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Pregalaxy formation: A nonlinear analysis of the evolution
of cosmological perturbations
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A higher-order analysis of the evolution of cosmological perturbations in a Friedmann universe
is given by using the PMF method. The essence of the PMF approach is to choose a gauge where
all Quctuations of the density, the pressure, and the four-velocity vanish. Additionally, a planar
symmetry of the perturbations is assumed. In that gauge, even in higher orders, the perturbation
field equations simplify considerably; they can be decoupled and, for simple equations of state, also
be solved analytically. We give the solution for the dust universe up to third order. Comparison of
these solutions strongly supports the conjecture that in general unstable perturbations grow much
faster than they do according to the first-order analysis. However, perturbations with very large
spatial extension behave di8'erently; they grow only moderately. Thus, an upper boundary of the
region of instability seems to exist.

PACS number(s): 98.62.Ai, 98.62.Py

I. INTRODUCTION

Because of the nonlinearity and complexity of Ein-
stein's field equations, they have been solved analyti-
cally so far only for situations characterized by relatively
high symmetry and homogeneity properties. In the other
cases, one has basically two possibilities: either solve
them numerically, or perform a perturbation analysis and
solve the individual orders analytically. Of course, there
are also mixtures of these two possibilities.

If we want to explain the origin of galaxies, we have
to study the evolution of given small fluctuations in a
Friedmann universe as background, and we have to in-
vestigate whether these perturbations are stable or un-
stable. Moreover, we have to calculate the growth rates
of unstable fluctuations. A complete numerical analy-
sis is not very useful in this context, because a possible
increase does not guarantee that perturbation does not
decrease somewhat later. On the other hand, a complete
analytical investigation of the evolution of cosmological
perturbations is not possible for reasons of complexity.
Hence, we have to perform some perturbation theory. So
far, that analysis was restricted, also for reasons of com-
plexity, to the first order; the linearized field equations
were studied (see, e.g. , [1—5]). In the approach of Ellis
et al. [6,7] a second-order equation is also derived but
the analysis they give is only at first order. It is obvious
that such a restriction is too severe. Higher orders be-
come significant when a perturbation, unstable according
to the first-order analysis, is growing. Nonlinear effects
appearing thereby could be very important; they could
stabilize such a perturbation, or they could change the
growth rates of unstable perturbations considerably. It is
a main aim of this paper to study what kind of nonlinear
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effects might appear.
To this end we have used a method that we invented in

[5]. This so-called pure metric fluctuation (PMF) method
simplified the perturbation field equations in first order
dramatically (see [5]); hence, it is reasonable to expect
that the same happens for higher orders, too. The PMF
method is based on the gauge freedom. This is to be
understood as follows.

Perturbation quantities are constructed by subtract-
ing from the full quantity at a space-time point x in the
perturbed universe the background quantity at the corre-
sponding space-time point x in the fictitious Friedmann
universe. The choice of such a correspondence defines
a gauge. We define other gauges by performing coor-
dinate transformations in the perturbed universe, keep-
ing the background coordinates fixed. By means of a
so-called gauge condition —a condition concerning some
of the perturbation quantities we select a definite set
of coordinate systems. Unfortunately, the perturbation
quantities are gauge dependent; thus, the so-called gauge
problem arises: to what extent are the observed pertur-
bations mere coordinate effects, and to what extent are
they "physical" ? Which gauge is suitable for judging
stability (instability) of a given fluctuation? How can we
find such a gauge that is "as close to the background as
possible" ?

In the literature one finds some gauges that were pro-
posed in this context [2—4]. The (first-order) results
are systems of coupled differential equations that can
be solved only in special cases. Another treatment in
order to avoid the choice of a gauge was performed by
Bardeen [1]. Out of metric and matter perturbations
he constructed gauge-invariant variables satisfying rel-
atively simple equations that he could solve explicitly.
Again, this analysis is performed only up to first order.

Another gauge-invariant approach is given in a recent
work of Ellis and Bruni [6,7]. They do not compare two
evolutions (real universe and fictitious Friedmann uni-
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verse) along the same world line like all approaches up to
now; instead, they compare two neighbored world lines
within the same real universe. Their basis quantity is
the comoving fractional gradient of the energy density
orthogonal to the Quid Qow. That approach has much in
favor but it is quite doubtful whether it is useful also in
higher orders. The corresponding equations become very
complicated quickly when the order increases, whereas
they maintain their simple basic structure in the PMF
approach, which will be explained now.

The essence of the PMF method is to choose a gauge
such that all fluctuations of matter (i.e., perturbations in
density, pressure, and velocity) vanish and only pure met-
ric Huctuations remain. This can be achieved by choosing
suitably the spacelike hypersurfaces (t =const) and by
choosing appropriate coordinates onto them. Addition-
ally, planar symmetry of the perturbations is assumed.
This assumption is not too severe a restriction in first
order but might be a more serious one in higher orders.
However, the analysis given in this paper should be con-
sidered just as a first step towards a complete higher-
orders analysis of general perturbations in a realistic uni-
verse. In first order the perturbation field equations in
PMF gauge simplify considerably; they can be decoupled
and, for simple equations of state, be solved [5]. Note
that the PMF gauge does not claim to be "as close to
the background as possible. " It serves rather for the sim-
plification of the field equations. Subsequently, one can
transform the PMF solution into any desired gauge suit-
able for judging stability or instability. In this paper, the
PMF approach shall be employed for a higher-order anal-
ysis. It turns out (see Sec. II) that there is a dramatic
simplification also in higher orders. In the PMF gauge,
the perturbation field equations maintain their simple ba-
sic structure which they have in first order. Therefore,
they can be decoupled even in higher orders, and they
can be solved analytically if the chosen equation of state
is simple enough.

All approaches so far gave no hint that an upper
boundary of the region of instability exists. The first-
order result has always been that Quctuations larger in
extension than the Jeans limit [8] are growing eternally
(an opposite opinion is supported in [4], but see [5]).
Thus, one major motivation for doing higher-orders anal-
ysis was the possible perspective that nonlinear efI'ects
could imply the existence of such an upper boundary.
Then, Quctuations, whose extension is larger than that
boundary, would cease to grow or they would grow too
slowly with regard to the generation of large-scale struc-
tures of the universe. Such an existence would be in
agreement with astronomical observations [9—13]. How-
ever, also an opposite point of view is supported by some
astronomers (see, e.g. , [14]).

The gauge problem itself is of minor interest in this
paper. First of all, we want to analyze higher orders and
to study the principle inHuence of nonlinear eKects arising
thereby. Therefore, we will use a very simple equation of
state (dust). In future work the gauge problem in higher
orders as well as more realistic equations of state shall be
investigated. The plan of this paper is as follows. In Sec.
II we present the PMF approach for higher orders and

the corresponding perturbation field equations. These
are solved in Sec. III in the case of the dust universe; a
case study, which gives some insight into the regularities
between the solutions of the various orders, is discussed.
Section IV, which gives the main results of our work, and
which discusses some other possible fields of application
of the PMF approach, concludes this paper. Throughout
this paper, we use Weinberg's notation [15]. Instead of
Bf/Bt we write f; f, i means Bf/Bx

II. NONLINEAR ANALYSIS IN THE PMF
GAUGE

For reasons of simplicity, we restrict ourselves to a
Friedmann universe with vanishing spatial curvature as
background. This is not too severe a restriction, because
in the early universe when galaxies were formed the con-
dition R )) ~r~ (R is the scale factor of the universe, and
v is the curvature parameter, which can adopt the values
+1, 0, or —1) was satisfied. We choose the background
coordinates such that the metric components read

goo = —1, g, =R(t) b,,(o) (o)

(all other components vanish). The index 0 refers to the
background (0th order).

Let the energy-momentum tensor be of perfect Quid
form. We get for the four-velocity of the background in
our Robertson-Walker coordinates

Now we consider a perturbation which has two-
dimensional symmetry planes, i.e. , in suitable coordi-
nates all perturbation quantities shall depend only on
x(=xi)a dnt(=x), butnotony(=x)orz(=x).
Beyond that we demand that Ul

~
and Ul

~
[n is the

order; see (4)] vanish in order to exclude rotational per-
turbations which would disturb the symmetry.

This symmetry allows the introduction of coordinates
such that the metric adopts the form

dr = gb(x, t)d—x dx —f(x, t)(dy + dz ),
where a, 6 = 0 or 1. Note that g b and f depend only on
x and t.

Next we make the following ansatz:

p=po+kpi+k p2+k p3+. .
)

p = po + kpi + k'p2 + k'p3 +
(4)

where k is some dimensionless expansion parameter, p
is th energy density, p is the pressure, U" is the four-
velocity, and g~„ is the metric. The index 0 refers to the
background, the index 1 marks the perturbation quan-
tities in first order, the index 2 those in second order,
and so on. We have to insert this ansatz into the field
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equations and to order them according to powers of k.
Subsequently, we have to solve the field equations order
by order. If the sums in (4) converge, (4) is the exact
solution of the field equations.

The ansatz (4) requires some explanations. First of
all, it is not too obvious what is meant by perturbation
quantities of orders higher than the first one. Indeed, one
could replace (4) by an alternative ansatz which just con-
tains perturbation quantities up to Grst order. kp1 then
simply means the difference between the total density
in the real universe and the density pp in the fictitious
background universe. But contrary to the linear analysis
performed in [5], in this case, we also had to take into
account terms proportional to k (n & 2) as, e.g. , the
term g„g & in the field equations. Then, we could not(1) (1) .

expect that the Geld equations are satisfied order by or-
der; merely the sum of all orders from the first one to the
last one considered would be satisfied. We do not want
to choose this approach here for, in that case, we had to
solve practically the full field equations; just the zeroth
order would be separated. This would not really be a
perturbation analysis.

Instead of this we proceed as follows. In order to satisfy
the field equations order by order we add in our ansatz a
correction quantity order by order, which is chosen such
that these equations hold. Doing so we arrive at the
ansatz (4) and it is guaranteed that in each order n the
Geld equations are differential equations which are linear
in the unknown correction quantities p, p, etc. (but not
in perturbation quantities of lower orders which are al-
ready known by solving the field equations in these lower
orders; hence, they are no longer unknown with regard
to the nth order). Note that either k can be considered
as small compared with 1, or we can set A: = 1; then,
the perturbation quantities of (n+ 1)th order like p(„+i),
U( +1)

etc. should be small compared with the corre-

sponding ones of the nth order.
Now we study the influence of infinitesimal coordinate

transformations

x'" = x" —km~(, )(x") —k'~~(, )(x") —k'e~(, )(x") — . (5)

in the real perturbed universe. These coordinate trans-
formations change the correspondence between points in
the background universe and points in the physical space-
time; thus, they are gauge transformations. Note that
the "philosophy" of the ansatz (5) is the same as that of
(4): if we would stop the sum in (5) at the term e(i) (x")
we would get very complicated nonlinear gauge transfor-
mation laws for the quantities appearing in (4) when we
would go beyond the first order. But with (5) we get in
each order n transformation laws which are linear in the
unknown function e~ ). We give them here explicitly up
to the second order.

First order:

gpv = g~v + &(1)p, i & + &(1)v i P .'(1) — (1)

[cf. Eqs. (2.4), (2.5), (2.7), and (2.9) in [5]].
Second order:

~ ~

~ t ~& p
p2 —p2 + POC(2) + E( i) + —(E(i)) )

~ ~

~ t ~1 p &P t 2
P2 F2++0 (2) +

g ~ (i) +
2 ( (i))

BU"
U-f p U-g .p (1) p (1) U-v

(2) (2) (2) g p, (1) g v (1)

I(2) (2)
gp, v gp, v + ~(2)pI + + ~(2)vi P

(1) ( ) ( ) ( )
gPA g v gvA g p,

(P) gg~ '(1)
gvA (1)

g~p, (1) +
g~A

—g
(p) 86(1) OE( 1)
A~ g p,

(p)
Pgg ~ &96(1) K

BX" BXV

2 (P)
A gpv A rc

{1) 2 ~ ~{1)~(

(13)

According to (6) and (7) as well as (10) and (11) it is
possible to transform p1, p1, p2, and p2 simultaneously to
zero by a suitable choice of ~(1) and e{2) provided that pp

is diiferent from zero (which is satisfied in an expanding
universe) and provided that the following equation holds
fori =0, 1, and2

pi =~pi ) (14)

pn p + pOE(~) + fp(pi ) E(j ) )

where u is spatially and temporally constant. (14) is
certainly satisfied, even for all natural numbers i, if the
equation of state p = urp holds [insert the ansatz (4)
and decompose p according to powers of k such that this
equation is satisfied order by order]. Analogously, U(i)
and U(2) can be transformed away by a suitable choice

of 6(1) and r(2). All other spatial components of U' also

vanish due to our symmetry assumption. (Note that UIo)

is not an independent variable because it is related to
go(o) by norm conversation. ) We have now all features
of the PMF gauge present: fluctuations of the density,
of the pressure, and of the spatial components of the
four-velocity vanish simultaneously (in first and in second
order). One can show easily that this can be achieved also
in higher orders. Namely, the gauge transformation laws
for the perturbation quantities have in each order n the
following general structure:

~ t
P1 = P1 + PP &(1)

~ t
P1 —P1 + PPE{1))

(6)

(7)

p = p + po~(„) + fp(p' ~(q)) (16)

(17)

U P pP &P
(1) (1) (1) where f~(p, , c(~)) is some function of p, and e(~) and of
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P=PO ~

I PO

U' = U(0), i = 1, 2, 3 . (18)

But (18) characterizes exactly the PMF gauge (see [5]).
From now on we assume that (14) is satisfied and we are
going to solve the field equations in PMF gauge char-
acterized by (18). Note that because of (3) g22 ——gss
holds for all orders and that besides these two metric
components only goo, g10, and g11 can be nonvanish-(n) (n) (n)

ing. Hence, our Geld equations contain just four inde-
pendent components. Like in [5] we are using instead
of the components "11"and "22" the energy-momentum
conservation. Clearly, for reasons of checking we have in-
serted the solution obtained thereby into all components
of the field equations. After a very lengthy but straight-
forward calculation we get the field equations up to third
order in the following form where the different orders are
already entangled from each other.

00 component:

~ 2 (n)
[ R 1 (n) R (n) g22, 11 (n 1)

p
—6 —

l goo +2R3g101+ RIR)

10 component:

their derivatives. The subscripts i and j are smaller than
the considered order n. The other functions appearing
in these transformation laws must be interpreted in the
same way. As can. be read off f'rom (15), (16), and (17)
it is possible to transform p( ), p( ), and U( )

simultane-

ously to zero by a suitable choice of e( )
and e( )

provided
that (14) holds for all natural numbers i.

Hence, if the condition (14) is satisfied we can achieve

only up to second order since for n = 3 they are horri-
bly long. However, after inserting the solutions for lower
orders the source terms simplify quite a lot and can be
handled, e.g. , in the case of the dust universe (see next
section) quite easily. For n = 1 all source terms van-
ish; the system (19) is then already familiar to us from
the first-order analysis [compare [5], (3.17)—(3.20), and
considering the momentum conservation equation —note
that the relation po + 3(ps + pp)B/B = 0 (that is the
energy conservation in 0th order) holds]. Because of that
striking regularity it can be suspected that (19) is valid
for all orders n; but so far this conjecture has been proven
by us [by directly working out the full form of (19)] only
for n = 1, 2, and 3.

Equation (19) can be decoupled like in the first order
(see [5]) and in higher orders, because of its relatively
simple structure. Moreover, for simple equations of state,
it can be solved completely in a purely analytical manner.
We did this for dust (p = 0) and for radiation (p = p/3)
but in this paper we merely discuss the dust solution.
This will be done in the next section.

III. THE DUST UNIVERSE

B(t) = Kt i, K = const,
pp ——(6~Gt ), pp = 0 . (20)

The dust universe is characterized by a vanishing pres-
sure. Although such an equation of state is not very re-
alistic concerning the evolution of galaxies, the following
discussion shows important features of the application
of the PMF method to higher orders. In particular, we
will find new nonlinear effects. The following study of
the dust universe can be considered also as some kind
of training for handling the full (i.e., not restricted to
the first order) PMF method. The Friedmann equations
imply

(al '
3

(B)
(n)

+8 Gpo

~ (n)

R3 goo, 1 R4 R5 g22, 1

If we insert this into our system of Eqs. (19) and decouple
it in the same manner as we did it in first order in [5],
we obtain the following results.

= S(n —1)
10 First order

Energy conservation: The first order results are
~ (n)

Q2 R2
2+p (n) 2 (n)) S(n —1)+ g22) = ec g, o = (A2 + Ait'~ )cos(qx), (21)

Momentum conservation:

~ (n)
g10
R2

g00, 1

2R2

~ - (n)
g1o S(n —1)

Po+ Pp B

The source terms S~ are sums of products whose fac-(n —1)

tors are solutions (or their derivations) of the field equa-
tions of lower orders than n [i.e., maximally of (n —1)th
order]. We have calculated them for n = 1, 2, 3. We
give the full form of the Eqs. (19) in the Appendix, but

(il 10Ait sin(qx)
goo 3g

(8A, k't'~' 80A, K4t4~'

3q 9qs

8AiK2t2
+ +K t ~ r sin(qx), (23)
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(g) ~ —4A2K2t~~s 4OA, K't'/'
9q3

gauge, and has, hence, no deeper meaning (see again [5]).
Note that the constants Ai and A2 are defined somewhat
different as those in [5].

4AgK2t2 )
sin qz

3q
(24) Second order

where q is the wave number [for reasons of simplicity we
choose solutions proportional to exp(iqz)]; Aq and A2 are
constants related in a unique way to the "history" of the
universe in question (i.e. , the state of the perturbed uni-
verse, see [5]); r, however, merely reflects the remaining
freedom of performing transformations within the PMF

The decoupling of (19) in second order is performed in
the same way as in first order. The second-order equa-
tions are also analytically relatively easy to solve, because
the source terms S„are after inserting the first-order(1) ~ ~

dust solutions (21), (22), (23), and (24)—just finite sums
of powers of t. We obtain

(2)
~10

A2

2qt 2q

3A', t"/' 3B,t'/'+ B2 + sin(2qx),
q 5

(25)

(2) A2 16A1A2 58Ait /

2q2t2 9q2t1/3 9q2

A 16A1A2 50A K2t /

2q2t2 9q2t1/3 27q4

B t2/3

58A t4/

9q2

cos(2qx)

(26)

—A

2 9q2t2/3
44oA, A, K4t'/'

27q4

4B2K2t1/3

3q

4A1A2K t 4/3+ B3t
q

440A', K4t2—A1A2t
27q4

160A1K t
1 2 +

K2t2 4A2K2t8/31 1

5q 9q2

24A1A2K t 2 4/3
Qq 2

4A'K t / A't'0/
1 1
9q2 2

A2 t10/3
cos(2qx)

2

(27)

(2)
—4A K 20A1A2K t / 2B2K ti/

9 2t2/3 27 4
2A1A2K2t

q2

K4t4/3 14A', K't'/'
9q2

20A', K't'
27q4

cos(2qx)
35oA'K't'/' 2B,K2t'

81q6 5q

4A2K 2 1/3 2A1A2K t 2 4/3 160A1K t 14A1K t
(28)

The new parameters B; and I", arise by solving the homogeneous part of the system of difFerential equations (19);
the terms that contain the parameters A;, which are already known from our erst-order analysis, are generated as
special inhomogeneous solutions by the source terms S„„.The integration constant w, which can be transformed to
zero within the PMF gauge, has been omitted. While the B, can be chosen &eely, the parameters F; have to satisfy
the following equation:

160A1A2K + 18E1q + 9I"3q = 0 . (29)

Note that the transition from the first order to the second one causes a doubling of the wave number q. Additionally,
terms which are spatially constant arise.

Third order

Again, the source terms turn out to be—after inserting the just obtained dust solutions in first and second order
finite sums of powers of t. Hence, (19) is also in third order easy to solve. We get
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(3) A2 5A1A2K 3A2B2
Sq2t2 2q4t 4qt

]09A1A2 4OA2A2K2t2/3

36q2t1/3 3q4

29A, B,t'/' 17A,B t'/' 763A'A, t'/' 3C,t' ' 4PA', K't'/' 27A, B,t' ' 67A1t3
cos(3qx)

9q

A32

8q t
A2E1 A2E3 25A1 A2K

4t 4t 18q4t
A2B2 109A1A2+

4qt 36q2t1/3 2

A, E,t'/'

3C', t'/3
+

27q4

63q4

3A B t2/3

20q

9A, B,t'/'
10q

2q

67A', t'
9q2

cos(qx),

763A'A t'/'
72q

(3o)

—5A, A', K'
3q5t2

A2B2 25A1A2 160A1A2K SA2B1 8A1B2 200A1A2t 2C1t+ + + + +q2t2 27q3t4/3 27q5tl/3 ] 5q2tl/3 9q2t1/3 27q 3q

80A1K t / 58A1B1t /

5 15 2

350A1
sin(3qx)

27g

—25A1A2K A2B2 A2E1
9q5t2

A2E3
2qt2

25A1A22

9q3t4/3
SA2B1 SA1B2

9q2tl/3
2A1E1 A1E3
qt / 3qt1/3+

20OA', A, t'/' 2C, t'/' 1400A'K't'/'
+

9 3 + + 58A, B,t4/' 350A', t'
+ — sin(qx),15q2 9q3 (31)

(s)
)

55A~K As~

81q t5/3 2qt

1120A A K 16A B K
81q't'/3 9g2t'/'

1000A', A, K't'/' 4A, B,K't'/'
27q7 9q4

2OASC K't'/' 19A A' t'/'
+ 1

9q 6q

3A,B,t'/'
5

1

4A1B3t SC1K t 29A+ + +

3A B t"/' 40A'K't"/'
5 81q3

44A, B,K't'
9q4

+C,t'/'—

13A', t'+ sin(3qx)
6q

2pOA, B K4t1/3

27q4 3q
', A, K't 2A, B,K't 2A, B,K't
3q5 5q2 3q2

t5/3 5A'A K't'/' 1000A'K't'1

27q 27g

44pA3K ts/3 4A, B K t /

6q 567q5 15q2

55A~K A~ 800AiA~~K4 16ApBgK~
27qst5is 2qt 8lq5t~!s 9q~t~l&

4A E K 2A2E K 25000A A K t'/3 4A2B, K4t'/3
3qt2/3 qt2/3

—
243q7 +

3q4

40A1B2K't'/' 40A E K't'/' 40A, E3K't'/'
27q4 9q3 3q3 3q

SC K t / 8A2E K t / 19A A t / 4540A A K t 2A2B1K t

2A1B2K t 18A1E1K t 8A1E3K t 4/3 3A2B1t /
+ + + t4 3

3g q q 5

12 200A', K' t' 20A, B,K't'
9q3 243q7 9q4
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4AgB3t 8C
+

4AiBiK2t /

15q2

29AiA2t / 4360AiK t /

6q 567q5
8AiE K2t2

jq
K2t2

+

3A, B,t"/'
5

40A1K.t10/3 13Ait'
+ + sin(qx),

27q 6q
(32)

(3) 4AiA2K 7A K+ 162q3t5/3
40Ai A2K 4A2B2K

81qst2/3 9q2t2/3

200A~A K t /

243q7

Ai B2K2t 68
q2

187A2, A, K2t /3

54q3

220A', K4ts/3

567q~

—4AiA2K+
q

20Ai B2K t / 4C2K t / 110AiA2K t
27q4 9q 27q5

000A3K t / 80A B K6t / 40AiB3K t /

6561q9 243q6 81q3

200AiK t 4A B K t 4C K t2
+

243q7 9q4 15q

14A,B,K't'/' 176A', K't "/'
+ sin(3qx)

15q2 81q3

7A2K 280A&A K 4A2B2K2
54q3t5/3 81q5t2/3 9q2t2/3

3A2BiK t
5q2

8C,K4t /'

81q3

100Ai B2K t /

27q4

130A'A K4t
9q5

2A2E K A2F3K 800AiA2K t / 4A2BiK t /

3qt2/3 3qt2/3 27q7 9q4

20Ai/iK't' ' 20Ai y'3K't' ' 4C K't' ' 4A2+ +
9q3 9q3 jq 3q

3A2BiK t AiB2K t 7AiE K t A E K t 82000A3iK t /

40AiB K t / 8C3K t / 40AgE2K t /3

27q 3q3 9q3

40A&E4K t / 187A~ A2K t / 800Ai K t 16AiBiK t
9q3 18q3 243q7 9q4

4C K2t2 4A P K2t2 9580A3K4t8/3 14A&B K2t8/3

5q 3q 567q5
+

15q

176A3iK2ti«3

27q
sin(qx) .

The new parameters (or integration constants) C, arise when we solve the homogeneous part of the difFerential equation
system (19). Terms, which contain the already known A, , B,, or I",, are generated as special inhomogeneous solutions

of (19) by the source terms S„.Note that in third order the wave number has tripled compared with the first order;
additionally, terms proportional to sin(qx) or cos(qx) arise.

The following, general structure of the PMF solution for the dust universe now becomes visible:

g„= fo l[t]trig(nqz) + f2 [t]trig((n —2)qz) + f4 [t]trig((n —4)qz) + . + f2i
~

&2j[t]trig(n —2Int[nj2])qz) .

(34)

Here, the fi [t] are sums of powers of t; trig is either sin or cos (according to the order and the component in
equation), and Int is the integer function. Thus, in nth order we get the wave numbers nq, (n —2)q, (n —4)q, . . .;
this sequence ends with q or Oq. Hence, a harmonic (i.e. , proportional to sin or cos) fluctuation is, in higher orders,
necessarily accompanied by corrections of equal and lesser extension. It must be mentioned that (34) still has to be
proved for general n. Comparison of the functions f;" [t] for n = 1, 2, 3 with each other shows regularities that we
are going to discuss now by means of the following case study.

To that end we set the free parameters of orders higher than the first one equal to zero; hence, the only remaining
nonvanishing parameters are those given by the first order, namely the A, 's. Let us write down here merely the 10
component:

gIoi = (A2 + Ait ~ ) cos(qx),
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A22

2qt

7A, A, t'j'
2q

3A2t7/3
sin(2qx), (36)

A2 109AgA2
8q2t2 36q2t & j'3

A2 109AiA
36q2ti/3

763A', A, t'/'
72q

763Ai A2t /

72q

67A', t' 5A, A,'K' 40
9q2

+
2q4

67A', t' 25A, A'K'
9q2 18q4t

cos(3qx)

cos(qx) .

(37)

40A'a't'/'1 2 1

3q4 21q4

25AiA2K t 250AiK t
27q4 63q4

First of all, the results (35), (36), and (37) show again
very clearly that in higher orders necessarily corrections
to the first order arise (observe, that the gzo are difFerent
from zero for n & 1).

We have written down the 10 component in each order
such that within that order the sums are ordered accord-
ing to different powers of 1/q; and within these powers
they are ordered according to increasing powers of Aq.
Now we see the following: within the same power of 1/q
the exponent of t increases by 5/3 when the power of Aq
increases by 1. From one order to the next the lowest
power of 1/q that appears increases always by 1/q, the
corresponding sequence of exponent, "..~ of t starting from
a value reduced by 1 (compared with the starting value

I

of the previous order): A2to, Azt, Azt, etc. The
highest time exponent appearing in each order increases
order by order by 2/3: Ajt ~, A~t ~, Asst ~s. In the
third order we have additionally to the terms propor-
tional to 1/q2 such proportional to K /q . They have
the same time exponents as the terms of the second order
where the one with the highest time exponent (propor-
tional to A~K t ~ /q ) corresponds to that one with the
highest time exponent in second order (proportional to
A~t ~ /q). Since in second order there are only three such
terms available, we have no contribution proportional to
A2K /q . This holds as well for the terms proportional
to cos(3qx) as for those proportional to cos(q2:). Thus,
we can expect the following terms in fourth order.

Proportional to 1/q:

Proportional to K /q:

Proportional to K /q:

A A t K / A A t ~ K / A A t ~ K /q A4tsK2/

A2A~t K /q, A2A~t ~ K /q, A~t ~ K /q

(The appearance of the terms proportional to K4/q7 is
especially suggested by doing an analogous consideration
for the other metric components. )

This consideration shows that fluctuations with large
spatial extension (i.e. , q ~ 0) are governed within each
order n by terms A&K l ~t ~ /q, if we consider
here only the growing mode (to this end we set A2 ——0),
for it possesses the highest power of 1/q. For smaller fluc-
tuations also terms with smaller powers of 1/q are impor-
tant. But those contain higher powers of t. The one with
the highest power of t is proportional to Az t2 ~s+~/q
This means that such fluctuations are growing faster
provided that we are far beyond the Jeans limit (this
lower boundary of the instability region is for the case
of the dust universe simply being q = oo). Let us stress
that while in erst order small extended fluctuations grow
as fast as large extended ones (namely, proportional to
Aqt ~s), a higher-order analysis shows that they have dif-
ferent growth rates. The reason is that order by order
terms with constantly increasing time exponents are ap-
pearing; however, these "growth terms" are dominated
in the case of perturbations with large extension by oth-

ers that are growing only moderately. It is true that this
dominance is disappearing when t becomes sufficiently
big enough but this boundary can be shifted arbitrarily
towards the future if we merely take q small enough. This
is a clear hint for the existence of an upper boundary of
the region of instability, and this existence is caused by
nonlinear efFects. To sum up: it seems that nonlinear
eKects do not stabilize a perturbation which is unstable
according to the erst-order analysis but they let large
extended fluctuations just moderately grow while they
cause small extended ones to grow much faster.

The other metric components show an analogous be-
havior. It must be mentioned that all those conjectures
have not been strictly proven yet; they have just been
verified. for n & 3. This should be done in the future;
similarly, we have to find the algorithm for the numer-
ical coefBcients in our sums. Especially for small ex-
tended fluctuation the whole sum is important and we
have to calculate its limit in order to know what func-
tions of t the metric components are. However, since
those "growth terms, " which are proportional to cos(qx),
namely Aqt5~s in gIol and 47As&ts/9q2 in gIo~, both have



PREGALAXY FORMATION: A NONLINEAR ANALYSIS OF. . . 4075

the same sign "+," one might expect that by summing
up all those contributions we get a rapidly increasing per-
turbation (provided, of course, that q is not too small).
Moreover, our analysis has been performed so far merely
within the PMF gauge. It remains to study whether the
results found in that gauge, in particular to what extent
the nonlinear effects, survive if we transform the PMF
solution into a gauge which is "close to the background. "

One can also infer from (35), (36), and (37) the follow-
ing feature. Let us assume that the first-order perturba-
tion quantities g„are small compared to the background
quantities (i.e. , the parameters A, have to be very small).
Then, the necessary correction terms of higher orders like

g„,g„, etc. are automatically small compared to those(2) (3)

of lower orders provided that q and t are moderate. The
reason is that they contain terms proportional to A&A&,
where r + s = n. Hence, for small times and for not
too largely extended Huctuations a first-order analysis is
justified. This is what; we expect.

IV. CONCLUSIONS AND PERSPECTIVES

Let us now summarize the main results of our higher-
order analysis. First of all higher-order ("nonlinear" )
effects cause, in principle, perturbations to grow much
faster than they grow according to the erst-order anal-
ysis. The reason for that behavior is that higher-order
contributions contain "growth terms, " and it seems that
they all have the same sign (i.e. , they are all acting along
the same direction). However, for very large perturba-
tions those growth terms are dominated within each other
by others which grow only moderately. Thus, we get
the following picture: fluctuations with large extension
(beyond super clusters of galaxies?) grow only moder-
ately (more or less with a similar small rate they grow
according to the first-order analysis) but the other per-
turbations grow much faster provided their extension is
beyond the Jeans limit. It must be mentioned that this
interesting result has to be taken for the moment just as
a conjecture which is supported by some tendencies ob-
served from the results in PMF gauge in G.rst, second, and
third order. We still have to work out the solution in nth
order. Moreover, our equation of state used here (dust
universe) is not too realistic with regard to the formation
of galaxies. And, Anally, in order to be in the position for
judging stability/instability of a given perturbation we
should transform our PMF solution into some appropri-
ate gauge. Then, we can infer from the density contrast
within this gauge whether that perturbation is stable or
not. However, since in the PMF gauge instabilities show
up in the metric components alone rather than in the
density contrast, one can expect that in an appropriate
gauge we will observe a similar behavior for the density
contrast like that which the metric components show in
the PMF gauge. As was suggested by one of the referees
of this paper in his report it can be avoided to transform
the PMF solution into some appropriate gauge. Instead,
we can construct out of the PMF metric perturbations

physically meaningful quantities and measures of the in-
stability at the given perturbative order. If, after per-
forming all these improvements, the observed tendencies
survive at least in principle, we have found a possible ex-
planation for the breaking off of the hierarchy (clusters
of stars, galaxies, clusters of galaxies, super-clusters) at
super-clusters or at super-super-clusters [9—13]. In this
case, general relativity would imply an upper boundary
of the instability region.

Another result is that the transition to higher orders
is connected with a multiplication of the wave numbers.
Maximally, we obtain in nth order a contribution propor-
tional to sin(nqx) or cos(nqx), but there are also terms
with smaller wave numbers [see (34)]. Altogether, we ob-
serve a kind of fragmentation which is increasing with
the order (i.e. , with the evolution time). That means
that more and more parts of the fluctuations evolve dif-
ferently, and the extension of those parts becomes smaller
and smaller when the order increases. Hence, the pertur-
bation is fraying more and more when time passes by.

In our analysis we have considered only fluctuations
with a spatial shape proportional to sine or cosine. How-
ever, the realistic fluctuations are those whose spatial
shape is, e.g. , something like a Gaussian. This is not at
all a problem in first order because we can obtain the
solution for any shape by means of a Fourier synthesis.
But in the nonlinear theory, a sum of solutions of the
field equations is not necessarily also a solution of these
equations. Nevertheless, we can use our solutions ob-
tained in this paper also in such a case. We just have
to perform the Fourier analysis "order by order. " This
expression is to be understood as follows. First of all,
we perform the Fourier analysis in erst order. Our so-
lutions proportional to exp(iq2;) are solutions of the in-
dividual Fourier components. Subsequently, we compose
them and obtain the solution of the given perturbation
in first order. That solution must then be inserted into
the source terms in (19) for n = 2. We form the prod-
ucts and sums of S&, and, after that, we decompose the(~)

source terms into their Fourier components. Then, our
solutions proportional to exp(iqx) are again solutions of
the individual Fourier components. Since the perturba-
tion field equations (19) are also in second-order linear in

the unknown functions g„, the Fourier synthesis out of
our solutions proportional to sine and cosine yields the
full solution in second order which is to be inserted into
the source terms in third order. In this way we proceed
order by order.

Moreover, one should rid oneself of the concept of per-
turbations with two-dimensional symmetry planes, if the
aim is a theory of the formation of galaxies as realistic as
possible. Instead, one should consider perturbations that
are (approximately) spherically symmetric. The tran-
sition to these Buctuations should not be any problem
because the starting metric (in spherical coordinates) is
not much more complicated than (1). Our PMF methods
should, hence, be applicable also in this case.

The PMF method can be used also on a larger scale.
If our conjecture about the solution in an arbitrary or-
der turns out to be true, we can generate by means of
the PMF method exact solutions (presented as infinite
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power series in t) of Einstein s field equations. Then,
it is not necessary to assume that the fluctuations are
small compared to the corresponding background quan-
tities; however, if we drop that assumption, all orders are
equally important. An investigation about the structure
of these solutions and their classification could give useful
information about classical general relativity.

A further application is obvious. If we give up our
separation ansatz g„„=f (t)h(x), we can investigate
also gravitational waves propagating in a Friedmann-
Robertson-Walker universe, i.e. , propagation through
matter. It should be possible to obtain solutions (with
the help of the PMF method) even without such a separa-
tion ansatz, because our system of differential equations
(19) can be decoupled independently from that ansatz
[see, e.g. , [5], (3.17)—(3.22)].

Finally, we want to emphasize that the main aim of
this paper is not to supply a theory of galaxy forma-
tion, which is as realistic as possible. These investiga-
tions should rather be understood as a first step towards
such a theory satisfying astrophysicists. First of all, we

are interested in the development of a method powerful
enough for solving the field equations also in the case
of space-times, which are less homogeneous than, e.g. ,
the Friedmann universe. We wanted to understand what
kind of principle problems arise, and how they can be
handled. Additionally, we were interested in what kind
of new efFects caused by higher orders appear. The most
essential new nonlinear eKect is that perturbations grow
much faster than they do according to a first-order anal-
ysis, but those perturbations with an extremely large ex-
tension do not.

ACKNOWLEDGMENTS
The author wishes to express his thanks to Erland

Wittkotter for his advice concerning the application of
some mathematical software programs which helped to
do the necessary calculations in much shorter time. Ad-
ditionally, he wants to thank Heinz Dehnen for some dis-
cussion, Stephan Hartmann for reading the manuscript,
and the Deutsche Forschungsgemeinschaft for financial
support.

APPENDIX A

Here we give the full perturbation Geld equations up to second order for the relevant components.

1. First order

00 component:

8G7rgoo x, t po t + + 6go(o)(x, t)R(t)2
R(t)'

„ (1)
2R(t) dg22 (x,t)

dt
R(t)'

dg&& (+it) 2~ g
dg1P (x,t) d g22 (x,t)(1) (1) (1)

dt dK dx2

R(t) s R(t) s R(t) 4 (Al)

10 component:

8G~g,",) (~, t)&,(t) 3g,",'(*,t)R(t)'
R(t) 2 R(t) 4

R(t) dgoo (~ i) 2R(t) dg2o (~,t)(1) ~ (1)

dx

R(t) s R(5)s

d'g22'(~ t)
dadt

R(t)' (A2)

Energy conservation:

—4g,",'(*,t)R(t)
R(t)s

(i)(~ t)R(t)
R(t)' R(t)' R(t)'

=0. (A3)

Momentum conservation:

(1)
(t) dgoo (K t)

2R(t) 2

(1)
p (t) dgoo ( &)

2R(t)' (A4)
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00 component:
2. Second order

(2) 4g- (* t)B(t)' 2g"'(* t)B(t)' 6g.".(*,t)B(t)'
B(t)4 B(t)4 R(t) 2

g22 (, ) ~ ~
dg„(x)t) 2~ ~

dg, o (a)t) d g22 (x,t)(2) ~ (2) (2) (2)

dt dt +R(t)' B(t)' R(t) 3 R(t) 4

,8G»o'(* t)'~0(t) (.), 5g.", (*,t)'B(t)'

10 component:

B(t)3

g, ', ) (x, t)R(t) ""'„,'*"
R(t)'

( ) (& t)R(t) 910 (0:it)

R(t) 5

dg22 (x,t) dgio (a, t)(&) (i)
dt dx g

B(t)4

g,',)(x, t)R(t) "1"'
R(t)'

(1)( i d )(,t)
R(t)6

2g22 (x, t)g, ', (x, t)R(t)' 2g, ', (x, t)'B(t)' 6g
'

(x t)'R(t)'

8g(',)(*,t)g,",'(*,t)R(t)' 4g,", (*,t)g, ',)(~, t)R(t)'
B(t)' B(t)4

9g,", (~, t)'B(t)' 3g,','(x, t)B(t) "' '*"
g,", (x, t)B(t) ""' '*"

B(t)' R(t)' B(t)'
dg22 (x)t) (1) ~ t ~ ~

dg~i (x)t)(&) (i)
dt

4R(t) 4 B(t)'
(1) (~ t)R t dg11 (x,t) dgzz (x,t) d911 (x,t)(i) (i) (~)

~00 dt dt dt
B(t)~ 2R(t)'

())(~ t)R(t) d910 (0: t) 4g())(~ t)R(t) dglo (~ t)

(1)( t~B(ti dg(') ("t) dg(') (-.t)'

R(t)' 4B(t)'
dg22 (x)t) dgii (x, t) (1)( ~) d g22 (, )

2B(t)6 B(t)6
)( gX g22 (& t)

R(t)4 (A5)

(2)
sG~g, ',) (~, t)J, (t) 3g,", (*,t)R(t)' R(t) "";.'*"

B(t)' R(t)4 R(t)'

2R(t) "' ' "' *' ' SG~g( )(x t)g' '(x t)po(t)

8G g(')(*, t)g(')(, t)p (t) 4g(')(, t)g(')(, t)B(t)2 5gi(0)(x, t)g(', )(*,t)B(t)2
B(t)2 R(t) 6 R(t) 6

d ''( t) (1) (i)
6g( )(x, t)g( )(z, t)R(t)2 2g, )(2;, t)R(t) "( ' ) g( )(x, t)B(t)

B(t)4 B(t)' B(t)5

g (x t)B(t) " '
g (x t)Rtt) " ' 2g (x, t)R(t)

R(t) 5 R(t)' R(t)'
dg&z (x|t) dgoo (x,t) 3 ())

( t)R(t) dggo (x)t) 3 (1)
( t)R(t) dg2o (x,t)

dt d~ ~22 & d~ ~11
2B(t) B(t)~ R(t) 7

(1)(~ t)R t dgoo (~,t) dgoo (a)t) dgoo (x,t) dg11 (x,t) dgot (x,t)(~) (i) (i) (i) (i)
Opp da + dt da + dt dx

B(t)' 2R(t) 2B(t)
(1)j ~i d g22 (x)t) (1)j ~i d g22 (x)t) (1)f ~i d g22 (a)t)

B(t) R(t) B(t)
(A6)
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Energy conservation:

2g1(0) (x, t) 2R(t)
R(t)'

d xt d Kt—4 ')(x t)R(t) 2
'

(x t)R(t)
R(t)s R(t)' R(t)' R(t)'

4g22 (x, t) R(t) 2g11 (x, t) 2R(t)
R(t) s R(t) s

Momentum conservation:

4g,", (*,t)g,",'(, t)R(t)
R(t)s

4 ~ )( g)dglo (~ ~)

R(t)'
(1) dg11 (~ 4) (1

gll ( & ) dt, gpp

R(t)4

2g(') (,t)g(, ) (, t)R(t)
R(t)'

(11(x t) dg22 (x, ti 2 (1)
(

R(t)4

)(x t)d». '( ) g( 1(x t)
R(t)' R(

GgI, '(x, t)'pp(t) R(t)
R(t)' ', (t)

t) dg22 (»t)(1)
) dt

R(t)2
dgoo (a g)

(1)

de 0
t)2 (A7)

(t)
d (,ti(2)

R(t)'

dg( )( ~)".(* t) (t)
R(t) 2 R(t) 2

(t) goo (~ ) (t) goo (~ )
(2) (2)

2R(t)' 2R(t)'
(1)

g"'(* t)g" (* t)p. (t) g"'( t)g".'( t)p (t) g'.'(
R(t)4 R(t)' 2R(t)2

g".'(* t)p (t) "','*"
2R(t)'

(1) (1)
g11'(* )PP()""dI*" gpp'(* )»() "'dt*"

R(t)4 R(t)'
(i) d''( ~)g11'(*,t)Po(t) ""«" g00'(x t)PP(t) "'«*"

R(t)4 R(t)2

g"(* t)p (t)""'.'*"
2R(t)'

( )( t) (t)
o"o'( )

2R(t) 2

g, ', (x, t)p, (t) ""' *'
g, ', (x, t) p (t) '-„*'

2R(t)' 2R(t) 4

=0. (As)

Note that these equations transform into the system (19) if we insert in each order the energy conservation equation
into the 00 component, and if we divide the momentum conservation equation by (pp + pp).
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