
support these arguments and suggest that these models
merit careful consideration.

This article builds upon the analytical and numerical
techniques presented in PST. In PST, we attempted to
quantitatively compare the predictions to topological de-
fect models in a Bat universe to the COBE observations
and the observations of large-scale structure. This paper
extends our approach to an open universe. Our CBR
calculations make no assumptions about the nature of

the dark matter. However, when we compare the COBE
normalized theories to the observed. large-scale structure,
we assume that the universe is dominated. by cold dark
matter.

In this paper, we estimate the amplitude of CBR Auc-
tuations generated by various topological defect scenar-
ios. Because of ease of computation, we focus on the tex-
ture mod. els, for which analytic and semianalytic meth-
ods have also been applied in flat universes [26,27]. While
we have deferred the challenge of evolving a string net-
work in a hyperbolic universe, we believe that qualita-
tively the results of this paper can be extrapolated to
other defect models. In Sec. II, we extend the analytical
formalism that we d.eveloped in PST to open universe
models. In Appendix B, we also extend the formalism
to vacuum-dominated models. In Appendix C we extend
formalism to closed models. In Sec. III, we describe our
numerical algorithms for computing defect evolution. In
Sec. IV, we present our numerical results and emphasize
the characteristic CBR signature of defects in open uni-
verse models and then we discuss the predictions of the
COBE-normalized open universe models for large-scale
structure. In Sec. V, we discuss philosophical motiva-
tions for open universes. In Sec. VI, we sum up.

II. CBR FLUCTUATIONS IN AN OPEN
UNIVERSE

In this section, we modify the formalism developed in
PST so that we can calculate the amplitude of CBR Quc-
tuations produced in an open universe.

The assumptions entering in the calculations are the
weak field limit for gravity, which allows us to treat grav-
itational perturbations in linearized form. The quantum
field is evolved as a classical field, as it is a boson field
with large occupation number. An additional assumption
is the stiKness of the source term, that gravity does not
afI'ect the evolution of the defects. This is certainly jus-
tified for global defects, which dissipate their energy into
Goldstone modes. In the case of gauged cosmic strings
one needs to account for their energy dissipation in grav-
ity waves. The defect field is governed by the nonlin-
ear 0 model, which is a highly nonlinear evolution equa-
tion. While certain scaling laws can be computed in a
fiat space time [28], this is not possible in the transition
regime between matter and curvature domination. The
field correlation length cannot be accurately specified,
and most analytic approaches are no longer applicable.
Thus one needs to simulate the field evolution numeri-
cally, and measure these quantities.

The gravity is, however, still linear, and we will show
below how to solve that problem in an open universe once
we are given the source terms. They are still straightfor-
ward integrals over the energy momentum tensor with
certain Green's functions.

In PST, we decomposed variations in the source stress
energy tensor and fl.uctuations in the metric into scalar,
vector, and tensor components. Variations in the trace
of the spatial stress energy tensor generate growing den-
sity modes that can form galaxies. The traceless (also
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called anisotropic) scalar source term, the vector source
term, and the tensor source terms do not generate grow-
ing density modes; however, they do source decaying met-
ric Buctuations that produce CBR Quctuations. We have
reexamined our Hat universe simulations and found that
the CBR Quctuatlons generated by the scalar modes ale
the dominant source of fluctuations: the scalar growing
mode term alone accounts for 70'Fo of the CBR fluctua-
tions.

The decomposition into scalar, vector, and tensor
modes is a nonlocal calculation that is numerically chal-
lenging in an open universe. In order to evaluate the
viability of defect models in an open universe, we will fo-
cus on only the contributions of the growing scalar mode
in this calculation. In an open universe, we expect that
the vector and tensor modes are even less important than
in a Hat universe as they are suppressed relative to the
scalar modes by powers of (v/c), where v is the defect
velocity. In an open universe, the rapid expansion of the
universe slows the defect velocities. Because of our ignor-
ing the anisotropic stress, vector and tensor modes, the
amplitude of CBR fluctuations calculated in this paper
should be multiplied by a factor between 1—1.2.

In PST, we showed that the variations in the trace of
the spatial stress, 0, source variations in the scalar piece
of the metric [PST 46]:

and

H(rl, g) = a(g) dg
dq'

a(q')2
' (7)

Note that E can also be used to relate the vector stress
energy source term to the vector metric fluctuations term
[PST 47] and to evolve the decaying scalar metric fluctu-
ations [PST 49].

In a flat matter-dominated universe, a(rI) = rl2, thus,
E(g, g) = 1/3q —I/3g and H(rI, rj) = ris/15gs —g2/6+
g2/10. Combining these results with Eq. (5) yields

K(x, rI) = g' '5
dqS(x, g) i—

0&') (8)

Oo
a(g) = cosh(Q —Kq) —1—jc (9)

where Oo is the density in matter today and K is the
curvature scale. For the rest of the paper, we set jC = —1
and use it as the physical length scale in the calculation.
Note that for small q, Eq. (9) approaches the flat space
form. Combining Eq. (9) with Eqs. (6) and (7) yields

This simple result is due to the simple form of a(rI).
In an open matter-dominated universe, the expansion

factor has a more complicated form:

6 +2—h, = —87rGO =—S
a

These metric Huctuations contribute to the Sachs-Wolfe
integral:

E(n, 6) = 3,(1 —a(~))
a(g) (10)

where

r ~Ty
dvyK[x(vy), vy],(T) 2

(2) 1 5 a a a(rI) [1 —a]
H(q, q) = ———+ ——+

a 6 6 3 6a2

x [a(rg)(a —3) + 3(ry —Fy)] ,

where a = a(g) and a = a(g). Equations (5), (10), and
(11) can now be combined to yield

[PST 50] and

&+2—g = ——h
a 3

[PST 49]. Here, a is expansion factor and dot denotes
derivative with respect to the conformal time g. For more
details on the notation and conventions, see Appendix A.
In the notation of PST, J = k j'.

After a little algebra, Eqs. (1), (3), and (4) can be
combined to yield an equation for the scalar stress con-
tribution to CBR Huctuations:

K(x, g) = a 2 —a —a t'5
dgS(x, g) +] —+2Ia )

t'a' a 5l
X

q6 3 6)
—a (5 l a(a —3) +3@+a(1 —a) +

~

—+2
~3a i a ) 6a~

- 5+2a+ [a —a(1 —a)q

K(x, g) =

where

dgS(x, g) — a(g) E(q, ri)
a(U) a(9)

0 a 7/ a 'g

&a(n) a(~) & a(~)'H
g a(q) a(q) ) a(q)

E(g, g) =

(5)
v 16' G

a2
(&')'o~d&'.

Tensor modes, on the other hand, propagate and require
two Green's functions to express. As in [PST 54], we
write

In the limit of small q, Eq. (12) reduces to Eq. (8).
The vector modes still allow a simple integral, for

which we have
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G g (rj') G2 (rI) —G, (g') G, (q)
W(q')

where now the Green's functions are

cos(krI) sin(krI) a
G

cos(kq) o, sin(krI)
Gg ——

2Q Q

O' = GiG2 —G2Gi .

osition in terms of eigenfunc-We have assumed a decomposi i
V' whic in ourf th La lace-Beltrami operator V',tions o e ap

encies andork will be the sum of two sine frequen
one Bessel function index. Note t a e e

E . (15) are valid for open, flat, andGreen's function in q.
closed models.

l al o-e present our numerica a g-In the next section, we ~
l

'
the defect field to compute Stx, gj,rithms for evo ving e e

'n E . &~12~ to compute the metric uc ua-
tions and for following photon trajectories o in eg

cos(P) sinh(g)
cosh(g —y)

sin(P) sinh(y)
cosh(q —y)

cosh(rj)
cosh(g —y)

cos(0) = tanh(q). (I7)

the Friedmann coordinates is shownThe mapping onto e iie
in Fi . 1. The inverse mapping is isp yis la ed in ig.in ig. . e

metric are the explicit trans-The salient features of this me ric a
etr alon all three dimensions, an t elational symmetry a ong a

out the z axis. e on y e
' . Th l xplicitrotational symmetry about

the x-z andtro occurs for rotations in the x-z an

tions by c ec ing e an k the alignment of the quadrupo e wi
the coordinate grid.

~ ~the re uirements stated above. On small scales, it is ex-

of the difIerential operators. h ehis metric maps on o e
more ami iar riei 1' Friedmann coordinates (y, 0, P) throug
the change of variables

III. NUMERICAL IMPLEMENTATION B. Technical issues

d 'be the numerical implemen-In this section we escri e
fr eel avail-es. The original program is freely avai-

ble b anonymous ftp from astro. prance on.
It is written in stan-u en/StiffSources/openumverse. It '

h with these compilers. It is optimizemachine wi e
i ecture. In fact,ver emcien y onm

' tl the convex vector arc i ec ur .IIl
s limited by memory, because th esimulations are always imi e

ll lar e soe of a h erbolic universe is exponentia y arge, so
s O~Nlo (N)) where N isthe computation time scales as

& og
the memory requiremen .nt.

0 a l the mo e ecom-a d dThe basic strategy will be to app y
osition &om PST. In order to work in an open universe,

many changes need to e app ie
below.

work in units whereFor simplicity, we wi wor
1. The horizontal discretizations

exp —z)Ax, exp( —z)Ay are adjusted to be as ce as close to
unity as possi e, w i e s i

~ ~ ~units our free discretization pa-constraints. In t ese uni s o

poincare tiling

A. Crid
N 0

first obstacle is the formulation of a regular
lattice to discre ize a y

ents are &~1~ it must have constant volume per a ice e-ments are &~1~ i mus
ent &2&~appear locally Euclidean,

& ~ e
uter and ~4& allow theonto the serial storage of a compu er, an

I aplacian to be easily invertible.
For this purpose ethe Poincare metric provi es a very

h h t ins many of the regularities o anice tiling, wnic re ains m
Hat space Cartesian a ice.l tt . The spatial metric is given
by the line element

dx + dg + dtD
d8 2

lQ) 2

llWith a change of variables z == in&to~~we satisfy a

-2
0

p =Qx'+y'

uis aced surfaces (calledFIG. 1. The solid lines are the equispa
. The dotted lines are geodesics of constanttiers) of constant z. e o e

e crosses indicate the location of our numerical grid
poj.n s, w ict hich are regular and evenly space in e o'

metric.
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configuration at two consecutive time steps. We proceed
in two steps. First we calculate the Laplacian. Then we
advance the Beld in the direction of the Laplacian subject
to the constraints of the nonlinear o model. We treat the
two issues in turn.

In the Poincarc metric, the Laplacian is expressed as

corresponds to about eight grid cells per curvature ra-
dius.

With the 2 Gigabytes of memory on our convex C3440
we can run simulations down to B = 0.2, which take
about 4 hours of (wall clock) execution time.

v'4 = '«r (
—

~ l M.-+ 4.««)

+ CXP —— t9 CXP

The first two terms are trivial to calculate with the stan-
dard central difference formula. With the help of the
projection operators P+, P we can easily evaluate the
vertical derivative

Zk Zk+1 /2
cxp —— cxp — PB B

—exp (A —&+4&I i) (24)
Zk i/2

B

Along the x, y axes we can simply use periodic boundary
conditions. At the top of the grid z = H/2 we simply
extend our grid upward, which costs very little in com-
putational CIII'ort or memory because very little volume
is enclosed in that region. The bottom boundary needs
to be treated more carefully. We choose a safety bu8'cr
zone of a few grid cells below the last grid point that is
traversed by photons.

F. Tests af the cede

ds = —d~ +v. +q dO1+q2 ) (26)

With a change of coordinates r = qr, t = 7 gl + q2 we
recover the Minkowski metric d82 = —dt2+ dr2+ r dO .
Our numerical grid performs very well on this test. Since
the same code has very small errors on both limits, we
can claim some confidence that it should perform well in
between.

The two extreme limits of the parameter space have
exact solutions. When 0 = 1, we have an expanding R.at
space and we can test the exact scaling solution for a
single unwinding texture as we did in the Bat space cal-
culations [7]. The other limit 0 = 0 is an empty universe,
which is nothing more then Minkowski space. Using the
Milne transformation, we map the exact scaling solution
for a texture as initial condition on our grid, and test
for the subsequent evolution. In an empty universe using
conformal coordinates, the cosmic scale factor a = g, so
the Milne solution to the Einstein equation in an empty
universe becomes

E. Irnplem. entat ion IV. RESULTS

For texture models, there is reason to believe that the
primary contribution comes from the spatial trace of the
energy momentum tensor,

3

O=) T;

In fmat and empty space, the exact texture solution gen-
erates an energy momentum tensor which is such a pure
trace. As we describe below, the problem is isomorphic
to such a fIat problem in both the early and late time lim-
its. The main contribution thus arises from the trace. In
our current implementation, we have chosen the approx-
imation to only retain the trace part. For other defects,
especially the cosmic strings, other components of the en-
ergy momentuln tensor are expected to play a dominant
role and one needs to implement the full mode decompo-
sition described above.

The simulations are constrained on several ends. We
need a fair number of grid cells per curvature radius in
order to achieve an accurate fI.at scaling density for the
fieM before the numerical horizon size becomes compa-
rable with the curvature scale. A violation of this con-
straint would cause the simulation to enter the cu"vature
transition with an incorrect energy density, which would
appear as a systematic subsequent error. In practice this

A. CBR Quctuatiens

Using the algorithm outlined in the previous section,
we have computed the CBR fluctuations produced by
scalar potential fm.uctuations in an open universe. The
results of these calculations are shown in Figs. 3 —5
for four diferent observers in 0 = 0.21, 0.4, and A = 1
universes. The anisotropy of the grid is visible as an
enhancement of the quadrupole in Fig. 5 for 0 = 1. In
this case the light rays always move at a constant angle
to the grid, so we conclude that even in the worst case,
the grid anisotropy has only a minor CKect.

In an open universe, the defect dynamics slows down
due to the rapid expansion of the universe, which ex-
hibits itself as a loss of power on large angular scales, in
particular the quadrupole terms.

The diferent lines in the figure denote the results
from diferent realizations and the spread in values is
a measure of the variance in c~. The abscissa in the
plot is the amplitude of the multipole moments, c~

a&2 /(2l + I), weighted by l (l + I). In a flat inflation-
ary model with scale-invariant spectrum of fluctuations,
c~l(l + I) is a constant for l && 200. Our results imply
that for defect models in a Iow 0 universe, the shape
of the multipole spectrum is qualitatively difFerent from
other models. The low order multipoles are strongly sup-
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FIG. 3. The eight jagged lines correspond to observers in
different universes or at different locations. Flat inflation-
ary models predict cIl(l + 1) as constant. The dashed line
is a parametrization of the CBR open universe spectrum:
cIl(l + 1) oc /[1 + (l „/l)~] ~~ with l „=8 and q = 2.5.
In general l~~~ scales as oc 0

0.01

10

FIG. 5. Nearly flat universe calculated using the open uni-
verse code. Here we recover the flat Harrison-Zeldovich spec-
trum.

pressed, while the multipoles on scales significantly below
the angular scale subtended by the curvature scale today
still have a scale-invariant form.

For purposes of comparison with the DMR measure-
ments of the temperature fluctuations, we have Btted the
results of our numerical simulations with a Gtting form

cIl(l + 1) = co/ I1+ (l~~„/l)

The simulations are Gt by l 30 . Even if the
universe is flat, the quadrupole is somewhat suppressed
in any model with topological defects as defects on scales
comparable to and greater than the horizon size have not
yet had time to collapse.

The qualitative features of topological defects in an
open universe can be approximated using any flat uni-
verse calculation. To erst approximation, one can con-
sider the photon sphere we observe today projected back
at a redshift of 1+z —1/A. This will also produce a flat
spectrum for large l, with a white noise cutoff for small
l. We used our flat space stopped at z = 1 and z = 1.5,
and the multipole spectrum is depicted in Figs. 6 and 7.

The COBE two-year observations have only been an-
alyzed under the assumption of a power law spectrum
of CBR fluctuations [21,22, 14]. These analyses conclude
that COBE has measured a quadrupole of only 6 +3 pK
while their fit to larger multipoles imply Q, , = 20 pK.
ln an inflationary model, such a small value for the

0=0.4
I I I I I I I

Z=1
I I I I I I I

0.1

0.1

0.01
0.01

10 10

FIG. 4. Same as Fig. 3, but for 0 = 0.4. FIG. 6. Flat space simulation at z=l.
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z=1.5
I I I I I 1

0.1

+
0.01

U

0.001

FIG. 7. Flat space simulation at z=1.5.

quadrupole should be observed in less than 5% of the
universe. In a defect model in an open universe, the low
value for the quadrupole is predicted. On the other hand,
COBE two-year measurements do not find a suppression
of the t = 3 and l = 4 modes.

As discussed in Sec. III, our calculations only include
the contributions from the scalar growing mode to the
CBR fluctuations. The calculations do not include con-
tributions from decaying modes, vector fluctuations, and
gravity wave Huctuations. These contributions are sub-
dominant in a Hat universe and should be even smaller in
an open universe. If these terms were included, then the
amplitude of the CBR fluctuations would be increased by
a factor f 1.0 —1.4. The upper bound is based on our
flat space calculations [7]. Thus, the amplitude of CBR
fluctuations needs to be multiplied by this factor.

Topological defect theories have one free parameter:
the scale of symmetry breaking, Po. Note that the ab-
scissas in Figs. 3 —5 need to be multiplied by 8vr Ggo to
convert the results of the calculations into temperature
fluctuations. We will 6x this parameter by normalizing
our results to the COBE two-year observations by con-
volving our results with a Gaussian beam with full width
half maximum of 10 and fixing (bT/T), , to the value
of 40 pK suggested by harmonic analysis of the two-year
data [21].

While our calculation did not compute the amplitude
of CBR Huctuations on small angular size, we can extrap-
olate calculation on defects in a Hat universe to the open
case. Coulson et at. [30] found that in a reionized uni-
verse, the multipole spectrum was flat &om large angular
scales to I, 60. This multipole moment corresponds to
the angular size subtended by a texture collapsing near
the surface of last scatter in a reionized universe. In an
open universe, the relationship between horizon size and
angle is altered: 0 ~ 0 z for z )) 0 . Thus, we
expect that in an open reionized universe, the multipole
spectrum would be flat from / ~ t~~„ to l ~ 600

If the early universe was not reionized by a genera-
tion of star formation before z 50, then CBR obser-
vations on small angular sizes are probing the universe
at z 1300, the epoch of recombination. In both de-
fect models and scale-invariant curvature models, there
should be a "Doppler peak" at l 2000 . In an in-
Hationary model with curvature fluctuations, this peak is
produced by the sum of velocity perturbations and the
product of potential fluctuations with entropy Huctua-
tions. In these models, the Huctuations are all produced
by the growing modes. In a defect model, the "Doppler
peak" also has contributions kom entropy and potential
Huctuations produced by the decaying modes excited by
the collapse of defects [29]. As in curvature models, this
peak should occur at l 2000, thus measurements
of its location may provide a determination of O.

Just as in a flat universe, one of the distinctive pre-
dictions of a defect model is the non-Gaussian character

TABLE I. Comparison vrith @DOT observations.

0.2
0.2
0.2
0.2
0.2
0.4
0.4
0.4
0.4
0.4
1.0
1.0
1.0
1.0
1.0

Hp
(km/s Mpc)

0.5
0.6
0.7
0.8
0.9
0.5
0.6
0.7
0.8
0.9
0.5
0.6
0.7
0.8
0.9

(5h ' Mpc)
3.8—4.7
3.1-3.8
2.6—3.2
2.2-2.8
2.0—2.4
2.8-3.4
2.3-2.8
2.0-2.4
1.7—2.1
1.5-1.9
2.3-2.8
2.0-2.4
1.7-2.2
1.6-2.0
1.5-1.8

Required bias
(10h ' Mpc)

4.4-5.8
3.6—4.8
3.1-4.1
2.7-3.6
2.4—3.2
3.5—4.6
3.0-4.0
2.6-3.5
2.4-3.1
2.2—2.9
3.4-4.5
3.1-4.0
2.8-3.7
2.6-3.5
2.5—3.3

(20h Mpc)
5.3—7.1
4.5—6.1
4.0—5.3
3.6—4.8
3.3—4.4
4.8—6.5
4.3—5.7
3.9—5.2
3.6—4.8
3.4—4.5
5.7—7.6
5.3—7.1
5.0—6.7
4.8—6.5
4.7—6.3
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of the temperature fluctuations. This non-Gaussian be-
havior should be most apparent not in the distribution of
temperature fluctuations, but in the distributions of tem-
perature gradients [30,31]. In a Rat universe, Coulson et
aL find that this non-Gaussian character is most appar-
ent on angular size of 3, the angular size subtended
by the surface of last scatter in a reionized universe. In
an open Universe, this angular size is shifted to ~ 30
degrees.

While simulations were done only for texture mod-
els, the results can easily be extrapolated to other de-
fect models in an open universe. In all of these models,
we expect a similar suppression of the low multipoles as
the rapid expansion of the Universe slows the evolution
of the defects responsible for generating fluctuations on
large angular scales.

101 I I I I II

1000

I I I I 1 I i I I 1 I I I I I I

0=05, h =075
0 = 0.3 h = 1
0= 1.0, h = 0.5

~ ~

L

APM Poorer S

B. Large-scale structure

Having normalized the defect model to fluctuations in
the CBR, we now turn to predictions for mass Huctua-
tions on the scale probed by galaxy surveys. Fluctuations
on scales smaller than 1000 Mpc were generated when
0 was close to unity; thus, the results of our earlier work
on density fluctuations in a flat universe can be directly
extrapolated to open models.

In Pen et al. [7], density Quctuation computed by nu-
merical simulations are fit by a function [PST 32,33]

D(O)2 nk
Oh' [1+ (Pk) + (pk) ]

(27)

where D(O) Oa ~ is the ratio af the linear growth to
that in an 0 = 1 universe, n = 225(e/3. 7 x 10 ) /(Qh ),
P = 3.5/(Bh2) Mpc, and p = 2.75/(Oh2) Mpc. Using the
normalization in Table I, this directly yields the ampli-
tude of mass fluctuations predicted by linear theory.

On the scale of tens of kiloparsecs, light clearly does
not trace Inass. This is the source of the missing
mass problem. It is less certain whether light traces
mass on the scale of several megaparsecs. Cosmologists
parametrize this uncertainty by a bias parameter 6, the
ratio of the variance in the fluctuation in the galaxy
counts to the fluctuations in the cosmic density field.
Here, we determine the value of 6 needed to fit astro-
nomical observations.

The Queen Mary, Durnham, Oxford and Toronto
(QDOT) survey measured the fluctuatians in galaxy
counts by obtaining redshifts to a large in&ared selected
galaxy sample. Saunders et at. [32] smoothed their galaxy
density Beld with a Gaussian smoothing window with fll-
ter length of 5h, , 105, and 205 ~ Mpc and found a
variance of 0.436+0.091, 0.184+0.05, and 0.0669+ 0.019
in the density Geld. The third, fourth, and fifth columns
in Table I list the required bias factors needed to fit the
central value in the QDOT survey. The statistical un-
certainties in the QDOT survey and the COBE measure-
ments lead to a 25'%%uo 1cr uncertainty in b. This is in
addition to the uncertainty due to the limitations of our
numerical calculations.

100 I I i I l f I

0.01
l I I I 1 I i I

0.1

k (h Mpc ')

FIG. 8. Comparison of the predicted texture open universe
power spectrum to the APM survey for various parameters of
Hubble's constant and O.

In Fig. 8, we compare the predicted power spectrum
of density fluctuations to the power spectrum of galaxy
fluctuations inferred &om the Automatic Plate Measur-
ing system survey [5]. In this figure, we assumed a bias
factor of 1.5.

V. SPECULATIONS

At various points in history, diferent choices for the
curvature of the universe have been considered most nat-
ural. Einstein initially considered an eternal and flat
universe with a cosmological constant most aesthetically
pleasing. But with Hubble's discovery of the universal ex-
pansion, the common belief was that the universe should
be a closed. three sphere, which is bounded in both space
and time. This universe would end in a few Hubble times,
and thus we would. live in a very ordinary epoch. We will
use the same Copernican principle to argue that an open
universe is almost as well suited.

In the last decade it has become fashionable to re-
turn to consider spatially flat universes as most appeal-
ing, since there would not be any curvature scale which
needs to be explained. This is primarily due to Dicke's
anthropic argument, who used the Copernican principle
to argue that we should not be living just at the end of
the Hat epoch. The inflationary paradigm, which appeals
to the de Sitter model to solve the "horizon problem, " is
simplest in a scale-&ee scenario of a Hat universe. But
the very problem that they are invented to solve, the ab-
sence of a preferred curvature scale, leads to a clash with
the Copernican principle as we live at a very special time,
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just near the beginning of a matter-dominated universe
which would now last for a truly lengthy period of proper
time. As we have seen, in the absence of a perfect Auid
to label a preferred coordinate frame, the curvature of a
universe can be transformed from Aat to hyperbolic by a
gauge choice. The same holds true for a de Sitter space.

An open universe model does have aesthetic advan-
tages that have been at times overlooked. In an open
universe, we are most likely to live in the brief period of
time between radiation and curvature domination. Den-
sity Auctuations do not collapse during the radiation-
dominated epoch and are growing logarithmically slowly
during curvature domination. If a universe went directly
from a radiation-dominated phase into curvature domi-
nation, no structure or life would ever be conceivable. It
is only due to a lucky coincidence that we have a slight
baryon asymmetry of g = 10, possibly due to baryo-
genesis in the electroweak phase transition. This allowed
structures to form through gravitational instability in the
short interval between matter-radiation equality and cur-
vature domination. Since this interval lasts only for a
short time, and we live approximately in the center of this
period, there is no violation of the Copernican principle.
We thus appeal to the observed smallness of electroweak
baryogenesis to set the scale for the hyperbolic curvature.
Dirac's small number is not really a single small number.
The radius of curvature and the horizon size today are
simply the product of the proton mass, the baryogenesis
photon to baryon ratio, and the smallness of initial Auc-
tuations, observed by COBE to be 10, which in the
topological defect framework arises from the ratio of the
grand unification theory (GUT) scale to the Planck scale.
Such a model has no fine tuned parameters.

From a geometric viewpoint, a closed universe is ap-
pealing due to its simplicity: a three sphere is the unique
universal covering of positively curved three-manifolds,
and has a finite volume which would certainly be an at-
tractive property for any designer or process which might
have created the universe. But it is interesting to note
that there are only a finite number of alternate global
topologies which such a designer has to choose from. The
projective three-sphere P is one such example. If one
analyzes negatively curved spaces, one can of course con-
sider the global covering H, but there are many alter-
natives, including the periodic Poincare space which we
utilized in this paper. The name "open" only applies to
the local properties, and we can certainly have a spatially
closed "open" universe. If one considers only hyperbolic
spaces of finite volume, one finds an infinite number of
passible topologies. At fixed curvature B, the volumes
af these topologies can have collection points on the real
line, and one might expect our universe to be chosen
from a topology near such a collection point. A number
of authors have attempted to calculate transition prob-
abilities between these configurations in 2+1 dimensions
[33j. These studies suggest that topological change may
well be possible. Unfortunately, as with most quantum
gravity calculations, many infinite quantities arise in the
pracess, making it difFicult to uniquely predict the out-
come of such an estimate.

Whether the negative curvature results from quantum

gravitational tunneling, or an alternate exit from the de
Sitter phase, or some other yet unknown means, the an-
thropic principle does set a minimum scale to the curva-
ture radius. In order to bound it from above, one could
argue that the intrinsic process forms hyperbolic space-
times with small curvature, most of which are not observ-
able. So we might live in the smallest allowed scenarios
which allow nonlinear structures to form.

However, as we lack a theory of quantum gravity that
can predict whether a Aat, open, or closed universe is
most likely, we believe that all of these models merit
careful consideration. Ultimately, this question must be
resolved observationally. We have shown that the philo-
sophical arguments that have been invoked to argue for a
flat universe are quite ambiguous, and could just as well
be used to argue for an open scenario.

VI. CQNCLU SIGNS

In this paper, we explored the cosmic microwave back-
ground signature of defects in an open universe. We have
described a new eKcient exact solution of the linearized
Einstein equations in hyperbolic Friedmann-Robertson-
Walker (FRW) spacetimes. The otherwise expensive
mode decomposition can be implemented very efFiciently
thanks to the fast Fourier transform in the Poincare met-
ric. This formulation was then applied to calculate pre-
dictions of texture models in an. open universe. We then
addressed the classical philosophical arguments including
the fatness problem. We showed that the same anthropic
and Copernican arguments that were used to argue for a
Aat universe, are in fact better satisfied in an open model.
The curvature scale is naturally explained as a product
of three moderately big numbers. The proton mass and
the photon-to-baryon ratio set the size of the universe at
matter-radiation equality, and the ratio of the GUT to
Planck scale that determines expansion factor needed for
nonlinear structure to form.

For 0 = 0.4 and h, = 0.7, the power spectrum of den-
sity Auctuations in a COBE-normalized texture model
has the correct spectral shape and is consistent with the
observed level of galaxy fluctuations for b =2—4. The un-
certainty in normalization is a combination of the numer-
ical uncertainties in our calculations and the statistical
uncertainties in the observations. A model with 0 = 0.4
and b = 2 is consistent with various dynamical measure-
ments of 0 on the scale of clusters and superclusters.

While our work focused on textures in an open uni-
verse, we expect qualitatively similar results for other
defect models. The basic results appear to be governed
by geometry and the changed relationship between angle
and physical scale. This is apparent when we compare
a flat universe simulation stopped at 1 + z = 0 and
rescaled by a factor of 0 in angle with an open universe
simulation.

Defects in an open universe make a distinctive predic-
tion for the CBR spectrum. In these models, very few
Auctuations are generated at late times and at large an-
gular scales. Thus, the models predict a suppression of
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the quadrupole and other low multipole moments. The
low value of the quadrupole detected by COBE is consis-
tent with this set of theories. A detailed analysis of the
COBE DMR results is needed to determine which range
of values of 0 are compatible with the observed universe.
A qualitative understanding is quite straightforward and
is obtained by rescaling the Hat space spectra and intro-
ducing a break near the curvature scale.

Defects in an open universe are a viable alternative
to popular scenarios for structure formation and merit
closer study.
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APPENDIX A: NOTATION

notes physical time. This equation can be solved to yield

a(t) = —00~ (1 —Oo) ~ sinh ~ (Hot) .
2

The conformal time g in a Qat vacuum-dominated uni-
verse can be computed with the aid of Gradshteyn and
Rhyzik equation (3.166.22):

dt

a(t)
da dx

0 a(t)(da/dt) g (1+ s)

, (1+ (1 —~3)a& g2+ ~3
cos

i 1+ (1+ v 3)a)
' (Bl)

da

a'ga+ a4

2= -/1+a-s~
3 a

(B2)

and

Here, T is the elliptic integral of the first kind.
It would appear that this complicated relationship be-

tween a and g would make it impossible to evaluate Eqs.
(6) and (7) analytically. However, by change of vari-
ables from g to a, these equations become remarkably
tractable:

B will denote the curvature radius of the universe,
which is given by R, = c/(Hov 1 —0). A subscript of 0
denotes a parameter's present value. We use t to denote
the proper time, g to measure conformal time. They are
related through

H(a, a) = daa
E(a, a)a+ a4

2—(a —a) + —1+a —s
3 15

x a2 Fg(-, s, —
,
—a)-5/6 1 5. 11

tp
(sinh g —q) .

slnh flap

In conformally hyperbolic coordinates, the expansion fac-
tor is a = cosh' —1 = (2/0) —2. The conformal time
measures the number of comoving curvature radii tra-
versed by a photon. It is given by q = cosh (2/0 —1).
We write the FRW metric as

ds = dt +a(t) —
i

+r dAi1+" )

Here, 2F1 is Gauss' hypergeometric function. Grad-
shteyn and Rhyzik equation (3.194.1) was used to com-
pute (B3). Equations (B2) and (B3) can be used to corn-

pute CBR fluctuations in a vacuum-dominated model.
Note that (B2) and (B3) can also be used to evolve vec-
tor and decaying scalar modes:

6, (q) = 16~G 0; (rl)E(a, a)a dq .

Proper distance between two time-synchronized ob-
servers is LB = aR sinh r. The coordinate r is in
units of comoving curvature radii.

APPENDIX C: CLOSED MODELS

In a closed matter-dominated FRW model, the scale
factor is

APPENDIX 8: VACUUM-DOMINATED
UNIVEHSES

a(g) = 1 —cos(g) .

Thus, the scalar modes are given by Eq. (5) with

(C1)

This appendix contains results for a vacuum-
dominated Bat universe containing dust and vacuum en-
ergy. In this universe, the expansion factor can be com-
puted from the energy equation

(da1 2
as' a=H,' n, —+(1—n.)—(dt) a ap

where Op, ap, and Hp are the density in matter, the ex-
pansion factor, and the Hubble constant today and t de-

a 77

&(~ ~) = —(1+a)3a

H(g, q) =
~

——2 sin(g) +
~ Z(g, q) .

r'3q . cos(g) sin(g) l
2

(C2)
The vector modes still satisfy Eq. (13) and with the ap-
propriate form for a(q), Eq. (14) describes the evolution
of tensor modes.
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