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The evolution of the electroweak phase transition, including reheating due to the release of latent
heat in shock waves, is calculated for various values of as yet unknown parameters of electroweak
theory such as latent heat and bubble wall surface tension. We 6nd that, for a wide range of
parameter space, the bubble walls of the phase transition slow down by as much as a few orders of
magnitude. Consequently, we also show that since baryon production can be a sensitive function of
bubble wall velocity, it is important to include the effects of reheating in the calculation of the baryon
density of the Universe. We show that there is a sensitive velocity dependence for all mechanisms
of baryon production, depending on the magnitude of velocity of the bubble wall, and we examine
in particular an inverse velocity dependence on baryon production, which is predicted by the charge
transport mechanism of baryon production. For this mechanism we Gnd both an enhancement of
baryon production and the generation of inhomogeneities during the electroweak phase transition.
We calculate the magnitude of the baryon enhancement, which can be as large as a few orders of
magnitude, depending on the parameters of the theory, and we calculate the size and amplitude of
the inhomogeneities generated. We determine that the inhomogeneities generated in a thermally
nucleated electroweak phase transition are too small to survive diffusive processes and afFect the
nucleosynthesis epoch. We also examine the possibility that a phase transition nucleated by other
means, such as by the presence of cosmic strings, may produce inhomogeneities that could affect
nucleosynthesis.

PACS number(s): 98.80.Cq, 47.75.+f, 98.80.Ft

I. INTRODUCTION

The present calculations of baryogenesis in the elec-
troweak (EW) phase transition do not include the effect
of reheating due to the release of latent heat. In this pa-
per, we will show that it is important to include this efFect
because reheating can dramatically affect the evolution of
the phase transition. As a consequence, not only can the
production of baryons be afFected by a factor of as much
as a few orders of magnitude, but also inhomogeneities
in baryon density are generically produced.

To begin our discussion, let us first briefIy describe the
EW phase transition. First of all, in this paper we will
assume a first order phase tra-nsition, because this is the
type that has the greatest chance of leaving observable
remnants (i.e. , baryons and inhomogeneities). Whether
or not the EW phase transition is first or second order
(or if there is any transition at all) is still an unresolved
matter [1], though the present bias is toward a first-order
transition. A Grst-order phase transition proceeds in the
following way. When the Universe is at a temperature
above the critical temperature T, the plasma is in its
high-temperature unbroken (u) phase. As the Universe
expands, it cools down below the critical temperature
and bubbles of the low-temperature broken (b) phase be-
gin to nucleate. Once a bubble has nucleated, it will
begin to grow and its bubble wall velocity will quickly
reach some velocity vo, which depends on the tempera-
ture of the plasma and the internal bubble wall dynam-
ics. As the bubbles grow and convert the plasma to the

low-temperature phase, they will also release a certain
amount of latent heat I, which is an (as yet) unknown
parameter of EW theory, and this will tend to heat the
plasma toward T . This reheating will in turn decrease
the bubble wall velocity, which goes to zero as T —+ T .
If I « p(T, ) —p(T„), where T is the temperature at
which the bubbles nucleate and p is the energy density,
then the bubble walls will only slightly slow down. If
I p(T, ) —p(T ), theii we will show that the bubble
wall will slow down drastically (vs « 1) until the ex-
pansion of the Universe itself can absorb the latent heat
(see, e.g. , [2]). Of course, the picture is more complicated
than this because the reheating is not homogeneous, but
qualitatively this description is accurate.

The efFect on the production of baryons originates &om
the observation that there is a sensitive bubble wall veloc-
ity dependence for all mechanisms of baryon production
(the sensitivity depends on the magnitude of velocity of
the bubble wall). Since the bubble walls decelerate as a
result of reheating, we will find that baryon production
can be enhanced by a large factor for a large range of
parameters, such as latent heat and bubble wall surface
tension, of the EW theory. This enhancement is indepen-
dent of parameters such as the strength of CP violation,
and so the observational constraints on these factors can
be relaxed.

The bubble wall deceleration will also naturally pro-
duce inhomogeneities in baryon density that can have
large amplitudes, depending on the parameters of EW
theory. Since the production of elements at later times is
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sensitive to inhomogeneities, we ask the important ques-
tion, can certain regions of EW parameter space be ruled
out, not only by careful measurements of the baryon den-
sity of the Universe, but also by constraints on inhomo-
geneities allowed by big bang nucleosynthesis calculations
and observations? We will find that the inhomogeneities
produced in a thermally nucleated EW phase transition
are too small to survive important diffusive processes,
and so the inhomogeneities do not play a significant role
in big bang nucleosynthesis. However, we also examine
the possibility of nonthermal nucleation (seeding) of the
phase transition, which allows larger size inhomogeneities
that can affect big bang nucleosynthesis.

It is important to note that in this paper we also in-
vestigate several important side issues in this large topic.
For example, we must justify our assumption that baryon
production is sensitively dependent on the velocity of the
bubble walls. Also, since the velocity of the bubble walls
is crucial not only for the calculation of baryon produc-
tion, but also for the calculation of the phase transition
dynamics, we will investigate in detail a method for cal-
culating the velocity of the bubble walls which uses a
damping coefficient q as a free parameter [3]. In this
calculation of wall velocity, we have included several im-
portant effects previously neglected by many authors.

We should mention here that, so far, we have referred
to the EW theory, when in fact there are many different
EW theories (see [1] for a review). However, we will find
that the calculations in this paper are not sensitive to the
particular type of theory chosen. The only assumption
we make is that the baryon production is sensitive to the
velocity of the bubble wall, and we will see that this is
true independent of the particular EW theory used. Since
at times we will need to use specific examples in order
to get numerical results, we will use what is called the
"minimal" standard model EW theory, keeping in mind
that our conclusions will still apply for other theories.

The structure of the paper is as follows. First of all, the
reader who is only interested in the final results of the
evolution of the phase transition, the resultant baryon
production, and the effects on nucleosynthesis can refer
directly to Secs. V—VII.

In Secs. II—IV we discuss the important detailed calcu-
lations that lead up to our results. For example, in Sec. II
we investigate in detail how baryon production depends
on the velocity of the bubble walls, and in Sec. IV we
discuss the propagation of the bubble wall in detail. Fi-
nally, the last section summarizes the main conclusions
of this paper.

II. ELECTROWEAK BARYOGENESIS

The quantum field theoretical aspects of EW baryoge-
nesis are well developed, and so we refer the interested
reader to a recent review of EW baryogenesis by Co-
hen, Kaplan, and Nelson [1]. The important point that
we wish to use &om the study of EW baryogenesis is
that the third of Sakharov's conditions for baryogenesis,
namely, that baryogenesis requires an out-of-equilibrium
environment, is met via the EW phase transition [4].

In fact, it is the bubble walls that meet Sakharov's
third and final requirement for baryogenesis: The plasma
in and immediately around the bubble wall is out of equi-
librium. Therefore the bubble wall plays an important
role in baryon production. However, baryon production
need not occur in the bubble wall itself. For example,
transport processes can cause the region in &ont of the
bubble to be out of equilibrium, thus allowing baryoge-
nesis to occur in front of the bubble wall [5,6]. There
are other mechanisms, such as spontaneous baryogene-
sis, which produce baryon number inside the bubble wall
[7,8]. Exactly which mechanism dominates and where
most of the baryons are created depend upon parame-
ters such as the bubble wall thickness and bubble wall
velocity [1,6].

The dominant baryon production mechanism will in
turn more precisely determine how baryon production
depends on the bubble wall velocity. We will see that
the velocity dependence is important for determining the
effects of phase transition dynamics on the total baryon
density and on the production of inhomogeneities. So
let us now examine the velocity dependence of baryon
production more closely.

A. Bubble wall velocity and baryogenesis

The crucial assumption of this paper is that the baryon
production rate is a sensitive function of bubble wall ve-
locity for at least some range of velocities.

What is our justification for this assumption? How
can we even justify that baryon production has any de-
pendence on the bubble wall velocity? Strictly speaking,
there is no question that baryon production in the EW
phase transition depends on the bubble wall velocity vo.
How sensitive a function it is of velocity, however, de-
pends on both the (dominant) mechanism of baryon pro-
duction and the magnitude vo. For example, in the limit
that ve ~ 0 (and keeping the bubble wall thickness con-
stant) the plasma in and near the bubble wall remains
in thermal equilibrium, and thus no baryon number is
produced, independent of the mechanism of production.
As the vo increases kom zero, however, we will see that
the velocity dependence of baryon production depends
on which mechanism of baryon production is dominant.

In order to determine which mechanism of baryon pro-
duction is dominant, one must compare three different
time scales [1]: the thermal time scale &T few/T,
the baryon violation time scale r~ 1/n T, and the
time scale of the wall, w h /ve, where b is the
bubble wall thickness. Nonetheless, we will find that
all baryon production mechanisms have some common
velocity-dependent characteristics at small and large ve-
locities. Before we discuss these general characteristics,
let us first take a close look at a specific mechanism in
order to see how the bubble wall velocity dependence of
baryon production is determined in detail.
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Cha~ge transport mechanism

In order to quantitatively calculate the effects of phase
transition dynamics on baryon production, we will choose
a model a baryon production based on the charge trans-
port mechanism, which predicts that the baryon produc-
tion is inversely proportional to the bubble wall velocity
[5,6]. That is to say, our model for the calculation of
baryon density n~(t) produced at some time t during
the phase transition consists of one equation

n~(t) =
vp(t)

'

where A is some constant which depends on the specific
parameters of the theory of baryon production. For ex-
ample, A is proportional to the amount of CP violation
in the theory. Because we are grouping all of our igno-
rance about these parameters in A, we will not be able to
calculate absolute numbers for the total baryon density,
but only numbers relative to some particular theory of
baryon production represented by A. In this way, we can
isolate the effects of phase transition dynamics on baryon
production, since previous authors neglected to take into
account the changing velocity of the bubble walls during
the phase transition.

We choose to use the charge transport mechanism as
a model because it is a mell-developed, plausible theory
which has an explicit prediction of the bubble waH veloc-
ity dependence [5,6]. I et us examine in more detail the
charge transport mechanism in order to determine how
the velocity dependence of Eq. (1) comes about. Indeed,
one might suspect that this velocity dependence must
break down for small velocities, since for vp -+ 0 this
formula predicts infinite baryon density. We will find, as
Nelson, Kaplan, and Cohen [5] have, that Eq. (1) is valid
only for velocities above some cutofF velocity v, , which
we will calculate. In this paper, we will also go one step
further and determine the velocity dependence of baryon
production as the bubble wall velocity vp + 0.

The charge transport mechanism can be described in
the following way. As the bubble wall propagates through
the plasma, some kind of charge Y (e.g. , lepton charge
or hypercharge) is reflected off the bubble wall in a CP
violating way back into the high-T phase. This excess
charge is then converted into baryon number via the
previously mentioned baryon-number-violating processes
continuously occurring in the high-temperature phase.
At some point, the wall will again catch up to the charge,
which is slowly difFusing through the plasma, and as the
wall sweeps through the charge at this point, the baryon-
number-violating processes will turn off (because they are
exponentially suppressed in the low Tphase), leaving -be-
hind a baryon remnant.

Nelson, Kaplan, and Cohen [5] have shown that the
rate per volume at which the charge Y is turned into
baryon number, or what we call the baryon number den-
sity creation rate n~ j„at some point z in space is

A'r
ny (z —vpt), (2)

where JV is a number of order unity which depends on

where, as stated before, vB is the baryon number viola-
tion time scale.

Putting these two rates together and making the rough
approximation that 7& r~/T, one obtains a formula
for the total change in baryon number density:

~B
ng — [Jenny (z —vot) —ng]T3

1
[lAy(z —vot) —ng] .

'TB
(4)

The total baryon density at z can be found by inte-
grating (4) over time. We will examine two limits of
this formula in order to determine its behavior. The first
limit is when n~ && nB, and the second limit is when
ny &( nB. We will see that these two limits are equiva-
lent to the large and small velocity limits of the bubble
wall.

The first limit ny )& nB occurs when the average time
the charge Y spends out in &ont of the wall after

being reflected (and before being caught again by the
wall) is much smaller than r~. In this case, the charge Y
has not had very much time to be converted into baryon
number, and so nB is small compared to ny. . In this
limit, one can neglect the n~ term in (4) and integrate
over time. But 6rst, in order to do this, one must cal-
culate ny (z —vot). Since the charges thermalize in a few
mean &ee paths, we can find an approximation to n~ by
using the difFusion equation. Since the wall is a constant
source of reflected charge flux, we can approximate the
flux as Jy = so Jo(vo)h(z —vot), where ss is the char-
acteristic distance a particle travels before it thermalizes
and starts to random walk (e.g. , see [6], or simply re-
place the b function with exp [so(z —vot)] /so to get a
finite width source). Here we have explicitly noted that
Jp is a function of bubble wall velocity. The equation of
diffusion of charge Y is then

ny + Dny ——so Jp(v )b (z —v t) (5)

where D is the difFusion coefficient. One can obtain an
approximate solution to Eq. (5) by observing that out-
side a distance 8p &om the wall the solution must be of
the form n(z) = noe ""~ . In order to find no, one must
use the boundary condition that at the wall the density is
constant; therefore, using Eq. (5) we fin n(0) = sp Jp/D,
and so

the type of charge Y and on the number of Higgs scalars
in the theory, I B is the baryon violation rate per volume,
and ny(z —vot) is the (steady state) charge Y number
density for a wall moving with velocity vp, for a point
z —vpt away &om the wall.

However, since baryon number violation processes are
continuously occurring, any baryon number that is cre-
ated will also tend to equilibrate to its equilibrium value,
which is zero. This behavior can be described by a
"baryon number annihilation rate" n~

~
„„,which can be

approximated by using a simple form of the Boltzmann
equation

nB
na ~ann ~
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so Jp(vp) u—oz /Dny (z) D
e (6)

(7)

The velocity dependence of Jp(vp) is complicated (see
[5] for an explicit expression), but to first order in
vp, Jp oc vp. Therefore, in the limit w~ && w „we can
see that n~ oc vp, just as in Eq. (1).

In the second limit n~ (& n~, however, the velocity
dependence is very different. This limit occurs when

, » w~, giving the reflected charge Y plenty of time to
convert to baryon number such that n~ becomes small
compared to n~. In this case, one can solve for the total
baryon density by assuming that all of the charge Y has
converted into baryon number, and so we neglect the ny
term when integratin. g Eq. (4). In this limit, the formula
for the total baryon density is simply n~ = n~/r~. —Of
course, the exact solution of this equation will be compli-
cated because the charges are not distributed evenly out
6.om the wall, but the general behavior of the solution is
of the form

n~ —nappe- --/' (8)

where n~p is an average the baryon number density, av-
eraged over the inhomogeneous distribution of the initial
Y charges that have been converted into baryon number.
One would expect n~p to be roughly the same as the
baryon density calculated in the previous limit, namely,
Eq. (7). Recall that r, is the average amount of time
the charges stay in kont of the wall after reflection. This
average time can be estimated by observing from Eq. (6)
that the distribution of Y charges diffuses out an average
distance D/vp &oin the wall after reflection. Therefore
it will take the wall an average time of

+ave ~
Vp

(9)

before the wall catches up again with the reflected
charges.

We can approximate the velocity dependence of n~ in
the v „,&) ~ii limit by combining Eqs. (8) and (9) and
by using the approximation of setting n~p equal to the
value of n~ in Eq. (7) to obtain

The integrated baryon density in the case n~ && n~ or
(as described above), equivalently, w~ )) v „„is then

NI'~ '~"' JVI'~ sp Jp(vp)
nJ3 = t ny z —vpt

For velocities less than this cutoff velocity v, , Eq. (10)
is the valid form for n~. The diffusion coefEcient is typi-
cally equal to a few mean &ee path lengths A. One should
be careful to note that at these high temperatures there
are many difFerent types of particles to scatter ofF of (glu-
ons, quarks, etc.), and so A ~ (Na T), where N is the
number of degrees of &eedom in the plasma. This results
in a mean &ee path A few x T [1]. We then estiinate
the cutoff velocity to be

v, n~/~N 10 (12)

but because of the theoretical uncertainties of quantities
such as r~ and D, the cutoff velocity could range any-
where &om 10 4 & vm;„& 10 . (Note here that Liu,
McLerran, and Turok [25] have made a similar estimate
of the minimum velocity, but they did not include the
factor of ~N. ) The estimate (12) will be used as a ref-
erence value throughout the paper. For example, we will
see that this limit is important for establishing the max-
imum allowable overdensities produced during the phase
transition. Later in this paper, we will find out that
phase trunsition dynamics will also place lower limits on
bubble wall propagation velocities, and these limits will
be of the same order as (12).

g. General velocity dependence of ha~on production

Besides the specific example of the charge transport
mechanism, one can make some remarks on the general
characteristics of the velocity dependence of any mecha-
nism of baryon production. For example, in the limit of
very slow bubble wall velocities, the Boltzmann equation
for the annihilation of baryon number, n~ = n~/7~, —
will play a major role in any baryon production mecha-
nism. Just as we saw for the charge transport mechanism,
this leads to a decrease in the baryon number of the form

ng nappe

shows that is is completely equivalent to present the lim-
its v, && ~~ and v „,&& r~ as lower and upper bounds
on the bubble wall velocity. For example, one can use
(9) to express the limit v „,« v~ as vp )& D/v~. Thus
we can place a lower cutoff limit v, on the bubble wall
velocity for which the approximation nI3 oc vp is valid.
Recalling that v~ = 1/(aivT), we obtain

v, o~TD .2 4

ng eT Vp

e—D/( o' ~)

Vp

where we have used Jp oc vp. Notice that n~ —+ 0 as
vp M 0, as it should.

Now that we have obtained the velocity dependence
of ng in two different limits, for what range of velocities
are these two limits valid. First of all, Eq. (9) explicitly

—Dp/(ep TQ) (14)

where v is the average time the baryon charges are
exposed to the equilibrating (toward zero) baryon viola-
tion processes. For every mechanism, w, will be some
monotonically decreasing function of vp. If we assume
that 7 „, = Dp/vg, where Dp is a characteristic length
scale of the particular mechanism and the exponent n is
also dependent on the particular mechanism, we find a
general behavior in the small velocity limit:
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which goes to zero as vo M 0. Note that, as in the charge
transport mechanism, there could also be a velocity-
dependent coefficient (of some power of vo) multiplied
onto this exponential dependence, but the exponential is
the dominating behavior of n~ at small velocities.

In the large velocity limit vo ~ 1, baryon production
must also go to zero for every mechanism. This is be-
cause, for a given bubble wall thickness b, the time
T = h /(pvo) that a given point in the plasma expe-
riences out-of-equilibrium conditions will go to zero as
no ~ 1 (due to Lorentz contraction of the wall), and
when v (& w~, the velocity will be so fast that the
baryon violation processes will not have time to create
any baryons.

Putting these two limits together, we conclude that for
every mechanism of baryon production, there is a velocity
range for which n~ monotonically increases with vo, and
there also a velocity range for which n~ monotonically
decreases with vo. And for the case of small velocity, Eq.
(14) indicates that n~ is an exponentially sensitive func-
tion of vo. Figure 1 schematically presents the general
velocity behavior for all mechanisms.

In summary, all models of bubble wall baryogenesis are
dependent on the velocity of the bubble wall, and in at
least some range of velocities they are sensitively depen-
dent on the bubble wall velocity. We will find that, for
some regions of parameter space, vo varies by a couple or-
ders of magnitude during the phase transition. Therefore
it is very plausible that vo will be in a range for which
baryon production is sensitively velocity dependent, and
phase transition dynamics will play an important role
in baryon production. For this paper, we will concen-
trate on a model with a vo dependence because it is a
generic feature of a wide class of models that work via
the charge transport mechanism. However, we will make
comments on a linear vo dependence also. One should

CQ

0
~ W

0
0

CO"e

G3

CQ

keep in mind that since the phase transition dynamics are
separate &om baryon production, it is a simple matter
to apply any velocity dependence of baryon production
to the phase transition and calculate the average density
and type of inhomogeneities produced.

III. PHASE TRANSITION DYNAMICS

In this section, we brieBy review some of the well-
developed formulas necessary for calculating the dynam-
ics of the phase transition. We also derive a formula for
the total baryon density produced by the phase transi-
tion.

A. Higgs field potential

The scalar Higgs field P is the order parameter of the
phase transition. The EW phase transition corresponds
to the passage of the vacuum expectation value of the
Higgs field &om zero to a nonzero value. The reader in-
terested in a detailed discussion of the behavior of the
Higgs field can refer to [9—12] and the references cited in
[1]. In this paper, we will use a well-known approxima-
tion of the Higgs field potential in order to simplify our
calculation [10—12]:

V(P, T) = A(T —To )P —BTgP + —P4

This approximation contains the essential features of
the phase transition, namely, the general shape of two
minima separated by a barrier. The actual shape of
the potential may be slightly different than this (e.g. ,
[13—15,11]),and one should keep in mind that small dif-
ferences in the final numerical results may arise.

The high-temperature limit of the potential calculated
from one-loop perturbation theory actually does take
the form of (15), and the parameters A, B, To, and A

(which is weakly temperature dependent) can be put in
terms of the zero-temperature masses of the Higgs bo-
son, top quark, etc. Instead of this parametrization, we
will choose to express A, H, To, and A in terms of four
parameters which are more physically descriptive of the
phase transition: the latent heat I, the surface energy
of the wall cr, the Higgs correlation length ( (to leading
order), and the critical temperature T [16,3]. This is
a completely equivalent way of parametrizing (2), and
these parameters are defined as

Bubble wall velocity vo
FIG. 1. Schematic picture (not to scale) of the gen-

eral dependence of baryon production on bubble wall ve-
lo city. For small velocities, there is an exponential dep en-
dence. For velocities close the speed of light baryon produc-
tion is suppressed because time scales become too short for
baryon-number-violating processes to create baryons. The ve-
locity dependence in between the dashed line depends on the
mechanism of baryon production. Here we have made a sim-
ple interpolation of what the velocity dependence might look
like between the dashed lines. This shape is very similar to
the velocity dependence of the charge transport mechanism
examined in the text.

BV(P, T)
BT

To

(1 —B2]PA)i/2 '

8T04 A2 B2

(AA —B2)A '

(82V(P, T)
A/2

gWA —B2

+2ATpBp. ,r.)
B TsA&

3 A(AA —B2)s&

(16)
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where Pp ——2BTp~A/[gA(AA —B )] is the value of the
Higgs field {atT,) at the second (low T-phase) minimum,
and we calculated the function P(x) using V(P, T) in the
equations of motion for P(z). We will talk more about
P(x) in later sections.

In order to get an idea of the size of these parame-
ters, one can refer to the perturbation theory (one-loop)
calculation of the Higgs potential. In this theory, one
can calculate the four parameters simply by knowing the
mass of the Z and W+ bosons, the mass of the top quark
(the heaviest quark), and the mass of the Higgs boson
[11]. The mass of the Z and W+ are known, M~ 91
GeV and M~+ 80 GeV. The mass of the top quark is
presently "known" (it has yet to be reliably detected) to
about 20%, Mg 175 GeV. The mass of the Higgs boson
has an experimental lower bound of MH & 60 GeV. Us-
ing these values (including M~ = 60 GeV), one obtains

Ss(o., T)
T

4 85[2A(T2 T&)]s/2
B2T3
c /' 2.4x 1+ —11+4. ( 1 —a

0.26
+(, .). I, (»)

where

A[2A(T2 —Tp2)) 2

2B2T2 (20)

C. Fraction of space E(t) occupied by the bubbles

This function is accurate to a few percent in the whole
interval of 0 & n & 1 (i.e., Tp & T & T,). We will use
this approximation in all of the following calculations of
the phase transition.

Io 0.14To, T o = 93.7 GeV,

12.7
(p =, op = 0.0056T,p,

Tc0

(17)

where the subscript zero stands for the one-loop calcula-
tion values. We will use these values as a reference point
throughout the paper, though the whole point of this pa-
per is to investigate all values of parameter space. Unless
otherwise stated, these parameters in this paper will take
these one-loop values.

Once the temperature of the Universe drops below the
critical temperature T, bubbles of the new phase will
begin to nucleate randomly in space, and as we will see
in the next section, each bubble will immediately start to
grow and Bll up space. In order to calculate the volume
of space occupied by the new phase, we will follow the
prescription of Guth and Weinberg [19],where they find
that at some time t the fraction of space P(t) left in the
high-temperature unbroken u phase is

- 3

E(t) = exp —— dtiI'„„,(ti) dt2v(t2)
3 ~c C1

B. Bubble nucleation (21)

3/2

(T) ~T
~ ~

— (4» )/
2vrT

(18)

Now that we have the Higgs potential, we can calcu-
late the mechanics of the phase transition. As the plasma
cools down, the Higgs Beld, which is initially in the high-
temperature unbroken phase, will become metastable,
and it will eventually decay from the high-T phase to
the low-T phase. The decay to the low-T phase is done
via bubble nucleation.

A systematic theory of bubble nucleation from a
metastable state has been developed by Langer [17].
Others have applied it to cosmological phase transitions
[18,10]. Specifically, we will use the formula derived by

!

Linde [10] for the nucleation rate per unit volume:

where v(t2) is the velocity of the bubble wall at time t2.
Note that we have neglected the initial radius of the bub-
ble and the acceleration up to terminal velocity, because
both of these e6'ects are very small. We have also ex-
cluded the effects of the expansion of the Universe [10]
because for all cases in this paper we will see that the
duration of the phase transition is much less than the
Hubble time. This formula for the &action of space oc-
cupied does not take into account the dynamics of the
colliding bubble walls, nor does it adequately describe
the final moments of the transition (e.g. , shrinking bub-
bles of an old phase). One should therefore keep in mind
that Eq. (21) is only a convenient approximation (see
[20] for a discussion).

D. Calculating the baryon density

where Ss(P, T) is the three-dimensional action of the
Higgs Beld. The constant K is thought to be of order
1, and so we will set K = 1.

Unfortunately, the calculation of the three-dimensional
action Ss(P, T) must be done numerically because there
is no known analytical form. Dine et al. [11]have, how-
ever, found an approximation to Ss($, T) that takes a
simple analytical form. This approximation assumes that
V(P, T) is of the form (15), and Ss becomes a function
of two parameters n and T:

One of the goals of this paper is to calculate the ef-
fect of the varying bubble wall velocity on the average
baryon density of the Universe. Actually, we will not
calculate the total baryon density, but rather the ratio of
the total baryon density produced using a formula which
accounts for variation in the bubble wall velocity, divided
by the total baryon density produced assuming the bub-
ble wall velocity is constant (which has been the standard
assumption). The formula for this ratio is derived in the
following way.
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Let us de6ne dB as the number of baryons produced
in some volume element dV, where V = [1 —E(t)]Vs is
the volume of space that has been converted to the low-
temperature b phase in some fiducial volume Vp. Since
nI3 = dB/dV, we can use Eq. (1) to obtain

B = — FVp,
v(t)

where we have assumed that the expansion of the Uni-
verse is slow compared to the phase transition. We can
then define a "baryon enhancement ratio" y as the total
number of baryons produced in Vp, accounting for the
varying bubble wall velocity, divided by the number of
baryons produced assuming constant wall velocity:

P(t) = —4vrv(t) dt I'„„,(tg) dt2v(t2)
&c

- 3

x exp — dt's I'„„,(tq) dt2v(&2)3 ~c C1

(24)

Once we have a consistent calculation of the evolution
of the phase transition, including the effect of reheating
on v(t), we can then apply Eq. (23) to find how the
phase transition dynamics effect the final average baryon
density of the Universe. The numerical results of Eq.
(23) are presented in Sec. VI.

B(v(t)) vo

B(v = vo) v(t)

where ep is the velocity of the bubble wall before it
has been influenced by the presence of other bubbles.
B(v = vo) is the number of baryons produced assuming
the bubble wall velocity is constant at some vp.

The explicit form of E(t) is

is a propagating phase boundary preceded by a shock,
and a detonation is a propagating phase boundary with
no shock preceding it, but a rarefaction wave following
it. For a complete discussion of these two cases, see
Refs. [21—24]. [For a qualitative picture of the two cases,
see Fig. 7 (Sec. V)].

Whether the bubble actually propagates as a detona-
tion or a deflagration, however, is unambiguously deter-
mined by the internal dynamics of the bubble wall itself.
Unfortunately, our knowledge of the EW phase transition
is not detailed enough to reliably determine the internal
dynamics of the bubble wall [25,11,26], and so we are
still unsure whether it propagates as a detonation or de-
Qagration. One can, however, parametrize the internal
dynamics of the wall (e.g. , see [3]). This is exactly what
we will do in this section. We will employ a single pa-
rameter in the form of a damping coeFicient g to describe
the internal dynamics of the bubble wall.

This parametrization will allow us to determine which
regions of EW (and damping coefficient) parameter space
produce deflagrations and which produce detonations. It
is important to distinguish between these two types of
bubble wall propagation because, as we will see in the
next section, they produce large quantitative and quali-
tative differences in the phase transition dynamics. We
will concentrate on bubble walls propagating as deflagra-
tions because we will find that a large region of parameter
space (which easily includes the "expected EW values" of
the parameters according to one-loop calculations) pre-
dicts that the walls will propagate as deflagrations. It is
also the case that deflagrations produce the most inter-
esting phase transition dynamics.

The parametrization of the internal dynamics of the
bubble wall will also allow us to calculate the velocity of
the bubble wall as a function of temperature, and this
will be important when dealing with bubble collisions.
First, though, let us begin with a general explanation of
bubble wall growth.

IV. BUBBLE WALL GROWTH A. Growth of the bubbles

As seen &om the last section, the determination of
the bubble wall velocity is necessary for calculating both
the phase transition dynamics and baryon production.
Specifically, we must calculate the bubble wall velocity
both before and during bubble wall collisions. These cal-
culations are compounded by the following complication.

According to the laws of conservation of energy and
momentum, there are two different ways a bubble wall
can propagate: either as a deflagration or detonation.
Simply put, for a growing bubble of low-temperature
phase, nucleated in a plasma at rest, a deflagration

Since the time and distance scales for baryon production are
much smaller than the macroscopic time and distance scales
that the baryon density varies, the use of diHerentials is a
good approximation.

Once a bubble has nucleated, it will start to grow be-
cause the pressure inside the bubble in the low-T phase
is greater than in the high-T phase, and this difference
is great enough to overcome the surface tension in the
bubble walls. At first, the bubble walls will acceler-
ate. If the bubble wall were "in a vacuum, " then we
could use the equation of motion of P [see, for exam-
ple, Eq. (27), ignoring the damping term] to estimate
that the wall velocity would approach the speed of light
in a time scale of v ~ gg/[h V(go, T)], where h is
the wall thickness. Typically, for the EW transition,
this translates into 7 ~ (102—10 ) (1/T), which shows
that the bubble walls reach terminal velocity within a
few hundred bubble wall widths, easily by the time it is
macroscopic [and recall that the Hubble length H ~ at
100 GeV is H Mr~/T 10 (1/T), where Mp~ is
the Planck mass]. The additional coupling of the Higgs
field to the thermal plasma does not change the above
conclusion that once a bubble is nucleated its wall will
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quickly reach some terminal velocity vo (in fact, if P is
strongly damped, the wall will reach terminal velocity
even faster). We will therefore ignore this initial acceler-
ation stage of the bubble.

The important question is, what is the (terminal) ve-
locity of the bubble wall7 Presently, the answer is not
known. The diKculty lies in the fact that the velocity of
the wall is determined by internal dynamics of the bubble
wall, namely, the interaction of the wall with the plasma.

To get a physical idea of bubble wall propagation, con-
sider the following picture. As the wall sweeps through
a specific point in the plasma, P acquires a vacuum ex-
pectation value, and the particles that are coupled to
jb (quarks, etc.) will acquire a mass. If P changes fast
enough, the particles which initially had a thermal dis-
tribution appropriate for their massless state will be out
of thermal equilibrium because they now have a mass.
The particles that have an initial energy lower than the
new mass they should acquire cannot pass into the low-
T phase, but rather are reflected, because they do not
have enough energy to pass through the wall. The re-
Bected particles will thus impart momentum to the wall
and slow it down, and the faster the wall goes, the more
momentum the particles will impart on the wall. With
this picture, we can see that when the bubble wall propa-
gates through a plasma, a &ictional type of force opposes
the motion.

However, if P changes sufficiently slowly in time, then
the particles will always be in thermal equilibrium in
the wall and there will be no reflection and no velocity-
dependent force [27]. The two parameters that determine
how fast P changes with time are the velocity of the wall
vo and the bubble wall thickness b . If the time scale for
the change in P is much greater than the thermal time
scale, b /vo )) Tgg, then the velocity-dependent damping
will turn off.

The above is the standard picture for analyzing the
wall velocity [11]. More precisely, to estimate the ter-
minal velocity, one uses the above picture to derive a
formula which equates the pressure difFerence across the
wall, which drives the expansion, with the leading-order
velocity dependence of the &ictional damping pressure

ps —p = ~vo, (25)

where b and u stand for the low- (broken) and high-
(unbroken) T phases, respectively, and E represents the
calculation of strength of reflection of the particles off
the wall [11]. As explained above for b /vo )) 7qg, the
particles become more and more weakly reflected, and
the right-hand side goes to zero [27]. In this paper,
we will make two important changes to Eq. (25). The
Grst change comes &om the observation, as we will see
in Sec. IVB, that bp = pg —p„ is velocity dependent.
This is tied in with the second change: According to
energy-momentum conservation, there must be a tem-
perature difFerence across the wall (see Sec. IV B), con-
trary to what previous authors have assumed [27,11,25]
(although, for example, Ignatius et al. [3] have correctly
included this efFect). These two changes will make a big
difference in the calculation of the wall velocity. In a

where Z is the self-energy of the Higgs field. This ex-
tra term is responsible for the &ictional force on the wall
[comparing this equation with Eq. (27) in the next sec-
tion makes this more clear]. All the authors that have
estimated the wall velocity (e.g. , [10,11,27,25]) reach the
same general conclusion that thick walls have a larger
velocity than the thin walls. The estimated velocities for
thin walls are typically v&h;„0.1, but the estimates for
thick walls are in the range v&h;,p 0.1—1.

B. Parametrimation of the wall velocity

In this paper, we do not claim any value for the wall
velocity vo,. rather, we parametrize vo with a damping
coefBcient g and explore the possible values of vo for a
given g. This in efFect sweeps all of the messy calcu-
lations of the internal dynamics of the bubble wall into
one number g. The parametrization of vo is done by the
following method.

The equation B„O"P+OV//0$ = 0 is the classical equa-
tion of motion for P with no damping. We will assume
that the motion of the P is damped and that this damp-
ing is proportional to dP/dt, which is the standard fric-
tional damping assumption [28]. This damping will add
a term to the equation of motion, gdP/dt The Lorent. z-
invariant version of this term is quI'B&P where u" is the
four-velocity of the plasma. The equation of motion then
becomes

OVB„B"P + + rju" 0„$= 0 .
8 (27)

This equation is also derived by Ignatius et al. [3] by
using the stress-energy tensor of P and the plasma and
assuming some coupling between the two. (Note that we
use g as a damping coefficient instead of 1/I' used in their
paper. We have chosen this convention because it is the
standard damping factor convention. )

Before we go on with the calculation of the bubble wall

velocity, let us mention here that g can be estimated by
observing from (27) that the amount of energy per vol-
ume per second, i, generated by the &ictional damping is

[28] i A/2. Multiplying this by the bubble wall thick-
ness b, one obtains an estixnate of the amount of energy
generated per area per second by the fictional damp-
ing. This must be equal to bpvo, where bp is the pressure

sense, this is another kind of damping on the bubble
wall —a damping due to a temperature-dependent pres-
sure difference across the wall. We will discuss this again
at the end of this section.

Dine et aL [11] have made an estimate of the bubble
wall velocity in EW theory using the above picture. Liu,
McLerran, and Turok [25] have estimated the friction
coefficient (for thin walls) by using a more analytical ap-
proach. They add corrections to the Higgs field &om the
loop expansion to the equation of motion of the Higgs
field to obtain

d2
2 dV

dt2 dP
—V'y+ + d'*' Z(*,~') y(*') = 0, (26)
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on the wall due to the &ictional damping and vp is the
velocity of the bubble wall. Therefore

(28)

where we have assumed that p . (t)pvp/b and pp is the
value of the Higgs field in the broken phase. By using
approximations for bp obtained from Refs. [27,11,16] as
a guide, we roughly estimate that g g~T, 0.3T .
This will be used as a reference value throughout the
paper, and unless otherwise stated, g will assume this
value.

Getting back to calculating the bubble wall velocity,
because the bubble wall is so thin (« radius of bubble),
we can go to 1+ 1 dimensions. If we boost to a frame
moving with the wall (velocity v) and we assume that
all processes have stabilized so that all time derivatives
vanish, Eq. (27) becomes

&"(*) = ' + ~ ~&'(*)
DV (4t), T

(29)

pQ» Bv(Q, T))dp1 Jpa Bp

9f (~4(*))' (30)

where 7 = 1/(1 —v )i)2. F(irthermore, if we multiply
both sides by dP(x)/dx and integrate over —oo & x &
+oo [recall P(Woo) = const], we obtain a formula for the
velocity of the wall:

T„+Tb T„—Ti, ( 4(x) lT x = + 1 —2 (31)

where b and u stand for the low- (broken) and high- (un-
broken) temperature phase and Pi, is the value of P at
the minimum of V(P, T), in the b phase. Note that (t)i,

is temperature dependent. A numerical, hydrodynami-
cal simulation of bubble wall propagation, performed by
Ignatius et al. [3], has shown that Eq. (3) is a good
approximation; however, they have found that for some
regions of EW parameter space the temperature pro6le is
slightly shifted with respect to the P(x), and T(x) is also
slightly difFerent in shape than (3). A shift on the order
of the Higgs correlation length ( can drastically change
the value of the numerator of the right-hand side of (30).
We will talk more about this shift in Sec. IV D.

The denominator of the right-hand side of (30) is
the surface tension of the bubble wall at T, 0(T)
j(0$/99x)2dx. In order to calculate (r(T), we must first
find P(x). We will simplify matters by assuming a specific
form

P(x) = —1+ tanh
~

4s ( x
2 (n () (32)

This is a natural assumption to make, because, since
changes in quantities such as temperature and velocity
of the plasma are driven by the phase transition, one
would expect that these quantities would be functions of
P(x), which is the function that describes the evolution
of the phase transition. Therefore we will assume that

Note that we have assumed that v(x) is constant across
the wall. In reality, v(x) is not constant because the bulk
Quid velocity is di8'erent on either side of the wall, but
the change in velocity is of order bT/T [see Eq. (39)],
which is small, and so we will neglect it.

The integral in the nuinerator of (30) can be performed
provided that T(x) can be expressed in terms of P(x).

where n is the characteristic bubble wall thickness in
units of correlation length (. In the limit that Tg = T„=
T, and q = 0, (32) is the exact solution to Eq. (29) [for
P(oo) = 0, P(—oo) = Pi, ] with n = 2. In reality, n is a
function of g and v, and we will keep it explicitly in the
formulas, though for now, we will assume that n 2.

Combining Eqs. (30), (3), and (32), we obtain

3BT )/9B~Tq~ —83A(Tq~ —Tq) + (9B T~T —83A(Tj T —To )] 4-43A(T~ —TD)) (33)

and, in the limit T„=Tg,

v(Tb = T„)
[1 —v(Ti, = T„) ] &

n ( 2 2 ) QB2Tq +8(AA —B2)(T2 —T~~))

which explicitly goes to zero as Tp ~ T . There are two
important points about Eq. (33). The first is that this
formula is correct only to 6rst order in T„—T~. That
is, we solved for 4t)i, assuming that the temperature was
uniform (Tg). The fact that the temperature varies from
the unbroken phase to the broken phase will change the
velocity by an amount of order (T —Tq)/T, which is
small, and so we neglect it.

The second iinportant point about Eq. (33) is that
Tg ) T ) T the wall will still

propagate forward (see also [29,3]). The physical rea-
son for this is that since the temperature is not uniform,
the shape of the Higgs potential V(P, T) is slightly dif-
ferent than in the uniform-temperature case. The shape
of the potential changes in such a way that the broken.
phase can still have a lower &ee energy than the unbroken
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phase even if Tb & T, & T„(this is easier to imagine for
T„&T, & Tb) Therefore the wall will propagate forward
because it is energetically favored. This can be explicitly
shown by inserting the formulas for T(z) and P(z) into
V(P, T). Of course, for the uniform-temperature case [Eq.
(34)], the bubble wall stops at T = T, .

Equation (33) brings us one step closer to determining
the wall velocity, but this equation only gives the velocity
in terms of Tb and T„at the bubble wall. Given some
bubble that nucleates in a plasma with an initial tem-
perature T, how does one determine Tg and T„at the
bubble wall? First, let us assume there is no influence
&om neighboring bubbles (we will add this in later). As
stated before, we can then impose conservation of en-
ergy and momentum on the bubble wall to constrain the
propagation to two possible forms, namely, detonations
or deflagrations. For a given damping coefBcient g, Eq.
(33) will allow only one or the other, and this will then
determine the temperature on both sides of the wall. In
the next section, we will concentrate on deflagration so-
lutions.

Before we start the next section, let us just note here
that, ideally, Eq. (29) should be solved numerically along
with the equations from 0&T"" = 0 (as in [3], though they
do this in 1+1 dimensions), to get v(z), T(z), and P(z).
Instead, we have used analytical approximations to get
an expression for v, because this will make computing
the rest of the phase transition easier.

(Pl +Pl) Yl l +Pl (P2+P2) Y2 2 +P22 2 2 2

where the subscripts 1 and 2 refer to either side of the
wall. Solving for the deflagration front with the above
boundary conditions, one obtains [29]

vdef = (pb pdef)(pdef + pb)

(pb pdef) (pb + pd8f)
(36)

not moving and has temperature T, the temperature
at which the bubble nucleated. Between the shock and
de8agration &ont, the plasma has a temperature T„(z),
which is greater than T„, and bulk Huid velocity vs(z),
where z is the distance &om the bubble wall. It is impor-
tant to stress that for spherical bubbles the temperature
and fluid velocity of the plasma in &ont of the wall are
both a function of distance &om the bubble wall. Behind
the deflagration &ont, we impose the boundary condition
vg ——0 and T = Tg.

The velocity of the deflagration &ont is determined
by the conservation of energy and momentum, the equa-
tion of motion of P, and the above boundary conditions
[29,23]. The conservation of energy and momentum is
best applied by using the well-known property of the
stress-energy tensor B„T~" = 0. At a wall discontinu-
ity, assuming a stationary solution and a perfect gas, one
obtains [29]

(Pl + Pl) flvl = (P2 + P2) f2 V2

C. More complete treatment
of deflagration +rail propagation

Previous authors have not applied spherical bubble
propagation theory to the EW phase transition. There
have been studies of planar wall propagation [29,2,30,3],
but we will see that the spherical geometry of the bubbles
plays a dominant role in determining the characteristics
of the bubble wall propagation. Most notably, the shock
fronts become extremely weak for spherical bubbles. We
will use this fact to develop a useful and intuitive approx-
imation that simplifies the calculation of the bubble wall
velocity. This approximation is found to be very accurate
in the case of the EW phase transition.

Let us note that we have also calculated the deflagra-
tion velocity for planar walls, and in a wide range of
parameter space, the planar wall calculation is a good
approximation to the spherical bubble deflagration, and
the error is only & 1—20%%uo. But for larger values of the
latent heat L, the error can be as much as a factor of 2.
We use the spherical bubble calculation because an accu-
rate calculation of the bubble wall velocity is important
for determining whether the walls travel as detonations
or deflagrations and also for determining how the phase
transition evolves.

The general picture of spherical deflagration wall prop-
agation in a plasma is the following [23]. The deflagra-
tion front is preceded by a shock &ont, which travels at
a velocity v, b & c„where c, = gl/3 is the velocity
of sound in a relativistic plasma. In &ont of the shock,
we impose the boundary condition that the plasma is

where p and p are defined by Eq. (47) and pd'f, pd'f

are the pressure and energy density in the u phase at
the deflagration front [recall that T (z) is a function of
distance z &om the bubble wall].

One can. now use Eq. (33) and set v(Tb, T„' ) = vd, f,
where T„ is the temperature of the plasma in the u
phase at the de8agration &ont (recall that Tb is constant),
in order to eliminate one unknown (Tb). The deHagration
velocity is now a function of Td'f only (for a given q, A,
etc.). What is the temperature T„' of the u phase at
the deflagration &ont? It is not a &ee parameter; rather,
it is determined by the boundary conditions at the shock
&ont.

That is to say, one can solve (35) for the shock discon-
tinuity (with the above boundary conditions) in order to
obtain the fluid velocity of the plasma just behind the
shock,

sh
va

p:" —p-) (p.'" —p-)
(p'."+ p-) (p- + p'.") ' (37)

where the unshocked plasma n has the same equation of
state as the unbroken u phase and p'" = p (T„'"),where
T„'" is defined as the temperature of the plasma at the
shock &ont.

However, one can also Bnd the Quid velocity at the
shock by starting with the Quid velocity at the defla-
gration &ont and then using the Quid motion equations
(B~T~" = 0; see below) to find vs at the shock. These two
di8'erent methods for calculating vg at the shock must
agree. Since vg at the deflagration &ont is a function of
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T„,one can make the two answers agree by adjusting
T„.This fixes the value of T„' and therefore vd, g.

The formulas for the temperature and Quid velocity
between the deQagration &ont and the shock are ob-
tained by solving O„T~" = 0 for the case of spherical
symmetry [23]. These equations are enormously simpli-
fied by assuming similarity solutions: p = p((), p
p((), vfl —vfl((), where, for radius r of the bubble and
time t, r/t = (. This is a reasonable assumption, since
we have assumed the walls have reached a steady state.
With this simplification, the solutions become [23]

Now one can employ the conservation of energy to find
Td' . Consider the volume Vp occupied by the entire
bubble, including the shock front. Ignoring the expansion
of the Universe, which is a small efFect, the total energy
inside that volume must be equal to its initial energy
Et &

——p Vp. But E& ~ must be equal to the sum of the
b phase part of Vp and the u phase part that is shocked.
Therefore

&sh

sfrv»P„(T~) = svrvd, fPh(Tb) + 4m P(()( d( . (43)
&def

——=41 dp ( —vfl 1 dvfl

p d( 1 —(vfl 1 —vfl d(

[vfl(3 —( ) —4vfl(+ 3( —1]
d

(38)

Here we have neglected the kinetic energy of the Quid
in the shock because vfl &( 1. Since for a weak shock
v, h = gl/3, the problem is now reduced to finding p„(().
In the limit vfl" &( 1, there is an analytical solution to
(38) [23]:

(() (Tdef) C(1/g —1/vgeg) (44)

By setting the boundary conditions T(( = vd, f) = Td'f
and vfl(( = vd, f) = vfl', one can solve (35) to find

def
vfl

(pdef ph) (pdef ph)
(pdef + p ) (p + pdef) (39)

For vfl' « 1, one can use (38) to estimate the magnitude
of the fluid velocity at the shock [23]:

vfl" & exp &— (40)

To get an idea of the magnitude of vfl", consider the values
vfld'f ——3 x 10 s and vd, f = 0.5. (Typically, since T„'f-
Tg && Tg for the EW phase transition, vfl & a few x
10 s.) Then we find that vfl" & 10 2i. We can see that
the shock front is extremely weak. This is due both to
the fact that the phase transition itself is weak (i.e., the
latent heat is small) and that the spherical geometry also
drastically "damps" the strength of the shock wave.

The extreme weakness of the shock &ont is a generic
characteristic of deQagration bubbles in the EW phase
transition. There is an advantage to this characteristic:
It will allow us to solve for T„,and ultimately vd f, by
using the following approximation.

First, consider the velocity of the shock front, v,g, for a
weak shock. By solving (35) for the shock discontinuity,
one obtains

(p» p )(psh + p )
(p8h p ) (p + ash) (41)

v.h
—Ql/3 (42)

to a very good approximation (e.g. , 1 part in 10 ).

Since we have shown that vfl" « 1, we can use (37) to
estimate vfl" -- v 3(T'h —T„)/T„« 1. We can then use

(41) to estimate v, h [1+(T„'"—T )/T ]/~3. Therefore,
since vfl" is so small,

where C = vfld'f/(1/vd2, f —3).
By setting vd f = v(Th, T„' ) and combining Eqs. (36),

(43), and (44), one can numerically solve for Td~ and
vd f This method vastly simplifies the problem, because
we are just left with essentially two equations [vd f
v(Th, Td' ) and (43)] and two unknowns (Th, Td'f). The
reason the problem is simplified is that the shock is weak
and we can set v, h = gl/3, which eliminates the "third"
unknown.

We have compared the results of this approximation
with full numerical calculations [i.e. , solving (36), (38),
etc. , directly], and we have found that the error in tem-
perature ~(T» —Tf„ii)/(Tf„ii —T,)~ & 1% for vd. f ) 0.5
(although, as vd, f ~ c„ this approximation breaks
down), and the error is much smaller for smaller vd, f.
These errors in temperature correspond to errors & 1'%%uo

in the calculation of the deQagration velocity.

D. Numerical results of deflagration wall velocity

By numerically solving Eqs. (33), (36), and (43), we
can calculate the velocity vp of the deQagration &ont as
a function of the parameters of EW theory (L, (,o, T,)
and the damping coefBcient g. These numerical calcula-
tions enable us to verify whether our assumption that the
bubble walls travel as deQagrations for a certain region
of parameter space is self-consistent, i.e. , that vp ( c„
since for detonations vo ) c, [22]. We will also be able to
determine the magnitude of the wall velocity so that we
can get an idea which approximation (see the following
sections) of the phase transition is the relevant one.

In Fig. 2 we have produced some typical bubble tem-
perature profiles for a couple of values of L and g. Note
that the smaller the damping g is, the higher both Tg
and T are at the bubble wall. These higher temper-
atures will in turn prevent the velocity &om becoming
very large, because the closer Tp is to T and the closer
T is to its maximum, the slower the velocity. In this
way, we can see that there is not a simple dependence
of vp on g. Likewise, larger latent heat will also slow
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FIG. 2. Temperature profiles for spherical de6agration
bubbles for various values of damping coefficient g and la-
tent heat parameter L'—:L/( a3T, ). The discontinuity in the
temperature is the deBagration front: It is where the phase
is changing from the unbroken phase to the broken phase. In
front of the discontinuity is the shock front, where most of the
latent heat is transported. Note that as the wall goes faster,
more heat "bunches up" around the de6agration front. This
shark-fin effect is responsible for a damping of the de8agration
front in addition to the damping from g.

down the bubble walls because the greater heat released
will raise Tg and T„. Note also that most of the released
latent heat is transported in front of the bubble wall (re-
member these are spherical bubbles with r dependence
on voluxne). We will use this fact later.

Figures 3—6 show the main results of this section: the
deBagration wall velocity as a function of g for various
values of the EW parameters. The main point of these
graphs is that there is a wide range of parameter space
that produces deBagration wall &onts. Recall that we
estimated the actual value of g to be of order g g~~T, =
0.3T (see Sec. IV B).

One of the most interesting characteristics of Figs. 3—
6 is that vo does not increase linearly with g, as one
might naively expect Rom Eq. (33). That is to say, the
waQ velocity depends not only on the damping coeKcient
g, but also on how quickly heat can be transported away
&om the wall, because the pressure difference across the
wall is temperature dependent. [Recall this was briefly
discussed in the arguments following Eq. (25).] This
process is what one xnight call the "shark-fin efFect" (see
Fig. 2): The faster the deflagration wall goes, the higher
the temperature of the plasma around the wall and the
more the wall resists going even faster. This effectively
acts as kind of hydrodynamical damping on the bubble
wall, which is in addition to damping due to internal
bubble wall mechanics. Ultimately, this damping will
be limited by heat conduction, which is not included in
these calculations because the transport of heat due to
difFusion is much smaller (in our case) than the transport
of heat fxom the bulk Bows and shock calculated above.

One should always keep in mind that in these calcu-

FIG. 3. De8agration wall velocity vo as a function of the
damping coefficient g. The velocity is calculated with several
different values of the latent heat paraxneter L' = L/(3aT, ).
Unless otherwise stated, in Figs. 3—6 the parameters take the
values L' = 0.004, o = 0.005T, , ( = 15/T„and T, = 100
GeV. These values are close to the one-loop calculated val-

ues; see Eq. (17). Some of the lines in the figures stop. For
example, the L' = 0.001 line stops where vo c, because our
approximation (43) breaks down. One might expect that the
wall becomes a detonation at the point [3]. Note that EW
theory predicts that iX g~T, 30 GeV [see Eq. (28)]. For
a wide range a parameter space, this puts vg, g well below c,.
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FIG. 4. Same as Fig. 3, but with several values of the bub-
ble wall surface tension o.

lations we have made several assumptions. For example,
we have parametrized the wall thickness with the factor
n . As stated before, the above calculations use n = 2
because this is its value when damping and thermal diffu-
sion are neglected. If anything, one would expect n & 2
because of damping and thermal diffusion. To a first ap-
proxixnation, inspection of (33) tells us that changing n
is effectively changing g. Therefore one can get an idea of
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where e is the shift, and we have found that a shift in
the direction of the b phase (e ) 0) only decreases the
velocity of the deHagration &ont. In fact, a shift on the
order of a correlation length only decreases vo by about
10—20%. A shift in the opposite direction will increase
vp (e ——( can increase vp by as much as a factor of
2), but the above-mentioned numerical calculations and
thermal di8'usion make this shift unrealistic. Therefore
we can have some confidence that these changes will not
qualitatively efFect our results that are based on assuming
the wall is a deflagration.

10

Damping coefficient q (GeV)

100
V. THREE SCENARIOS

OF THE PHASE TRANSITION

FIG. 5. Same as Fig. 3, but with several values of the Higgs
correlation length (.

how changing n will change vo by looking at Figs. 3—6
and changing g accordingly.

Another approximation was used with the assumed
temperature profile of the bubble wall (3). As stated
before, full numerical calculations show that the shape
of T(x) is different than (3) and there may also be a shift
with respect to P(x) [3]. These numerical calculations,
which only use conservation of energy and momentum,
show that the temperature profile is shifted toward the b

phase. One would also expect that some heat would ther-
mally difFuse into the 6 region because it is at a lower
temperature than the u phase at the wall (see Fig. 2).
We have performed calculations including a shift in T(x)
with respect to P(x) of the form

The dynamics of the phase transition depend on the
velocity vo of the bubble walls before the bubbles begin to
influence each other. The behavior of the transition can
be separated into three classes: vp 0' c = I/~3, vp
c„and vo (( c, . Figure 7 presents a qualitative descrip-
tion of the three cases.

A. Casel: eo&c,

This is the easiest scenario to calculate. Since vo is
greater than the speed of sound, it has been shown that
the bubble wall must propagate as a detonation [22,24].
Since no latent heat is transmitted in &ont of the bubble
wall for detonations (see Fig. 7), the bubble walls cannot
influence each other until they actually collide. There-
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FIG. 6. Same as Fig. 3, but with several values of the crit-
ical temperature T, .

Case 1:v0 & c,. Case 2: v0 «c,. Case 3:v0 & c,

FIG. 7. Qualitative picture of the three possible scenarios
of the phase transition. For case 1, the wave is a detonation
(though, strictly speaking, for spherical symmetry, there is no
constant temperature region in the wave). For cases 2 and 3,
the wave is a de6agration. The top three boxes are snapshots
of the phase transition for each case just before the bubble
walls collide. The arrows begin at the wall fronts and indicate
which direction the walls are propagating. The bottom three
boxes are snapshots just moments after the bubble walls have
collided. Each box includes a qualitative temperature and
baryon density profile. Note that in case 2 the temperature
is homogeneous, and the bubble wall front is indicated with a
dashed line. Note also that since all temperature Huctuations
are much smaller than T, their affect on baryon density is
negligible.
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fore the velocity of the bubble walls is unafFected by the
presence of other bubbles and v(t) = vo. In this case,
there is no baryon enhancement, y = 1, and the baryon
density is homogeneous.

Small inhomogeneities may have been produced at the
wall collisions, but the size of these inhomogeneities
bubble wall width. These inhomogeneities are so small
that they would be quickly erased by thermal difFusion.

B. Case 2: eo (( c,

When vo is less than the speed of sound, the bubble
wall propagates as a defiagration [22,29]. One main char-

acteristic of a defIagration &ont is that a shock kont pre-
cedes it, with a velocity v,h & c,. This means that some
of the latent heat is transmitted far in &ont of the de-
Qagration wall, and this reheated plasma will influence
neighboring bubbles. In fact, if vo is small enough, one
can assume that the latent heat released has been uni-
formly distributed throughout space. This is the limit of
case 2: We will assume that all of the latent heat released
by the bubble wall has ample time to completely equili-
brate, and the temperature T is the same everywhere in
space.

In this case, since T = T = Tt„we can use Eq. (34)
to define v(t). That is, in the small velocity limit,

v(t) = ( 2 2 QB2T(t) 2 + 8(AA —B2) [Tg —T(t) 2] )
8rlA BT(t) )

(46)

Now our problem is reduced to finding T(t), the temper-
ature as a function of time. This can be done by using
the conservation of energy in the following way.

The pressure p and energy density p for the high- (u)
and low- (b) temperature phases are defined by

»(T) = aT'+ V(T) p-(T) = aT'

pg(T) = 3aT + TV'(T) —V(T), p„(T) = 3aT
(47)

where a = (vr /90)N, N = 106.75 is the number of de-
grees of freedom of the plasma at T 100 GeV [30], and
V(T) is defined as the minimum of V(P, T). In order to
find T(t), let us first ignore the expansion of space (we
will add it back shortly). Consider a volume Vo of space
initially in the u phase and at some temperature T & T .
Bubbles will be nucleating and growing in this volume,
and the latent heat released will reheat the plasma in
such a way that the total energy in Vo will be conserved:

p (T(t))+(t) + pi(T(t))[1 +(t)l = p (T ) (48)

If we now take the time derivative of both sides of this
equation, it can be shown, either numerically or by using
the simple approximation [30] V(T) L/4(1 —T4/T4),
that the second derivative term (d V/dT ) is negligible,
and Eq. (48) becomes

expansion

TH(T),— (50)

where H(T)—:/8vrp(T)/3mp2i is the inverse Hubble time
and mp~ is the Planck mass.

Putting Eqs. (49) and (50) together, we obtain a for-
mula for the evolution of the temperature as a function
of time:

dT
dt

1 & OV(T) ~ dE(t)
12aTs g OT ) dt

(8' (3aT4) l
3mpi ) (51)

Substituting in the expressions for E(t), V (T), and
v(T(t)), we find that (51) is an integro-differential equa-
tion which must be solved numerically. Once T(t) is
known, however, one can easily calculate v(t) and the
baryon enhancement factor y.

The amplitude and size of baryon density inhomo-
geneities can also be calculated. As the bubbles grow,
they will heat up the plasma and slow down. Since we
know that the baryon density n~ v(t), we can cal-
culate the baryon density pro61e the bubble wall leaves
behind as it propagates through space. That is to say,
we can calculate the baryon over density b~(r) defined

iT' "'-V(T) i" " (-)12aTs ( BT ) dt
reheat

n~(r) vo

n~o v(r) ' (52)

The efFect of the expansion of the Universe is to de-
crease the energy density, and so we need to add a term
to Eq. (49) to account for this. When the Universe is not
undergoing a change in its equation of state, the temper-
ature obeys the relation

where n~o is the baryon density assuming the wall ve-
locity is constant (v = vo), and knowing v(t) at all times
allows us to 6nd the velocity as a function of bubble ra-
dius p.

One must be careful, however, in using (52), because
the bubbles are nucleating randomly in space, and so the
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distance a bubble wall propagates before colliding with
another is not well defined. We can get a good idea of the
general behavior and scale by using the average bubble
spacing

(53)

Therefore d is the scale size for inhomogeneities and b~(r)
only has meaning out to scales of this order. For the EW
phase transition, one typically finds that d 10 H

Before moving on to the next case, let us make two
remarks about this case. The first remark is actually a
helpful rule of thumb. We have stated before that as the
phase transition proceeds the released latent heat will
reheat the plasma and the velocity of the walls will slow
down. In order to get an idea of how important the
reheating of the phase transition is, we can compare the
latent heat I to the energy needed to bring the plasma
back up to T, &om T . If

L & p(T, ) —p(T„) = 3a(T4 —T„), (54)

then the latent heat will be too small to reheat the tem-
perature back up to T . In this case, we would then
expect that the bubble wall velocity will not slow down
very much, and both y and b~ will be of order unity.

On the other hand, if

L ) 3a(T4 —T„), (55)

4dH
(L/aT4)

(56)

For the EW phase transition, we will find that v /vp
1—10,which yields overdensities of b&

"~ 1—10 .

then the latent heat will reheat the plasma back up to
T and the velocity of the bubble walls will slow down
considerably. In this case, y )) 1 and b~ )) 1.

The second remark has to do with the case of large la-
tent heat. If the plasma heats up enough, then the phase
transition will almost stop. It will not stop completely,
however, because the expansion of the Universe is con-
tinuously removing energy kom the plasma, and so the
temperature never quite reaches T . Instead, the tem-
perature remains constant, while the released latent heat
goes into expanding the Universe. We can use this fact to
estimate the minimum velocity of the bubble wall by set-
ting dT/dt = 0 in Eq. (51). If we now use the estimates
F = 0.5, TV'(T) —V(T) = L, F/F = V/V = 3v/r,
where r is the radius of an average bubble and r = d/2,
we obtain an estimate for the minimum velocity:

the dynamics of the phase transition.
In this case, a shock &ont also precedes the de8agra-

tion &ont, but now the de8agration &ont is moving too
quickly for the released latent heat to equilibrate with
the rest of the plasma. Now there is a buildup of heat
around the de8agration &ont and there is a tempera-
ture difference across it. The calculation becomes much
more difBcult because of the inhomogeneous distribution
of temperature and the random distribution of bubbles.

Although a full numerical simulation is needed to ac-
curately calculate the phase transition in this case, we
produce a calculation in the Appendix which estimates
the baryon enhancement y and also the size and ampli-
tude of the inhomogeneities produced. The results of this
estimate are given in Sec. VI.

VI. NUMERICAL RESULTS

In this section, we will present and discuss numerical
results of the EW phase transition for various values of
the parameters of EW theory. The numerical calcula-
tions will be based on the limit of case 2, which assumes
that the latent heat released during the phase transi-
tion is homogeneously (and instantaneously) distributed
throughout space. We will also compare these results to
approximations obtained for case 3.

The numerical calculation is done by evolving the
phase transition in discrete time steps much shorter than
the duration of the phase transition. As stated before,
the relevant equation of evolution is (51).

A. Dynamics of the phase transition

Figure 8 shows the evolution of the temperature of the
Universe, velocity of the bubble wall, and the &action of
space converted to the low-T phase during the transition
for two values of the latent heat L. For large values of
the latent heat, one can see that the phase transition
quickly reheats the Universe close to T, and then the
phase transition proceeds only because the Universe is
expanding and removing the latent heat released.

A larger latent heat actually affects the phase transi-
tion in two ways. First, the larger the I, the more heat
is released, and second, a larger I changes the shape of
the potential V(P, T) such that bubbles nucleate sooner.
This decreases the temperature difference T —T„and
makes any released latent heat that much more effective
at reheating the plasma back up to T .

B. Baryon enhancement

C. Case 3: eo & c,

This is the most diKcult case. Since vo & c, (but al-
ways & c,), the bubble walls also propagate as deflagra-
tions, as in case 2, and insofar as the de8agration picture
is correct, this is also the most accurate description of

Figure 9 shows the baryon enhancement y as a function
of L for different values of o, assuming that n~ oc vp
as predicted by charge transport inechanism (see Sec. II).
Figure 9 is a calculation of y for case 2, the case where
the bubble wall velocity vp (( c„and uniform reheating
of the plasma is assumed. Our calculations show that, for
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FIG. S. Evolution of temperature, fraction F of unbroken
phase remaining, and bubble wall velocity during the phase
transition, as a function of time in units of 10 H, where
H is the inverse Hubble time. The solid line is for the
case L/(3aT, ) = 0.008, snd the dashed line is for the case
I /(3aT, ) = 0.004. All of the other parameters sre given the
EW one-loop values (o = oo, etc.). The initial time t = 0 is
arbitrarily defined as the time when 10 of the Universe has
converted to the low-temperature phase.

case 2, y is relatively insensitive to the initial bubble wall
velocity. This also translates into the fact that, for case
2, y is relatively insensitive to the damping parameter g
(of course, xl must be large enough in order for case 2 to
be a valid approximation).

For case 3, however, our estimate of y can be a very
sensitive function of the bubble wall velocity [see Eq.
(68)], and so it can also be sensitive to xl. (In Fig. 12,
we have plotted y as a function of g for several values
of latent heat L in the limit of case 3.) Note, however,
that as L increases, y becomes less sensitive to g. As
mentioned before [in the discussion after Eq. (68)], one
must be careful in choosing the value d of the spacing be-
tween bubbles when calculating the case 3 estimate of y.
For Fig. 10, we have used the estimate that d is equal to
the asymptotic value obtained &om case 2. See the next
section for a complete discussion of how d is obtained.

It is interesting to note in Fig. 10 that y has a maxi-
mum value as g is varied. This can be explained by the
fact that there are two competing eKects: As the veloc-
ity increases Rom zero (i.e. , damping increases), the size
E of the over dense regions becomes smaller, decreasing
the average baryon density, but at the same time as the
velocity increases, the minimum velocity of the bubble
walls decreases, thus raising baryon production. At some
point between small and large velocities, the combination
of the two e8'ects produces a maximum.

By comparing Figs. 9 and 10, we can compare the re-
sults of baryon enhancement y for cases 2 and 3. First,
let us recall that the case 3 estimate is only valid when
the latent heat is large enough that Eq. (63) is satisfied.
In Fig. 10, this constraint is satisfied for all values of g for
the I,

' = 0.016 and 0.008 curves, but for the I' = 0.004
curve, the approximation is only valid for values g & 10
GeV. The values of y for both cases are very similar
(within 30%%uo of each other) for the two larger values of
the latent heat.

There are two important observations to make &om
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FIG. 9. Baryon enhancement factor y as a function of la-
tent heat paraxneter L'—:L/(3aT ) for various values of sur-
face tension o for the case of uniform heating (case 2). The
quantity era is the one-loop EW theory value, defined in the
text. All other values of the parameters are also the one-loop
values. Here we use 1' = 0.03/GeV, though y is relatively
insensitive to I .

Damping coefficient ri (GeV)
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FIG. 10. Baryon enhancement factor y as a function of the
damping coefBcient g for various values of latent heat L for
the case of nonuniform heating (case 3). All other values of
the parameters are also the one-loop values.
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the comparison of these two 6gures. First, for small ve-
locities (i.e. , large damping), where case 2 is expected to
be a good approximation, the two estimates of y roughly
agree. Second, for the diKcult to (exactly) calculate sce-
nario of larger bubble wall velocities, where inhomoge-
neous heating of the plasma becomes appreciable and
case 3 becomes the valid estimate, we note that for larger
velocities (smaller damping) y decreases, though only by
a factor of order unity. Therefore, instead of having to
make the very complicated calculation of inhomogeneous
heating, we estimate that the calculation of y, assuming
uniform heating of the plasma is a good approximation,
and the effect of inhomogeneous heating only change the
value of y by a factor of order unity.

Prom Figs. 9 and 10, we can conclude that for baryon
production inversely proportional to the wall velocity
there is a wide range of parameter space that produces
a large y ) 10. Recall that a large y relaxes constraints
on other parameters such as CP violation.

Finally, note that y can be a sensitive function of both
L and o. for certain regions of parameter space. The one-
loop EW value Lp/3aT = 0.004 is within this sensitive
region.

C. Inhomogeneities

For cases 2 and 3, which describe expanding deBagra-
tion bubbles, we have found that the bubble wall veloc-
ity decreases as the phase transition proceeds. This is
a generic feature of cases 2 and 3. If one now assumes
that baryon production is a function of bubble wall veloc-
ity, then inhomogeneities must develop during the phase
transition.

In order to get an idea of the size and amplitude of the
inhomogeneities produced, one can use the calculation
of v(t) obtained in the previous section on the dynam-
ics of the phase transition to determine the velocity of
the bubble wall as a function of bubble wall radius, i.e.,
v(r). Then one can apply a velocity-dependent theory
of baryon generation to obtain the baryon density as a
function of radius &om the bubble center, n~(r).

We must be careful, however, in interpreting the func-
tion v(r), because our calculation of v(r) assumes that
the bubbles expand without colliding into other bubble
deQagration walls. In reality, deQagration walls will col-
lide on many scales as a result of not only the fact that the
bubble centers are scattered randomly throughout space,
but also because bubbles are continually nucleating dur-
ing the phase transition. One can, however, sensibly talk
about an average spacing between bubbles, d(T) [see Eq.
(53)j, and we can then assume that the bubble walls prop-
agate a distance d(T)/2 before colliding with other deBa-
gration walls. This distance decreases with time, but as
shown in Fig. 11, d(T) reaches an asymptotic value dur-
ing the phase transition. This is because at some point
during the phase transition the released latent heat has
reheated the plasma to a high enough temperature that
nucleation has turned ofF, and so the distance between
bubble centers remains constant (ignoring the very slow
expansion of the Universe).
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FIG. 11. Average spacing between bubble centers as a func-
tion of time for two difFerent values of latent heat I. The
notation and t = 0 in this figure is the same as in Fig. 8.
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FIG. 12. Asymptotic value do of the bubble center spacing
as a function of latent heat for various values of cr.

This asymptotic value for the distance between bub-
ble centers do sets the scale for the maximum size for
the inhomogeneities. Figure 12 shows do as a function of
latent heat for various values of o.. We have found that
since d(T) is such a sensitive function of temperature, it
reaches its asymptotic value as soon as the temperature
begins to rise, which is very early in the phase transition
(compare Figs. 8 and 11) for large enough values of la-
tent heat. If L is so small that the temperature never
rises during the phase transition, then d(T) continues to
decrease until the phase transition is complete.

Since the number density of bubbles = d(T) ~~s, we
can see by inspection of Fig. 11 that since d(T) changes
so rapidly, most of the bubbles are nucleated just be-
fore d(T) reaches its constant value do and nucleation
turns off as a result of reheating. Therefore, since most
of the bubbles are nucleated when the average spacing
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between bubble centers is constant (do), we can sensibly
talk about bubbles propagating a distance dp/2 before
colliding with other de8agration walls, and we then have
a reasonable interpretation of the calculation of v(r). In
Fig. 13, we have plotted v(r) for a bubble nucleated at
the peak nucleation time, i.e. , the time when the bubble
nucleation rate is the largest or, put another way, the
time at which Onb„bbi, (t)/Ot = 0, where nb„bbi, is the
density of bubbles. For a large range of parameters, we

found that, numerically, the peak nucleation time is at
most a few x10 II before d(T) reaches its constant
value.

Not only the size, but also the amplitude of the in-
homogeneities produced can also be inferred from v(r)
(Fig. 13). One can see that the velocity of the bubble
walls can decrease anywhere &om a factor of order unity
to a few orders of magnitude, depending on the values of
parameters such as latent heat L or surface tension 0. In
order to get a clearer idea of the range of velocities, we
calculate the ratio v;„/vo, where v;„ is the minimum
velocity the wall acquires during the phase transition.
We present the result of v;„/vp as a function of latent
heat L for various values of cr in Fig. 14. If the amplitude
of inhomogeneities h~ v [see Eq. (52)j, then Fig. 14
is also a graph of (hP ")

In order to determine the density profile for the case
when baryon production is inversely proportional to the
bubble wall velocity, as the charge transport mechanism
predicts (see Sec. II), we have plotted vo/v(r) in Fig. 15
(also nucleated at peak nucleation time as defined above)
for two diferent values of the latent heat, where r is
the distance &om the bubble center and vo is the bub-
ble wall velocity before other bubbles acct the velocity.
On this graph, we have also plotted the average baryon
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FIG. 14. Minimum velocity (divided by the initial velocity)
that a bubble wall acquires during the phase transition for
case 2 as a function of latent heat L and for various values of

density. Note that for this case the inhomogeneities are
characterized as large regions of baryon density, which is
slightly more dense than the average (by a factor of at
most a few), along with large holes of very low density of
baryons (smaller than the average by up to a few orders
of magnitude). This type of baryon density profile, i.e. ,
one with holes of almost zero density, is the opposite of
the type of density profiles normally considered for inho-
mogeneities in the early Universe, namely, small regions
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FIG. 13. Plot v(r)/vo for L/(3aT, ) = 0.008 (solid line)
and for L/(3aT, ) = 0.004 (dashed line), where v(r) is the
bubble wall velocity, r is the bubble radius, and vo is the
initial bubble wall velocity. We have indicated the radius
do/2 at which the bubbles will, on average, collide. Note that
if baryon production is proportional to the wall velocity, then
this is also a plot of the density profile as a function of distance
r from the bubble center.

FIG. 15. Plot vo/v(r) for L/(3aT, ) = 0.008 (solid line) and
for L/(3aT ) = 0.004 (dashed line), where v(r) is the bub-
ble wall velocity, r is the bubble radius, and vo is the initial
bubble wall velocity. For baryon production proportional to
the inverse bubble wall velocity, this is also the baryon den-
sity profile of the bubble. We have also plotted the baryon
enhancement y for both cases [e.g. , the upper dot-dashed line
is for the I /(3aT, ) = 0.008 case] because in these units, nor-
malized by vo, y is the average baryon density.
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with large baryon over density surrounded by regions of
baryon density close to the average. We will talk more
about these different types of profiles in the next section.

So far in this section we have only talked, about in-
homogeneities generated for case 2, where the heating is
homogeneous. For case 1, as we have discussed before,
no significant inhomogeneities are expected to form at
all. But what about case 3, the most realistic deHagra-
tion wall scenario? As stated in the previous section,
case 3 evolves in a way very very similar to case 2. The
inhomogeneities generated should also be similar. The
only difFerence between cases 2 and 3 is that for case 3
the size of the inhomogeneities will be smaller and their
amplitude larger.

The size of the inhomogeneities for case 3 will be E [see
Eq. (A4)], which is always smaller than dp/2, the size of
inhomogeneities for case 2. We should. make it clear here
that the separation between the inhomogeneities will be
the average bubble spacing = do for both cases, though
the physical size of the inhomogeneities is difFerent for
each case. Since the minimum velocity attained is smaller
in case 3, one might expect that the amplitude of the
inhomogeneities for case 3 will be larger than in case 2
[see Eqs. (A5) and (A6)]. How much smaller in size and
larger in amplitude the inhomogeneities will be for case 3
compared to case 2 depends on how close the bubble wall
velocity is to the speed of sound, c, (because the closer to
c, the more concentrated is the released latent heat). For
the one-loop EW parameters (and assuming g = 0.3T,),
for example, v;„- 0.14, and the difference between
cases 2 and 3 is that the amplitude of the inhomogeneities
is only 1.6 times greater for case 3 and the size is 1.6 times
smaller, assuming that baryon production vo

As a final note, although we have shown that the ve-
locity of the bubble wall can vary by as much as a few
orders of magnitude, we stress that how this translates
into inhomogeneous baryon production depends on the
model of baryogenesis. For weak dependence of velocity
on baryon production, this several magnitude variation in
vp would only produce small amplitude inhomogeneities.
However, as shown in Sec. II, there could be very strong
dependence (exponential) of velocity on baryon produc-
tion, and this could produce very large amplitude in-
homogeneities. In fact, one might imagine that in the
exponential dependence regime the production of very
dense inhomogeneities could form objects that may even
collapse onto black holes. The vo dependence that we
have chosen to use as the main example in this paper
produces moderately large amplitude inhomogeneities.

VII. EFFECTS ON PRIMORDIAL
NUCI EOSYNTHESIS

Now that we have d.etermined the size and amplitude
of the inhomogeneities generated in the phase transition
for various scenarios, let us examine whether these inho-
mogeneities will have any observable effects on the pro-
duction of elements in the early Universe. We will see
that the crucial factor that will determine whether the
inhomogeneities have any efFect on the production of el-

ements will be their ability to survive the homogenizing
effects of diffusion.

The standard calculation of big bang nucleosynthesis
(BBN) predicts element abundances that are consistent
with observational constraints (e.g. , see [32]). This cal-
culation assumes that the Universe was homogeneous at
the time of nucleosynthesis. There are, however, BBN
calculations that include the presence of inhomogeneities
during nucleosynthesis (for example, see [33,34]), and
these calculations produce abundances significantly dif-
ferent than the homogeneous case.

The important result of these inhomogeneous BBN
calculations is that there is a large range of sizes and
amplitudes of inhomogeneities that can be ruled out be-
cause they produce abundances that do not agree with
observation [34]. So the important question is, does any
region of EW parameter space produce inhomogeneities
that are ruled out by observations of primordial element
abundances? In order to answer this question, we must
first determine what these inhomogeneities, which were
formed early on when the temperature of the Universe
was 100 GeV, look like much later, when nucleosyn-
thesis takes place, at a temperature 100 keV.

A. Evolution of the inhomogeneities
up to the nucleosynthesis epoch

Once the inhomogeneities are formed in the plasma,
they will immediately begin to dissipate via diffusion.
The time scale for complete dissipation of the inhomo-
geneity will depend upon the size and amplitude of the
inhomogeneity, and it will also depend upon the mean
kee path of the particles responsible for the diffusion.
In the early universe, there are many different kinds of
particles in the plasma, but it is the particles with the
largest mean &ee path (though so large that they become
decoupled from the plasma) that play the dominant role
in diffusion. For example, for a temperature T in the
range 100 GeV ( T ( 1 MeV, neutrinos have the longest
mean &ee path, and they are responsible for the dissipa-
tion of the inhomogeneities [35,36]. As the temperature
decreases, however, neutrinos decouple &om the plasma,
and then the baryons and eventually photons become the
dominant diffusing particles [36].

In order to have an effect on nucleosynthesis, any
baryon density inhomogeneities generated in the EW
phase transition must survive until the nucleosynthesis
epoch. If the inhomogeneities are too small in size (and,
strictly speaking, amplitude), they will be dissipated by
diffusive processes and will have no efFect. One can there-
fore place a lower limit on the size of inhomogeneities,
below which there are no observable effects on the abun-
dances of the elements. In order to find this lower limit
and ultimately if the EW phase transition generates inho-
mogeneities larger than this lower limit, let us look closer
at the neutrino, baryon, and photon diffusion processes.

Heckler and Hogan [35] and Jedamzik and Fuller [36]
have studied the dissipation of inhomogeneities due to
neutrino diffusion, and they have found that a wide
range of sizes and. amplitudes can easily survive until 1
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MeV, when other diffusive processes become important.
In particular, for the scales sizes do = 10 H (T =
100 GeV) = 10 s cm, typical for the EW phase tran-
sition, neutrino diffusion will not signi6cantly affect in-
homogeneities with amplitudes smaller than 10, and
amplitudes larger than this would simply decrease until
they reached 10 . Put another way, neutrino diffusion
will have a negligible affect on the inhomogeneities gen-
erated in the EW phase transition.

Therefore the important processes that signi6cantly
dissipate the inhomogeneities generated in the EW phase
transition are baryon and photon diffusion. Jedamzik
and Fuller [36] have shown that, for temperatures well
into the nucleosynthesis epoch, baryon diffusion domi-
nates over photon diffusion. Photon diffusion does play a
significant role in the dissipation of the inhomogeneities
for later times in the nucleosynthesis epoch, but in or-
der to obtain an (optimistic) estimate of the survival of
the inhomogeneities at the nucleosynthesis epoch, we will
neglect photon diffusion and concentrate on baryon dif-
fusion only.

The important scales for determining the effect of
baryon diffusion are the proton diffusion length and the
neutron diffusion length. The diffusion length of a par-
ticle is de6ned as the average distance the particle will
travel as it randomly walks through a plasma for some
time t. Here the time t is the time &om the initial cre-
ation of the inhomogeneity at the EW phase transition
up to the nucleosynthesis epoch. Since the neutrons have
no electric charge, they will have a much larger diffu-
sion length than the protons, and they will diffuse out of
baryon overdensities much quicker than the protons (see,
e.g. , [36]).

Therefore, since the protons diffuse slower than the
neutrons, the proton diffusion length will be the limiting
length scale for the dissipation of inhomogeneities. That
is to say, if the inhomogeneities are much smaller than
the proton diffusion length d„, then they will dissipate
before they can have any effect on nucleosynthesis.

Fuller etaL [37] have 'calculated the proton diffusion
length integrated &om the EW phase transition up to the
beginning of the nucleosynthesis epoch. They have found
that, for inhomogeneities with amplitudes less than 10,
the proton diffusion length is

B. Possibilities for generating larger inhomogeneities

We have seen in the last section that the average spac-
ing between bubbles, do, is much smaller than the co-
moving proton diffusion length, and if inhomogeneities

10-'—
1 I I lill i 1 I i I iii I I i i iiill I i i i i i Ill i I i f I I lif i i I I ill+
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210g
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& 10
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Therefore, if inhomogeneities are generated on the scale
of do and have amplitudes & 10, they will all dissipate
before they can effect nucleosynthesis.

Figure 16 presents rP&'oo as a function of amplitude (ob-
tained directly from Fuller et al. [37]). Also plotted in this
6gure are values of the average spacing between bubble
centers do (for various values of latent heat L and bubble
surface tension o), which is assumed to be the scale size
for inhomogeneities generated in the EW phase transi-
tion. The amplitude of the inhomogeneities for these
points was obtained by assuming that baryon genera-
tion is inversely proportional to bubble wall velocity, as
predicted by the charge transport mechanism of baryo-
genesis. This figure illustrates very well that do is much
smaller than d+&00 for a large range of parameter space.

In order to get a more general idea of the size of the
inhomogeneities produced in the EW phase transition,
we have also plotted the mass and overdensity of the
inhomogeneities in Fig. 17 and compared these with the
masses and overdensities for which proton and neutrino
diffusion is important. Note that the inhomogeneities
generated are about 10 solar masses in size, and so
we can see that in terms of the Universe today these
inhomogeneities are very small in scale.

drop ~ 0» 1 cm (57)
105

where dmo stands for the proton diffusion length comov-
ing at 100 GeV. For inhomogeneities with amplitudes
larger than 10, the comoving diffusion length decreases.
For example, for an amplitude of 104, d~oo = 0.01 cm
(see Fig. 16).

How do these values compare with the typical length
scale do for the inhomogeneities generated in the EW
phase transitions As seen &om the previous section,
the typical length scale for the inhomogeneities is do
10 H 10 cm. In fact, for a wide range of param-
eter space,

do 10 && 1.
00

100 104 10'

Amplitude of inhomogeneity

FIG. 16. Proton diffusion length d]pp comoving at 100
GeV, as a function of amplitude of inhomogeneity. These
values of d~pp are approximate, and they are taken directly
from Fuller et aL [37]. We have also plotted lines which indi-
cate the size dp and amplitude of inhomogeneities generated
in the EW phase transition for various values of latent heat
L and bubble surface tension cr. Each line represents a line of
constant o. o = 2o'o (long-dashed line), rr = ao (short-dashed
line), and cr = 0.5oo (dot-dashed line). The lines run from
L/(3aT ) = 0.001 to L/(3aT ) = 0.016 from left to right.
Note that for any of these values dp « d~~pp.
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FIG. 17. Mass scale of inhomogeneities produced in the
EW phase transition (with the same notation and data as in
Fig. 16), compared with mass and overdensity scales for which
proton and neutrino diffusions are important. The neutrino
diffusion scales were taken directly from Jedamzik and Fuller

largest spacing between bubbles in the seed nucleation
scenario, independent of d„,d. This can be done by ob-
serving that, although it is true that the seed nucleated
bubbles can reheat the Universe back up to T, it will
still take a finite amount of time to do so, because the
shocks carrying the released latent heat (we are assum-
ing the bubble walls are deffagrations) can oiily travel
at a speed v,h ( c. If the shocks take too long to heat
up the Universe, thermal nucleation will start to become
important, and more bubbles will start to nucleate, de-
creasing the average spacing. The maximum amount of
time tm~„ that the shock waves can have to reheat the
plasma before thermal nucleation becomes important can
be estimated as

t .„=t(T„) —t(T.),
where t(T) is defined as the time at which the Universe is
at a temperature T and T is the temperature at which
the maximum number of bubbles is thermally nucleated
(see Sec. VI C). This time can be translated into a dis-
tance d . If we approximate v,h 1, we find that, for
a wide range of EW parameter space,

d „=10 8 10 cm, (6O)

are produced at this scale, they will dissipate before they
can efFect nucleosynthesis. However, if inhomogeneities
are somehow generated on scales a few orders of magni-
tude larger than do (depending on the amplitude of the
Quctuations), then they would be able to survive until
the nucleosynthesis epoch and affect the abundances of
the elements. Below, we examine a plausible scenario for
producing inhomogeneities on scales much larger than do

[38].
For example, consider the following plausible sce-

nario for producing inhomogeneities much larger than do.
From our observations of many known phase transitions
(such as liquid boiling), we find that it is very common
for phase transitions to be induced by "impurities" in
the system, long before thermal nucleation has a chance
to play a role. Let us apply this idea to the EW phase
transition: What if bubble nucleation in the EW phase
transition was induced by some impurity or seed, rather
than by thermal nucleation?

First of all, if the phase transition was induced by a
seed, the bubbles would be nucleated at a temperature
much closer to T than if it was induced by thermal nu-
cleation. Any latent heat released &om the nucleated
bubbles would therefore be much more effective at reheat-
ing the plasma back up to T, where nucleation ceases.
If the plasma was reheated quickly back up to T and
further bubble nucleation was turned ofF, one would ex-
pect that the scale size for inhomogeneities would now be
the average bubble spacing at the time when nucleation
turned off, just as in the thermal nucleation case. But
in the seed nucleation case, the scale for average spacing
between bubbles now depends the scale d, g associated
with the density (and efficiency of nucleation) of the seed-
ing agent.

Even though we can only speculate on what the value
of d„,g could be, we can still place an upper limit on the

where H is the Hubble length at T —100 GeV. Note
that this is about two orders of magnitude bigger than
do. However, this is still smaller than the proton difFusion
length (see Fig. 16).

There is still the scale size d, g to consider. For ex-
ample, if there is some large scale coherence d, ,g on
the scale of a Hubble length associated with the seed-
ing agent, then this would also produce inhomogeneities.
I.et us use an example. One possible seeding agent in the
EW phase transition is cosmic strings [39]. If the density
of these strings varied on scales comparable to the Hubble
length, then one would expect that the amount of bubble
seeding would also vary on the scale of a Hubble length.
Regions with a large density of strings would nucleate
very close to T, and as described above, these regions
would also reheat quickly, and the bubble walls would
quickly slow down. On the other hand, regions with low
string density will nucleate at temperatures much far-
ther away &om T, and these regions would not reheat
so quickly. The bubble walls in these low-density string
regions would then propagate faster, because the tem-
perature is farther away &om T . Since the average bub-
ble wall velocities are different in these two regions, one
would expect that the baryon density would be different,
and the scale size for these regions would be d„,d.

To summarize, it is plausible that the seed nucleation
scenario (caused, for example, by the presence of cosmic
strings) could provide two scales for producing inhomo-
geneities: d „and d, ,g. We have shown that although
d „is larger than the expected size for inhomogeneities
generated via thermal nucleation, it is still much smaller
than the proton diffusion length, and so they will not
survive to effect nucleosynthesis. However, the seed nu-
cleation scenario can also produce inhomogeneities on the
scale d„,g, which can be larger than the proton diffusion
length, though the actual size of d, d is presently still
speculation.
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VIII. CONCLUSION ACKNOWLEDGMENTS

The main conclusion of this paper is that phase transi-
tion dynamics can play an important role in electroweak
baryogenesis. We have shown that through the course
of the phase transition the bubble wall velocity can slow
down by as much as a few orders of magnitud. e, depend-
ing on the values of the presently unknown parameters of
the EW phase transition such as latent heat and bubble
wall surface tension. Since all baryon production mech-
anisms are sensitive to bubble wall velocity for at least
some range of velocities, the dramatic decrease in bub-
ble wall velocity can change the average baryon density
a few orders of magnitude &om what is expected from
calculations which assume that the bubble wall velocity
is constant. In fact, we calculated. baryon production
in the EW phase transition using the model called the
"charge transport mechanism, " and we found that the
average baryon density could be as much as 10 greater
than the constant bubble wall velocity calculation. This
enhancement of baryon production could ease the con-
straints (from the observed average baryon density) on
other parameters of the theory, such as the amount of
required CP violation.

In addition to affecting the average baryon density,
the changing bubble wall velocity also produces inhomo-
geneities. The amplitude of the inhomogeneities depends
upon the dominant mechanism of baryogenesis. For the
charge transport mechanism, we found amplitudes as
great as 10 . The physical size of the inhomogeneities
is a relatively insensitive function of the parameters of
the EW phase transition, and we found that the char-
acteristic scale size for inhomogeneities is = 10 H
where H is the Hubble length at the phase transition.
These inhomogeneities are too small to survive until the
nucleosynthesis epoch and affect the abundances of the
elements. Instead, they dissipate via baryon diffusion be-
fore nucleosynthesis begins. There are, however, plausi-
ble (though speculative) scenarios that can produce large
enough inhomogeneities that would affect nucleosynthe-
sis. For example, if bubbles are nucleated by some seed
such as cosmic strings, then the string density scale may
be large enough to create large inhomogeneities.

Besides the topic of baryogenesis, we have also made
some interesting conclusions about bubble wall propaga-
tion in the EW phase transition. Most notably, we have
found that for a very wide range of parameter space the
bubble walls travel as deflagrations. There is not only
"&ictional" d.amping on the wall, which we parametrized
with a damping parameter g, but we have also found that
with the inclusion of the conservation of energy and mo-
mentum there is an additional "hydrodynamical" damp-
ing on the wall which is important, especially when the
&ictional damping g is small. The consequence of this
hydrodynamical damping is to lower the bubble wall ve-
locity to a point that all but the most weakly damped
walls travel as deflagrations. It is important to show that
the walls travel as deflagrations because it is only this
type of bubble wall propagation (i.e., one with a shock
that precedes it) that produces the interesting behavior
of dramatic bubble wall deceleration due to reheating.

The author would like to thank Peter Arnold, Larry
Yaffe and especially Craig Hogan for many helpful com-
ments and discussions. This work was supported by
NASA Grants Nos. NAGW 2569 and NAGW 2523 at
the University of Washington.

APPENDIX: ESTIMATING BARYON
PRODUCTION IN CASE 3' vo & e

As stated before, the complexity of the phase transition
prohibits any accurate calculations without a full numeri-
cal simulation. For example, in this case we have bubbles
with shocks and complicated temperature profiles collid-
ing with each other. Kajantie and Kurki-Suonio [2] and
Ignatius et al. [3] have studied collisions of deflagration
&onts and shock &onts in 1+1dimensions, but in 3+1 di-
mensions, approximations similar to case 2 must be Inade
if numerical simulations are not used (e.g. , see [31]).

Since we are not using a numerical simulation, we will
forego any detailed calculations and make some general
arguments that will give us a good idea of what is hap-
pening during the phase transition in case 3. We will be
able to estimate the baryon enhancement y and the size
and the overdensity b~ of the inhomogeneities. We will
find that case 3 is very similar to case 2.

The first idea to keep in mind is that case 2, which we
can calculate, is a limit of case 3. Therefore one would ex-
pect that the behavior of the two cases should have some
similarities. For example, in case 2 the bubble walls are
continuously slowing down as a result of the reheating of
the plasma as the growing bubbles homogeneously release
their latent heat. The bubble walls in case 3 should also
slow down as the phase transition proceeds, because the
bubble walls are being influenced by the heated plasma
of the shocks of neighboring bubbles.

Because the shock is so weak in the EW phase tran-
sition, the initial collision of the shock &ont with the
deflagration &ont will only result in a slight deceleration
of the deflagration &ont. It will not stop the wall, at
least not at first. Once the shock has passed through
the deflagration front (and heated it slightly), the hot-
ter plasma behind the shock &ont will begin to influence
the deflagration &ont. The temperature of the plasma
behind the shock increases as the two neighboring bub-
ble walls approach, and. this will further slow down the
deflagration &ont.

We can get an idea of how much a bubble wall slows
down by considering the following. One generic char-
acteristic of deflagration wall propagation is that most
of the latent heat released is transported in front of the
deflagration wall. Some of the latent heat goes toward
heating the u phase, but most of the latent heat goes
in front of the wall (this is borne out in numerical sim-
ulations of the previous section). Therefore, in case 3,
the released latent heat is concentrated into a smaller vol-
ume of space, namely, the space immediately in &ont of
the deflagration wall. This is in contrast to case 2, where
the released. latent heat is smoothly distributed through-
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out all of space.
One major consequence of this concentration of re-

leased latent heat is that the plasma can now more easily
reheat back up to T in these concentrated regions, and
so the lower limit for L to produce significant inhomo-
geneities found in case 2 can now be reduced. That is to
say, in case 3, a larger range of values for I will produce
baryon overdensities greater than order unity.

To get an idea of which values of I will produce sig-
nificant inhomogeneities, consider the following simple
model. Assume that all the bubbles nucleated at the
same time, with their centers (densely packed) at a dis-
tance d apart [see Eq. (53)]. The deflagration walls will
travel a distance

Vpd

Vp+ Cs
(A1)

4vrd t'c, + vpi
3(c +vp)s ( 2 )

(A2)

If we assume that all of the latent heat is transported
in &ont of the deQagration wall, then we can estimate
how much latent heat is needed to reheat the plasma in
&ont of the deBagration &ont back up to T . The total
amount of energy that will go into reheating the plasma
in front of the deflagration wall is Et t, I (V„+47rrp/3).
Therefore, if

before encountering a shock, and the velocity of the walls
will be constant (vp) out to this distance (recall that c,
is the velocity of the shock). At the moment when the
deflagration wall encounters the shock &om a neighboring
bubble, the volume V„of the unit cell that is in &ont of
the deflagration front is (therefore still in the unbroken
u phase)

Now we can put together a picture of what happens
during the phase transition in case 3. At first, the nucle-
ated bubbles travel with constant velocity vp until they
reach a radius rp. At this point, they collide with the
shock of a neighboring bubble and begin to slow down.
If the latent heat is large enough that condition (A3) is
met, the bubble walls will slow down to some minimum
velocity v;„(see below), and large amplitude inhomo-
geneities of size 8 will form. If the latent heat is small,
then inhomogeneities with an amplitude of order 1 and
with size 8 will form.

The minimum velocity of the deflagration walls can
be found by using a method similar to the one used in
case 2 [Eq. (56)]. First, let us assume that L is large
such that condition (A3) is met. Next, let us make the
assumption that the phase transition has proceeded to
the point that the b phase dominates, and the remaining
u phase is in the form of shrinking bubbles of radiusr„E. The bubbles of the u phase have become so
hot that the deflagration we'll has slowed down almost
to a stop. In fact, they would stop were it not for the
fact that heat is being removed both by expansion of
the Universe and by hydrodynamic leakage (i.e. , shocks
are leaking out of bubble and taking heat with them).
Let us make a gross simplification and assume that the
amount of heat leaking out &om the shocks is equal to
the amount of heat coming in &om shocks of neighboring
bubbles. Then the heat is only removed by the expansion
of the Universe, just as in case 2. We can then estimate
the minimum velocity by using the conservation of energy
equation (51). In this case, we use the same assumptions
that led to (56), but now r ~ r„and I' is the fraction
of the bubble volume that remains after starting with
initial radius E (we set I' = 0.5). With these assumptions,
one obtains an estimate for the minimum velocity of the
de8agration wall of the shrinking bubbles:

(A3)
8r II 4dH C —Vp

L/aT4 L/aT4 c, + vp
(A5)

then the latent heat L is big enough to reheat the plasma
such that the bubble walls will slow down considerably
once they have collided with the shocks. This condition
must be met in order for b~ )) 1. The only difFerence
between Eq. (A3) and the limit obtained in case 2 [Eq.
(55)] is the factor in the parentheses on the left-hand side
of (A3). This is the factor describing the concentration of
the released latent heat. For low values of vp, this factor
is close to 1. As an example, for vp = 0.2 this factor

1.16. But for, say, vp ——0.5, this factor 5. For values
of vp ) 0.5, the factor becomes very large. This means
that for large defi.agration velocities the latent heat L has
to be very small in order for the bubble walls to collide
without slowing down first.

The scale size 1 for the inhomogeneities in this case is

L/aT4 vp(c, + vp)

4d~ c —vp
(A6)

where we have set r —E. This expression is similar to
case 2; in fact, (A5) approaches the case 2 value as vp ~
0. The only difference between the minimum velocities
for the two cases is the factor (c, —vp)/(c, + vp), which
accounts for the small size of the u phase bubbles. For
the EW phase transition, v;„1—10 x (c, —vp). If
e, —vp, then v;„can become very small. However, as
stated in Sec. X, baryon production turns ofF at v ( 10
and so b&

" cannot become too large.
For the case of large L, that is, when (A3) is met, we

can now estimate y and b~. Estimating the baryon over
density b~ is simple. Using (52) and (A5), one obtains

d d (c, —vp)&= ——&p =—
2 2(c&+vp) (A4)

The baryon enhancement factor y can be estimated by
using

for vp ~ c„ this can be very small (recall d 10 sH
is already small).

(d/2)s —P + bg "P
(d/2)' (A7)
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where we have used (1) for the density of baryons. Sub-
stituting in Eqs. (A6) and (Al), one obtains

(c —vp l ((L/aT4) vp(c, + vp)~=1+ ' ' —I
[

. (AS)(c, +vpj ( 4dII c, —vp )

As a reminder, Eq. (AS) is an estimate of the baryon
enhancement for case 3 assuming that condition (A3) is
met, so that the deflagration walls slow down to a mini-

mum determined by the expansion rate of the Universe.
There is one subtle difficulty in calculating Eq. (A8),
and that is in Gnding the average bubble spacing d. In
Sec. VI we discuss the behavior of d in the case of homo-
geneous heating (case 2), and we will find that although
d is a function of time, is has an asymptotic value. For
the same reasons as in case 2 (namely, reheating), case
3 will also have an asymptotic value of d. In order to
siinplify matters, we will then use this asymptotic value
for d obtained using case 2 in Eq. (A8). The numerical
results of our case 3 estimate of y are included in Sec. VI.
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